A review of research on pedagogical content knowledge in science and mathematics education in the last five years

1 PhD in Education, Associate Professor of the Department of Pedagogy of Higher Education, Kazan (Volga region) Federal University, Kazan, RUSSIA
2 Doctor of Education, Professor of the Department of Pedagogy, Glazov State Pedagogical Institute named after V.G. Korolenko, Glazov, RUSSIA
3 PhD in Philosophy, Associate Professor of the Department of Sociology, Psychology and Social Management, Moscow Aviation Institute (National Research University), Moscow, RUSSIA
4 Department of Criminal Law, Criminal Procedure and Criminalistics, Peoples’ Friendship University of Russia (RUDN-University), Moscow, RUSSIA
5 Department of State and Legal Disciplines, Plekhanov Russian University of Economics, Moscow, RUSSIA
6 Department of Medical and Social Assessment, Emergency, and Ambulatory Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUSSIA
7 Postgraduate Student of the Institute of Psychology and Education, Kazan (Volga region) Federal University, Kazan, RUSSIA

Received 15 September 2022 • Accepted 20 December 2022

Abstract
This study aims to review Pedagogical Content Knowledge (PCK) studies related to science and mathematics education in the ERIC database. In addition, journals published in the Eric database were searched using the same keyword. Thirty-five science and mathematics education studies were analyzed using standards from the related literature. A qualitative thematic review was conducted in this study. All articles were downloaded and read by the researchers. Each researcher examined them together to determine themes. The themes determined were the subjects and topics studied, the profile of the participants, the data collection instruments, the study design, and the consideration of pedagogical content knowledge with its components. The results were reviewed in terms of the competencies of preservice and in-service science and mathematics teachers in pedagogical content knowledge, the analysis of the development of prospective teachers’ pedagogical content knowledge, and the components of pedagogical content knowledge. Some implications of these findings were suggested for determining and developing pedagogical content knowledge of prospective and in-service science and mathematics teachers.

Keywords: pedagogical content knowledge, science education, mathematics education

INTRODUCTION
Pedagogical content knowledge (PCK) was introduced and defined by Shulman (1986) as teachers’ ways of representing and formulating subject matter knowledge to facilitate student learning. Shulman (1987) also described PCK as “that special amalgam of content and pedagogy that is uniquely the province of teachers, their special form of professional understanding.”

According to Shulman (1987), content and pedagogical knowledge should be integrated and not seen as competing. The most important difference between a teacher and a scientist is pedagogical content knowledge. For example, a science or mathematics teacher differs from a scientist in how he or she organizes and presents knowledge to students.

PCK for teaching science and mathematics consists of five components based on Grossman’s (1990) and Tamir’s (1988) studies: (a) orientations to science
teaching, (b) knowledge and beliefs about science curriculum, (c) knowledge and beliefs about students' understanding of specific science topics, (d) knowledge and beliefs about assessment in science, and (e) knowledge and beliefs about instructional strategies for science teaching.

In the last five years, research on PCK has been conducted in the context of science and mathematics education. Several studies on PCK of preservice teachers on science and mathematics topics exist. These studies generally emphasize that most pre-service teachers do not have sufficient pedagogical knowledge to teach science and mathematics effectively (Belayneh, 2021; Tchoshanov et al., 2019; Usak et al., 2020; Yusupova et al., 2020). Some studies conclude that most prospective elementary teachers have various pedagogical misconceptions and often lack the necessary pedagogical knowledge to teach science effectively (Kuznetsova et al., 2021; Ozden, 2008; Usak et al., 2011).

METHOD

This study is a literature review of science and mathematics education in the database ERIC. PCK and science and mathematics education were used as keywords in the ERIC database. After searching for keywords, 86 articles were found by selecting full-text and peer-reviewed articles. Finally, 35 articles were found after selection in 2018. These articles were reviewed in detail one by one. In this study, a qualitative thematic review was conducted. All articles were downloaded and read by the researchers. Each researcher examined them together to determine the themes. The themes were determined as follows: i) subjects and topics studied ii) profile of participants, iii) data collection instruments, iv) study design v) how PCK is considered (components of PCK or others).

