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Abstract 

This paper presents a minimalist teaching-learning sequence for quantum computation in 

secondary education (5 × 60 minutes) grounded in the photon polarization approach. The 

framework has been tailored to the secondary school level education omitting complex numbers, 

matrices, and programming while relying on physics concepts with which students are already 

familiar from photon polarization. Employing a design-based research methodology, we identified 

the minimal set of concepts necessary for conceptual understanding: Dirac notation, the X and H 

quantum gates, and the quantum advantage demonstrated using the penny flip game as an 

example, which was tested on a real quantum computer. Students also explore the B92 

cryptographic protocol and quantum entanglement in this course. 

Keywords: quantum computing, quantum information science, quantum physics, polarization, 

photon, qubit 

 

INTRODUCTION 

In the second half of the 20th century, a new scientific 
era began: the second quantum revolution. As second-
generation quantum technologies (e.g., quantum 
computing, quantum communication, quantum sensing, 
etc.) have become increasingly relevant to industry, the 
demand for a highly trained workforce with expertise in 
quantum physics has grown substantially (Fox et al., 
2020; Greinert et al., 2023; Hughes et al., 2022; Merzel et 
al., 2024; Meyer et al., 2024; Venegas-Gomez, 2020). In 
Europe, efforts to develop such expertise have been 
integrated into the Quantum Flagship (2023) initiative, 
in which adapting knowledge for both secondary and 
higher education has played a central role (European 
Quantum Technology Education, 2024; QTIndu, 2023; 
Quantum Technology Education Project, 2020; Sherson 
& Goorney, 2023). The United Nations General 
Assembly declared 2025 as the international year of 
quantum science and technology, marking 100 years of 
quantum science (Goorney et al., 2025; UNESCO, 2024). 

It is not necessary for students to master the entire 
underlying physical and mathematical apparatus in 
order to become familiar with the foundations of 
quantum computation. Indeed, a basic understanding of 

simple two-state quantum systems at the high school 
level is sufficient, given that a qubit is the state of such a 
two-state quantum system. In such a system, all states 
can be described by two basis states, a mathematical 
apparatus that is well within the scope of high school 
mathematics. In response to this need, numerous 
quantum technology educational resources have been 
developed in recent years, specifically targeting high 
school learners and beginning university students 
(Bernhardt, 2019; Billig, 2018; Bley et al., 2024; Bronner et 
al., 2009; Hughes et al., 2021; IBM, 2020; Kohnle et al., 
2014, 2015; Microsoft, n. d.; Migdał et al., 2022; Müller & 
Greinert, 2024; University of St. Andrews, 2013). The 
present article introduces a new minimalist teaching-
learning sequence on quantum computation that 
employs the photon-polarization approach, which is 
designed to be feasible even at the high school level. 

RESEARCH BACKGROUND 

Introducing Learners to Quantum Physics via Light 
Polarization: Brief Overview 

Qubits can be physically realized in various ways, 
thus giving rise to multiple educational approaches for 
teaching quantum physics. Among the most widely used 
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are the electron-spin (Bernhardt, 2019; Feynman, 1965; 
Sakurai, 1985), the which-path (Bitzenbauer & Meyn, 
2020; Marshman & Singh, 2017; Müller & Wiesner, 2002), 
the double-well (Faletič, 2020), and the photon-
polarization approach (Michelini et al., 2000, 2004, 2022; 
Tóth et al., 2024b). Two-state approaches are not only 
effective for introducing quantum computing but also 
demonstrate superior performance over traditional 
methods in promoting conceptual understanding (see 
Bitzenbauer, 2021; Bitzenbauer et al., 2024). 

Among the educational approaches that employ two-
state systems, the photon-polarization approach is 
particularly significant because  

(1) the underlying phenomenon (light polarization) 
can be readily explored and understood in school 
settings (Tóth et al., 2024a) and is also covered by 
several curricula,  

(2) it has a decades-long tradition, providing access to 
well-established educational resources (Michelini 
et al., 2000, 2004, 2022; Tóth et al., 2024b), and  

(3) it is especially effective in promoting students’ 
conceptual understanding (Bitzenbauer et al., 
2024; Michelini & Stefanel, 2008; Michelini et al., 
2022; Montagnani et al., 2023; Tóth et al., 2024b; 
Zuccarini et al., 2024). 

