The Pre-attentive Processing under Background of Industrial Automatic Control: Evidence from the vMMN
Jing-Yuan Li 1  
 
 
More details
Hide details
1
Harbin Engineering University, CHINA
CORRESPONDING AUTHOR
Jing-Yuan Li   

School of Economics and Management, Harbin Engineering University, China. Address to No.145, Nantong St., Nangang Dist., Harbin City 150001, China. Tel: +0086-13946166593
Online publish date: 2017-08-22
Publish date: 2017-08-22
 
EURASIA J. Math., Sci Tech. Ed 2017;13(8):5735–5745
KEYWORDS
ABSTRACT
Safety education is a kind of effective means by which people can improve safety consciousness, can master the safety theory, regulations and technology standard.The most important reason of work-safety accident is human factor and the level of safety behaviors and emergency capability of production people is the focus of human factors. From the cognitive perspective, the article analyzes the pre-attentive processing features of human under the industrial auto-control background through people’s information processing. Therefore article propose a cognitive neural experiment approach based HCI. Article used the auto-control interface of the towing vessels of ocean engineering vessels to simulate that of the real operating room. The figures on the central interface presented that the regular winding drum speed of the towing machine was 7.5m/min and the graphic symbols on the both sides of the interface presented the system pressure safety alerting signals of the towing machine. Normally, the safety alerting signals on the two sides of the interface were green rectangles, but abnormally they would be red vertical rectangles, red horizontal rectangles or red hexagons. Namely, the task-related stimuli appeared in the center of people’s view but the task-unrelated stimuli appeared on the sides. The subjects were informed to concentrate on the winding drum speed on the center of the interface and ignore the pressure safety alerting signals on the sides. If the winding drum speed changes, the subjects should react as soon as possible. The experiment adopted Oddball and Equiprobable paradigms, using Event-related Potential (ERP) technology to verify. The results show that all of the 3 kinds of safety alerting signals can cause Visual Mismatch Negativity (vMMN) negative wave but the strength values are different. The pressure safety alerting signals of red horizontal rectangle are easier to cause the operator’s attention.
 
REFERENCES (41)
1.
Arthur, S. R., Rhianon, A., & Emily, R. (2009). The Penguin Dictionary of Psychology: Fourth Edition. Penguin Press, 528.
 
2.
Belopolsky, A. V., Kramer, A. F., & Theeuwes, J. (2008). The role of awareness in processing of oculomotor capture: evidence from event-related potentials. Journal of Cognitive Neuroscience, 20(12), 2285-2297. doi:10.1162/jocn.2008.20161.
 
3.
Cziger, I. (2007). Visual mismatch negativity: violation of nonattended environmental regularities. Journal of Psychophysiology, 21(3-4), 224-230. doi:10.1027/0269-8803.21.34.224.
 
4.
Czigler, I., Weisz, J., & Winkler, I. (2006). ERPs and deviance detection: Visual mismatch negativity to repeated visual stimuli. Neuroscience Letters, 401(1-2), 178-182. doi:10.1016/j.neulet.2006.03.018.
 
5.
Czigler, I., Weisz, J., & Winkler, I. (2007). Backward masking and visual mismatch negativity: Electrophysiological evidence for memory-based detection of deviant stimuli. Psychophysiology, 44(4), 610–619. doi:10.1111/j.1469-8986.2007.00530.x.
 
6.
Czigler, I., Winkler, I., Pato, L., Varnagy, A., & Weisz, J. L. (2006). Visual temporal window of integration as revealed by the visual mismatch negativity event-related potential to stimulus omissions. Brain Research, 1104(1), 129-140. doi:10.1016/j.brainres.2006.05.034.
 
7.
Dong, S., Wang, J., & Dai, G. Z. (1999). HCI and Multimodal User Interface. Beijing: Science, 1999, 12-15.
 
8.
Hammar, A., & Ardal, G. (2009). Cognitive functioning in major depression-a summary. Frontiers in Human Neuroscience, 3(26), 26. doi:10.3389/neuro.09.026.2009.
 
9.
International Organization for Standardization. (2017). http://www. iso. Org/ home. Html.
 
10.
Jacobsen, T., Schroger, E., Horenkamp, T., & Winkler, I. (2003). Mismatch negativity to pitch change: Varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials. Neuroscience Letters, 344(2), 79-82. doi:10.1016/S0304-3940(03)00408-7.
 
11.
Kato, Y., Endo, H., & Kizuka, T. (2009). Mental fatigue and impaired response processes: Event-related brain potentials in a Go/No Go task. International Journal of Psychophysiol, 72(2), 204-211. doi:10.1016/j.ijpsycho.2008.12.008.
 
12.
Kenemans, J. L., Jong, T. G., & Verbaten, M. N. (2003). Detection of visual change: Mismatch or rareness? NeuroReport, 14(9), 1239-1242. doi:10.1097/01.wnr.0000081871.45938.c4.
 
13.
Kimura, M., Katayama, J., & Murohashi, H. (2006). Probability-independent and-dependent ERPs reflecting visual change detection. Psychophysiology, 43(2), 180-189. doi:10.1111/j.1469-8986.2006.00388.x.
 
14.
Kimura, M., Katayama, J., & Murohashi, H. (2008). Attention switching function of memory-comparison-based change detection system in the visual modality. International Journal of Psychophysiology, 67(2), 101-113. doi:10.1016/j.ijpsycho.2007.10.009.
 
15.
Kimura, M., Katayama, J. I., Ohira, H., & Schroeger, E. (2009). Visual mismatch negativity: New evidence from the equiprobable paradigm. Psychophysiology, 46, 402-409. doi:10.1111/j.1469-8986.2008.00767.x.
 