Theme 1: Subjects and Topics Studied

Among the thirty-one studies, fifteen were about science education (four of them chemistry education and three of them physics education), and again fifteen were about mathematics education. Only one study was about both science and mathematics education. On the other hand, one of the physics education studies was about “Force and Motion”, two of the chemistry education study were about the topics of “Chemical Bonding” and “Electrochemistry”, five of the mathematics education study were about the topics of “Trigonometry”, “Perimeter and Area”, “Subject of Circle”, “Functions and Students” and “Algebra”.

Theme 2: Profile of the Participants

Among the thirty-one studies, fourteen studies conducted with pre-service teachers and in-service teachers were selected as participants in twelve of the studies. The studies were conducted with high school physics, chemistry, and mathematics teachers. Only one study was conducted with elementary and secondary school teachers together.

Theme 3: Data Collection Instruments

Most researchers did not use only one data collection instrument. Many studies were conducted using multiple data collection instruments. For example, lesson plans, content knowledge tests, interviews, and observation notes were used to collect data.

Theme 4: Study Design

Qualitative approach was used in most studies. However, some studies were conducted using qualitative and quantitative approaches together. Most of the studies were conducted using the mixed approach to provide a more comprehensive understanding of the research. This mixed method was used to be more effective and reliable.

Theme 5: How PCK is Considered (Components of PCK)

There were no studies concerning all components of PCK. Only one component of PCK was studied in two studies. Content knowledge, knowledge of student understanding, and knowledge of instructional strategies were examined the most among the components of PCK. Two of the studies were not focused on the components of PCK. These studies examined the development of PCK.

FINDINGS

PCK Competencies of Preservice and In-service Science and Mathematics Teachers

The findings indicated that the level of preservice teachers’ PCK is low (Moh’d et al., 2021). Moreover, results revealed that chemistry teachers perform the lowest in teaching in terms of curricular saliency. According to Moh’d et al. (2022), some preservice
Table 1. Article, sample, and data collection tools