In the photon-polarization approach, students 
initially engage in thought experiments and computer 
simulations involving single-photon sources and 
polarizers. It is established that the transmission of 
photons through a polarizer is random by principle and 
that the outcomes of many repeated, identical 
experiments can only be described probabilistically. This 
probability is consistent with Malus law, with which 
students are already familiar. In this context, the cos2 ϑ 
term acquires a new interpretation at the single-photon 
level: it represents the probability p of photon 
transmission through a polarizer, with ϑ denoting the 
angle between the transmission axis of the polarizer and 
the photon’s polarization direction. 

Students develop an intuitive understanding that 
photon states can be represented by unit vectors in a 
plane, which is made concrete through the assignment 
of vectors to polarization directions. They recognize that 
the transmission of photons through a polarizer can be 
calculated as the square of a scalar product, with p = cos2 
ϑ arising naturally: if the state vector ψ represents the 

initial state and h the transmitted state, then the 
probability of a state change is 

p(ψ → h) = (h · ψ)2 = (|h| ∙ |ψ| cos ϑ)2 = 1·1·cos2 ϑ (1) 

We emphasize that the photon polarization approach 
in secondary schools focuses exclusively on linear 
polarization, thus avoiding complex numbers (which 
would arise in the case of circular polarization). 
Therefore, the mathematical formalism is simplified, as 
shown in Eq. (1), because it does not require the adjoint 
of the state. 

Building on their elementary knowledge of linear 
algebra, students also discover the superposition 
principle: not only the basis states corresponding to 
certain measurement outcomes (e.g., the horizontal 
polarization state h and the vertical polarization state v) 
are possible, but also arbitrary linear combinations of 
these states (e.g., the diagonally polarized state), 

 ψ = ψ1h + ψ2v. (2) 

In this representation, the squared coefficients (ψ
1
2 

and ψ
2
2) correspond to the measurement probabilities 

associated with the respective states (the absolute value 
can be neglected because only linear polarization states 
are considered), restricting only real numbers. 

The teaching-learning sequence also examines the 
features of photons emitted from a single-photon source 
onto a birefringent calcite crystal, where the behavior of 
the photons remains inherently random. In accordance 
with the superposition principle, photons are detected in 
the spatial locations of the ordinary and extraordinary 
beams, for example, in states h and v with probabilities  
ψ

1
2 and ψ

2
2, respectively. Birefringent calcite crystals 

allow students to observe that the behavior of photons 
cannot be described as continuous in space and time. 
This conclusion is based on the observation that the 
photonic state ψ = ψ1h + ψ2v does not correspond to a 
certain spatial location h and v; rather, quantum states 
permit only statistical predictions. For more details on 
the photon polarization approach, see Michelini et al. 
(2000, 2004, 2022) and Tóth et al. (2024b). 

Naturally, certain learning difficulties were also 
identified in the photon polarization approach: many 
students retained the classical way of thinking and 
found it particularly challenging to grasp and accept the 
absence of classical motion (Tóth et al., 2024b). 
Misconceptions regarding quantum state and 

Contribution to the literature 

• We present a novel minimal approach to quantum information science that employs the context of photon 
polarization.  

• This approach avoids the use of complex numbers and matrices. The development process was informed 
by the cyclical principle of design-based research (DBR). 

• This newly designed teaching-learning sequence was subjected to a pilot educational experiment in a real 
classroom setting. The experiment revealed certain difficulties in students learning. 
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measurement have also emerged, as indicated in the 
literature (Michelini & Stefanel, 2021; Michelini et al., 
2022; Montagnani et al., 2023; Pospiech et al., 2021; Singh 
& Marshman, 2015; Tóth et al., 2024b). A primary benefit 
of the polarization-based approach is that its central 
element is not the lack of classical motion but 
polarization itself–a concept that is less burdened by 
classical interpretations. This approach appears to 
facilitate students’ conceptual understanding, enabling 
them to comprehend numerous features of quantum 
physics, which may be particularly beneficial when 
introducing quantum computation. 