16.
Kimura, M., Schroeger, E., Czigler, I., & Ohira, H. (2010). Human Visual System Automatically Encodes Sequential Regularities of Discrete Events. Journal of Cognitive Neuroscience, 22(6), 1124-1139. doi:10.1162/jocn.2009.21299.
 
17.
Kimura, M., Widmann, A., & Schroeger, E. (2010). Human visual system automatically represents large-scale sequential regularities. Brain Research, 1317(4), 165-179. doi:10.1016/j.brainres.2009.12.076.
 
18.
Kujala, T., Tervaniemi, M., & Schroger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological Psychology, 74(l), l-19. doi:10.1016/j.biopsycho.2006.06.001.
 
19.
Liping, S., & Jun, W. (2013). Visual mismatch negativity in the “optimal” multi-feature paradigm. Journal of Integrative Neuroscience, 12(2), 247-258. doi:10.1142/S0219635213500179.
 
20.
Maekawa, T., Tobimatsu, S., Ogata, K., Onitsuka, T., & Kanba, S. (2009). Preattentive visual change detection as reflected by the mismatch negativity (MMN)-Evidence for a memory-based process. Neuroscience Research, 65(1), 107-112. doi:10.1016/j.neures.2009.06.005.
 
21.
Mark, S. S., & Ernest, J. M. (1993). Human factors in engineering and design. Mc Graw-Hill Education-Europe, 57-62. doi:10.1108/ir.1998.25.2.153.2.
 
22.
Naatanen, R., & Kahkonen, S. (2008). Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. International Journal of Neuropsychopharmacology, 12(1), 125-135. doi:10.1017/S1461145708009322.
 
23.
Naatanen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026.
 
24.
Naatanen, R., Paavilainen, P., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140-144. doi: 10.1016/j.clinph.2003.04.001.
 
25.
Naatanen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler. I. (2001). Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283-288. doi:10.1016/S0166-2236(00)01790-2.
 
26.
Parasuraman, R., Christensen, J., & Grafton, S. (2012). Neuroergonomics: The brain in action and at work. Neuroimage, 59(1), 1-3. doi:10.1016/j.neuroimage.2011.08.011.
 
27.
Parasuraman, R., & Rizzo, M. (2007). Neuroergonomics: The Brain at Work. Oxford University, 3-12.
 
28.
Pazo-Alvarez, P., Amenedo, E., Lorenzo-Lopez, L., & Cadaveira, F. (2004). Effects of stimulus location on automatic detection of changes in motion direction in the human brain. Neuroscience letters, 371(2-3), 111-116. doi:10.1016/j.neulet.2004.08.073.
 
29.
Pazo-Alvarez, P., Cadaveira, F., & Amenedo, E. (2003). MMN in the visual modality: a review. Biological Psychology, 63(3), 199-236. doi: 10.1016/S0301-0511(03)00049-8.
 
30.
Qin, P., Di, H., Yan, X., Yu, S., Yu, D., laureys, S. & Weng, X. (2008). Mismatch negativity to the patient`s own name in chronic disorders of consciousness. Neuroscience Letters, 488(1), 24-28. doi:10.1016/j.neulet.2008.10.029.
 
31.
Roggia, S. M., & Colares, N. T. (2008). Mismatch negativity in patients with (central) auditory processing disorders. Brazilian Journal of Otorhinolaryngology, 74(5), 705-711. doi:10.1016/S1808-8694(15)31380-X.
 
32.
Schroger, E. (1997). On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology, 34(3), 245-257. doi:10.1111/j.1469-8986.1997.tb02395.x.
 
33.
Steven, J. L. (2005). An Introduction to the Event-Related Potential Technique. Cambridge: The MIT Press, 39.
 
34.
Sulykos, I., & Czigler, I. (2011). One plus one is less than two: Visual features elicit non-additive mismatch-related brain activity. Brain Research, 1398, 64-71. doi:10.1016/j.brainres.2011.05.009.
 
35.
Takei, Y., Kumano, S., Hattori, S., Uehara, T., Kawakubo, Y., Kasai, K., Fukuda, M., & Mikuni, M. (2009). Preattentive dysfunction in major depression: a magnetoencephalography study using auditory mismatch negativity. Psychophysiology, 46(1), 52-61. doi:10.1111/j.1469-8986.2008.00748.x.
 
36.
Tales, A., Newton, P., Troscianko, T., & Butler, S. (1999). Misnatch negativity in the visual modality. Neuroreport, 10(16), 3363-3367. doi:10.1097/00001756-199911080-00020.
 
37.
Vertegaal, R. (2003). Attentive user interfaces. Communications of the ACM, 46(3), 30-33. doi: 10.1145/636772.636794.
 
38.
Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2013). Engineering Psychology and Human Performance. New Jersey: Pearson Education, 3-6. doi:10.4102/sajip.v13i1.457.
 
39.
Wickens, C. D., Lee, J. D., Liu, Y., & Gordon-Becker, S. E. (2004). Introduction to Human Factors Engineering. New Jersey: Pearson Education, 2-4, 121-139.
 
40.
Xiaosen, Q., Yi, L., Bing, X., Li, G., Songlin, L., Lijie, D., Cuiping, S., & Lun, Z. (2014). The visual mismatch negativity (vMMN): Toward the optimal paradigm. International Journal of Psychophysiology, 93(3), 311-315. doi:10.1016/j.ijpsycho.2014.06.004.
 
41.
Yuejia, L., & Jinghan, W. (2004). Attentive Research and Cognitive Neuroscience. Higher Education Press, 1-12.
 
eISSN:1305-8223
ISSN:1305-8215