<table>
<thead>
<tr>
<th>Article</th>
<th>Sample</th>
<th>Data Collection Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moh'd et al. (2022)</td>
<td>Twelve in-service secondary mathematics teachers</td>
<td>Lesson plan documents and teachers’ interviews</td>
</tr>
<tr>
<td>Aliustaoglu and Tuna (2022)</td>
<td>16 prospective teachers</td>
<td>The lesson plans</td>
</tr>
<tr>
<td>Aydeniz and Gürcay (2018)</td>
<td>16 third year pre-service physics teachers</td>
<td>Conceptual test</td>
</tr>
<tr>
<td>Moh’d et al. (2021)</td>
<td>69 in-service teachers (34 male and 35 female)</td>
<td>Questionnaires and classroom observation</td>
</tr>
<tr>
<td>Murtafiah and Lukitasari (2019)</td>
<td>7 mathematics pre-service teachers</td>
<td>Observation, unstructured interviews, and documentation.</td>
</tr>
<tr>
<td>Kristanto et al. (2020)</td>
<td>fifteen pre-service mathematics teachers</td>
<td>CK and PCK test instrument</td>
</tr>
<tr>
<td>Minken et al. (2021)</td>
<td>29 teachers</td>
<td>Lesson plans</td>
</tr>
<tr>
<td>Boz and Belge-Çan (2020)</td>
<td>Three pre-service chemistry teachers</td>
<td>Lesson plans, semi-structured interviews, observations, and field notes</td>
</tr>
<tr>
<td>Can (2021)</td>
<td>Volunteered 45 chemistry teachers</td>
<td>Pre-and post-observation interviews and lesson observations</td>
</tr>
<tr>
<td>Vladusic et al. (2020)</td>
<td>Sixteen preservice chemistry teachers</td>
<td>Lesson plans and observation notes</td>
</tr>
<tr>
<td>Conceição et al. (2021)</td>
<td>Three pre-service teachers</td>
<td>Video recording of LS sessions</td>
</tr>
<tr>
<td>Juniati and Siswono (2019)</td>
<td>A prospective teacher</td>
<td>Interview and video analysis</td>
</tr>
<tr>
<td>Melo et al. (2020)</td>
<td>A secondary school physics teacher</td>
<td>Descriptive study</td>
</tr>
<tr>
<td>Ambusaidi et al. (2021)</td>
<td>1445 randomly selected students</td>
<td>A questionnaire</td>
</tr>
<tr>
<td>Van et al. (2018)</td>
<td>Two pre-service chemistry teachers</td>
<td>CK and PCK test instrument and lesson observation checklist</td>
</tr>
<tr>
<td>Oztay and Boz (2022)</td>
<td>Two pre-service chemistry teachers</td>
<td>Electrochemistry content test, Content Representation (CoRe), semi-structured interviews, video stimulated recall interviews, classroom observations and field notes</td>
</tr>
<tr>
<td>Unver et al. (2020)</td>
<td>Twenty preservice secondary mathematics teachers</td>
<td>Videotapes of the groups’ microteaching and their lesson plans</td>
</tr>
<tr>
<td>Azam (2020)</td>
<td>Four secondary school science teachers</td>
<td>Interview tapes of conversations with the participant teachers</td>
</tr>
<tr>
<td>Spangenberg (2021)</td>
<td>Twelve teachers</td>
<td>Semi-structured one-on-one interviews, lesson plans.</td>
</tr>
<tr>
<td>Deniz Yılmaz and Kıcık Demir (2021)</td>
<td>10 pre-secondary school in-service mathematics teachers and 10 prospective mathematics teachers</td>
<td>Interviews</td>
</tr>
<tr>
<td>Lee et al. (2018)</td>
<td>Four mathematics teachers</td>
<td>Interviews</td>
</tr>
<tr>
<td>Aksu (2019)</td>
<td>30 pre-service teachers</td>
<td>Open-ended questions</td>
</tr>
<tr>
<td>Sælese and Friedrichsen (2021)</td>
<td>Six middle-school pre-service teachers</td>
<td>Interviews</td>
</tr>
<tr>
<td>Sintema and Marbun (2020)</td>
<td>150 pre-service teachers</td>
<td>Vignettes, MPCK self-concept survey and a pencil and paper test on functions.</td>
</tr>
<tr>
<td>Ambusaidi et al. (2020)</td>
<td>1,400 Omani 10th grade students</td>
<td>A questionnaire</td>
</tr>
<tr>
<td>Guler and Celik (2021)</td>
<td>155 prospective teachers</td>
<td>Pedagogical content knowledge (APCK) test</td>
</tr>
<tr>
<td>Duruk and Akgun (2020)</td>
<td>A single participant</td>
<td>A semi-structured interview</td>
</tr>
</tbody>
</table>

teachers’ designing lesson plan sections have occurred inconsistently. It was determined that the pre-service teachers were not at the desired level in terms of identifying the source of students’ mistakes and proposing correct solutions (Aksu, 2019). In addition, according to the outcomes, there was a lack of knowledge of students’ understanding and knowledge of instructional strategies, which are the subcomponents of the pedagogical content knowledge of prospective mathematics teachers. In short, prospective teachers are found to be incompetent as regards the necessary mathematical subject matter knowledge Deniz Yılmaz and Kıcık Demir (2021). Gender differences in Omani students’ perception of the PCK of their science teachers were investigated in another study. The results demonstrated variation in preferences related to the learning environment between male and female students. Male students preferred a collaborative and open environment, while female students preferred a collaborative and open environment (Ambusaidi et al., 2021). A mapping technique was devised to illustrate science teachers’ PCK within stories of teaching “force and motion.” A comparative analysis of these illustrations reveals fascinating similarities and differences grounded in individual teacher’s subject area background and their specific teaching experiences, according to Azam (2020).

Analysis of the Pedagogical Content Knowledge Development of Prospective Teachers

Some of the studies concluded that prospective teachers showed improvement in each of the components of the PCK at the end of the lesson plan (Aliustaoglu & Tuna, 2022; Conceição et al., 2021; Minken et al., 2021; Vladusic et al., 2020). Moreover, some studies revealed that the PCK of the preservice teacher was developed by micro-teaching lesson study (Boz & Belge-Can, 2020; Murtafiah & Lukitasari, 2019; Unver et al., 2020). In addition, the results show that the majority of participants made positive improvements to
their initial PCK (Juniati & Siswono, 2019; Van et al., 2018). Participants became more knowledgeable about students' misconceptions, developed improved orientations to teaching, and suggested more responsive instructional and assessment strategies along with more elaborate justifications (Aydenziz & Gürçay, 2018). In another study, the findings underscored the importance of professional development for teachers' pedagogical knowledge in problem posing (Lee et al., 2018). It was recommended more use of student-centered teaching and learning methods such as project-based learning, inquiry-based learning, problem-solving, and role-playing to develop science teachers' PCK (Ambusaïdî et al., 2020). The subject matter knowledge of prospective mathematics teachers was developed after taking an elective algebra teaching course according to Guler and Celik (2021).