Teaching-Learning Quantum Information Science in 
Secondary Schools 

In recent years, books have been published that are 
aimed at high school students and focus on teaching 
quantum technology (Bernhardt, 2019; Billig, 2018; 
Hughes et al., 2021; Müller & Greinert, 2024). However, 
these books do not follow the minimalist approach that 
is espoused in this article (refer to our design principle 
later). For instance, Billig (2018) and Bernhardt (2019) 
immediately introduce column vectors and matrices, 
including concepts from infinite-dimensional systems, 
which exceeds the level of knowledge expected of 
students in public education. Bernhardt (2019) utilizes 
the Stern-Gerlach experiment in which electron spins are 
employed as qubits; however, it this experiment is not 
included in the standard physics curriculum in several 
countries (Stadermann et al., 2019). Hughes et al. (2021) 
introduce the superposition principle and its 
mathematical representation using the analogy of a coin 
toss. We believe this detour is unnecessary, given that 
some quantum physics concepts are already part of the 
general high school curriculum. Subsequently the Stern-
Gerlach experiment is introduced, and the mathematical 
language employed is characterized by a substantial 
reliance on matrices. Müller and Greinert’s (2024) book 
is designed for engineering university students; 
however, a substantial portion is also appropriate for 
secondary school students. Overall, the language is 
overly abstract, particularly due to the extensive use of 
complex numbers. 

Quantum technology education literature also 
encompasses games (Piispanen et al., 2025), computer-
based simulations and experiments (Bronner et al., 2009; 
Migdał et al., 2022; Solvang et al., 2025; University of St. 
Andrews, n. d.) and extended open-access learning 
materials that facilitate students toward a deeper 
understanding of the field (Hellstern et al., 2024; IBM, 
2020; Microsoft, n. d.) and teaching experiments (Hu & 
Singh, 2024; Zuccarini et al., 2024). Escanez-Exposito et 
al. (2025) introduce quantum physics in a block-based 
programming format accessible to students, using 
classical physical analogies and minimal prior 
knowledge requirements. It extends well-established 
quantum learning material, but it includes classical 

analogies. However, the primary focus of our novel 
teaching-learning sequence is not on the programming 
aspects but rather on the application of a qubit. Similarly, 
Sun et al. (2024) have proposed an alternative approach 
that involves a reduction in the necessity for advanced 
mathematics. This approach entails a presentation of the 
subject starting from classical computing concepts, 
fostering students from IT to quantum information 
theory. Additionally, there are resources dedicated to 
certain topics, such as teaching quantum cryptography 
(see DeVore & Singh, 2020; Weissman et al., 2024). 
Zuccarini et al. (2024) underscore the physical 
implementation of quantum gates in a manner that is 
accessible and comprehensible to students within the 
context of photon polarization. 

Despite the emergence of professional educational 
resources in recent years, there are still gaps in the 
literature regarding the combined appearance of the 
following three aspects: 

1. It focuses solely on the minimal knowledge 
required for conceptual understanding and 
begins quantum computing from quantum 
physics rather than information theory. It is 
designed to be a comprehensive unit that spans 
multiple, interconnected quantum computing 
topics, providing a coherent and complete 
introductory journey rather than focusing on a 
single isolated concept. 

2. It is built upon a research-validated and effective 
quantum physics educational approach: the 
photon polarization approach. This foundation is 
scientifically sound yet remains fully accessible 
and appropriate for the high school level. 

3. It excludes mathematical formalisms not typically 
taught in high school, such as complex numbers 
and matrix algebra. This choice enables students 
to engage with fundamental quantum concepts 
without being encumbered by prerequisites in 
advanced mathematics, thereby ensuring the 
material’s genuine applicability within the 
standard secondary school curriculum.  

DEVELOPMENT OF A NEW TEACHING-
LEARNING SEQUENCE ON QUANTUM 
COMPUTING AT THE SECONDARY 
SCHOOL LEVEL 

Goal of the Teaching-Learning Sequence 

The article presents a teaching-learning sequence that 
requires minimal prior knowledge and is based on 
proven-effective teaching approach, introducing 
quantum computing as an application of quantum 
physics. The sequence is designed to require a total of 
five hours, employs intuitive examples, and provides 
foundational knowledge necessary for the topic. As a 
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result, students are introduced to a new discipline, 
quantum computing, and acquire the conventional 
notation, Dirac notation, which is imperative for 
comprehending the extant literature. They grasp key 
concepts, including qubits, quantum gates, and 
quantum entanglement. Moreover, they recognize the 
advantages of quantum computation over classical 
computation and gain hands-on experience with the 
noise inherent in real quantum computers and explore 
quantum cryptography. It is posited that this teaching-
learning sequence can guide students toward future 
quantum engineering education, thereby enabling them 
to build on these conceptual foundations. We further 
posit that quantum computing can be reconciled with 
students’ intuitive conceptions of nature because the 
probabilistic outcomes of measurements arise not from a 
lack of knowledge but from the fundamental 
superposition principle that goes beyond classical 
physics. This is of particular significance because 
students frequently hold two misconceptions:  

(1) certain predictions are impossible and  

(2) probabilistic descriptions stem from experimental 
contingency or lack of knowledge rather than the 
intrinsic dynamics of quantum mechanics 
(Bitzenbauer et al., 2024; Michelini et al., 2022; 
Montagnani et al., 2023; Singh & Marshman, 2015; 
Styer, 1996; Tóth et al., 2024b).  

Within the domain of quantum computing, both 
misconceptions can be explicitly addressed. Indeed, the 
study of quantum computing can facilitate students’ 
understanding of two fundamental principles:  

(1) quantum states can be controlled and  

(2) the inherently probabilistic nature arising from 
superposition states can be harnessed for societal 
benefit.  

This highlights the constructive potential of the 
unavoidable probabilistic behavior. Therefore, we argue 
that our newly developed teaching-learning sequence 
not only represents a novel approach to promoting 
quantum computing and orienting students toward 

quantum engineering majors but also substantially 
improves students’ understanding of quantum physics. 

Description of the Design Process, Time 
Requirements, and Learning Prerequisites 

The structure of the teaching-learning sequence is 
presented in Table 1. As demonstrated in Table 1, the 
underlying concepts can be introduced within five 
lessons, which fit within the limited timeframe available 
in high school education. However, we emphasize that 
students required two lessons for the phenomenon-
based exploration of light polarization (Tóth et al., 2024a) 
and an additional six lessons for the photon-polarization 
approach to quantum physics (Michelini et al., 2000; 
Tóth et al., 2024b), resulting in a total of 13 lessons. 
Knowledge of light polarization and quantum physics 
can be integrated into the standard curricula, as these 
concepts are currently part of the standard school 
curriculum. This integration would facilitate the 
practical incorporation of our approach into real 
classroom settings. 

The teaching-learning sequence was developed 
according to the model of educational reconstruction 
(Duit et al., 2012). This paper is part of a DBR process 
involving development, evaluation, and refinement 
(Anderson & Shattuck, 2012). In this research, the first 
evaluation cycle is reported, with the main aim of 
constructing a secondary school teaching-learning 
sequence after a first trial. 

Design Principles of the Teaching-Learning Sequence 

DP1. Using the context of photon polarization 

The teaching-learning sequence is structured around 
the photon-polarization approach, and this context is 
maintained throughout. Abstract and overly general 
reasoning can pose challenges for students, particularly 
in quantum physics. In contrast, the phenomenon of 
photon polarization provides an accessible, 
experimentally observable foundation. Prior to the 
quantum studies, we followed the suggestion of Tóth et 
al. (2024a) because light polarization can be understood 

Table 1. The summary of the teaching-learning sequence (each lesson was 60 minutes long) 

Lessons Topic Details 

1 • Dirac notation 

• Quantum gates 

Students are introduced to Dirac notation for quantum states, as well as X and H 
quantum gates. 

2 • Quantum penny flip game 

• IBM quantum computer 

A simple game provides students with an opportunity to experience the power of 
superposition from the perspective of quantum computation. They then ran this 
game on a real quantum computer, which can be programmed via the cloud using 
basic quantum circuit elements. 

3 • Quantum cryptography Students become familiar with the B92 quantum key distribution protocol. 

4-5 • Quantum entanglement The students explore single-photon entanglement along with its mathematical 
representation, where the spatial location and polarization state of photons are 
entangled. Through a program that simulates real experiments, students gain 
insights into photon pairs that are entangled in their polarization. The course 
content also encompasses the implementation of entanglement in quantum circuits. 
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phenomenologically without invoking wave optics. 
Leveraging this approach allows valuable instructional 
time to be saved while reducing the prerequisite 
knowledge required of students. 

DP2. Dirac notation and vector representation 

In the photon-polarization approach, the 
introduction of quantum states through vector 
representation is intuitive because polarization can be 
associated with a direction that is easily comprehensible 
to students and can be represented by a unit vector. A 
major advantage of this approach is that it utilizes two 
arrows to represent two orthogonal quantum states (e.g., 
horizontal and vertical polarization states), with a 90° 
separation between them. This is in contrast to 
approaches such as electron spin, where orthogonality 
corresponds to oppositely oriented spins. In quantum 
computing, the use of Dirac notation for quantum states 
(or qubits) is essential, as it is the prevailing notation in 
the field; without it, the literature becomes largely 
incomprehensible. Therefore, the vector representations 
of the states are expressed in Dirac notation. 