The Components of PCK

Preservice mathematics teachers' PCK and content knowledge (CK) were tried to be measured by using a test instrument. It employed the developmental research method and used students' empirical data to investigate the instrument's validity, objectivity, and reliability (Kristanto et al., 2020; Salakhova et al., 2021). It was found that there was no significant correlative relationship between pre-service secondary teachers' CK and PCK and results further revealed that their knowledge of content and students was weak (Sintema et al., 2020). Moreover, the findings show that four elements of PCK on trigonometry manifest themselves in teachers’ practice, namely knowledge of the subject matter, knowledge of teaching strategies, knowledge of students’ conceptions, and knowledge of curriculum, but varied in levels of sufficiency (Spangenberg, 2021). In another study, the results concluded that science teaching orientation impeded the interactions between most of the PCK components, and critical incidents were found beneficial to the investigations looking for the interactions between three or more PCK components, in particular (Duruk & Akgun, 2020). Similarly, it investigated the nature of pre-service science teachers’ integration between knowledge of students’ understanding and instructional strategies and their sources of these integrations. The pre-service science teachers frequently demonstrated the integration of knowledge of students’ understanding and instructional strategies, often developing topic-specific strategies (Saëlese & Friedrichsen, 2021).

CONCLUSION AND RECOMMENDATION

This review study examined previous research on PCK in science and mathematics education, and these studies generally addressed participants' PCK in mathematics, physics, and chemistry. There were no studies on biology concepts. Several themes were identified in these studies, and it was found that pre-service and experienced teachers had different levels of PCK development and progressively developed their components.

Most studies have been conducted with science or mathematics teachers in general, but not on a specific topic. This gap should be addressed by researchers studying science or mathematics education in the context of PCK. PCK studies should be conducted on specific topics related to science and mathematics education. In addition, researchers should prefer experienced teachers because pre-service teachers do not have enough experience and their PCK level is naturally low in general.

In light of the studies in the literature since 2018, some recommendations can be derived:

- Further studies could be conducted with experienced teachers, and students' perceptions of their teachers' PCK should be considered.
- It is recommended that in-service science and mathematics teachers receive training on implementing teacher competencies, especially PCK, in designing lesson plans for effective instructional practice.
- It is important to provide in-service training to implement PCK in teaching practice and improve teaching strategies based on the learner-centered approach to increase teachers' PCK levels.
- Professional development programs can cultivate science and mathematics teachers' PCK to better support them in planning and implementing science and mathematics lessons.
- It has been suggested that lesson plans should be conducted during training programs for prospective science and mathematics teachers.

Author contributions: All authors have sufficiently contributed to the study, and agreed with the results and conclusions.

Funding: No funding source is reported for this study.

Ethical statement: Authors stated that ethical approval was not required for the study since no live subjects were used and it is a review of existing literature. However, ethical guidelines were followed throughout the study.

Declaration of interest: No conflict of interest is declared by authors.

Data sharing statement: Data supporting the findings and conclusions are available upon request from the corresponding author.

REFERENCES

Aliustaoglui, F., & Tuna, A. (2022). Analysis of the pedagogical content knowledge development of

Kuznetsova, E.V. (2021). How do students of mathematics relate to their learning? Research into individual and motivational factors. *Education and Self Development*, 16(2), 139-152. https://doi.org/10.26907/esd.16.2.09

Minken, Z., Clarke, A., Marco-Bujosa, L., & Rulli, C. (2021). Development of teachers’ pedagogical content knowledge during lesson planning of

Sæleset, J. (2021). *Teaching science with students in mind* [Doctoral thesis]. https://hdl.handle.net/10037/22597