DP3. Minimalistic approach to formalism 

The introduction of concepts not covered in standard 
high school mathematics can imposes a significant 
cognitive and temporal burden on students. Therefore, 
one of our principles is to eschew mathematical 
knowledge that exceeds the level of high school. 
Consequently, complex numbers are avoided; therefore, 
only linearly polarized states are considered. The 
coordinate representation of quantum states and matrix 
operations is entirely omitted. Using linearly polarized 
states, quantum states are represented as vectors in a 
plane, which can be depicted on a unit circle, the state 
circle (Pospiech et al., 2021; Tóth & Tél, 2023). This 
provides a straightforward mathematical background 
that is also well known from high school mathematics. 
Consequently, the Hilbert space adopts a structure 
analogous to the familiar Cartesian coordinate system. 

DP4. Nucleus-body-periphery distinction of a 
curriculum 

In the design of the teaching-learning sequence, we 
adopted the innovative curricular approach of the 
discipline-culture framework (cf. Weissman et al., 2022). 
This framework classifies educational content into three 
categories: the nucleus (core features of a discipline), the 
body (applications and related experiments), and the 
periphery (border areas of the discipline). In this study, 
quantum physics is treated as a distinct discipline within 
physics, with a foundation that is structured around the 
photon-polarization approach. In this way, students 
discovered the most fundamental features of the topic, 
some of its basic laws, and a simplified version of its 
mathematical apparatus, which constituted the nucleus 

of learning. They also understood that, in the limit of 
very large numbers of photons (peripheral), classical 
physics is recovered, and light can be described using its 
classical representation. The presented quantum 
computing teaching-learning sequence complements the 
existing body of quantum studies, focusing on a specific 
application area (body). Care was taken not to include 
more advanced topics from classical computer science, 
thereby keeping students within the quantum physics 
context while still allowing them to explore connections 
with information theory (periphery). 

DP5. Minimalistic approach to quantum computing 

Owing to its cultural significance (The Nobel 
Committee for Physics, 2022), its positive results 
regarding the teachability of the topic in schools (Brang 
et al., 2024), and its role in quantum computing, 
quantum entanglement is included in the teaching-
learning sequence. However, because the experimental 
components needed to generate entangled photon pairs 
are very expensive and the phenomenon itself is 
challenging to grasp, students are initially introduced to 
single-photon entanglement using inexpensive 
birefringent calcite crystals (Zuccarini & Michelini, 2023; 
Zuccarini et al., 2024). In this way, students acquire 
formalism in accordance with DP2 and subsequently 
deepen their understanding of photon-pair 
entanglement through an interactive screen experiment 
(Bronner et al., 2009). 

Following DP3, a mere three quantum gates are 
incorporated into the teaching-learning sequence: the X 
gate (quantum NOT gate), the H gate (which can create 
a superposition), and the CNOT gate (sufficient for 
entanglement). These gates are sufficiently elementary 
for high school students to comprehend. We did not 
focus on the complex physical implementations of 
quantum gates, thereby saving time and cognitive 
resources. The physical realization of the quantum gates 
presented in the instructional sequence is well illustrated 
by Zuccarini et al. (2024) within the context of photon 
polarization, allowing seamless integration into 
classroom lessons. 

In this study, we focused on the simplest 
instructional sequence that conveys the minimal 
knowledge necessary for conceptual understanding. We 
consider the quantum penny flip game and B92 protocol. 

Pedagogical Trajectory in the Context of Teacher 
Training 

The instruction of quantum computation requires 
substantial prerequisite knowledge from physics 
teachers. Quantum physics is a component of the Eötvös 
Loránd University teacher training program, and the 
photon polarization approach has been integrated into it 
(cf. Tóth, 2023, 2024). Students begin their studies with 
the study of photon polarization. In this phase, students 
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learn the specific, photon-polarization-based 
educational material (Michelini et al., 2000, 2004, 2022, 
Tóth et al., 2024b), using only real numbers (i.e., 
considering only linear polarization states) and avoiding 
matrix representation. The only difference is that 
university students cover this material within a shorter 
timeframe than secondary school students. This is not 
only a pedagogical best practice that facilitates 
comprehension but also equips students with didactic 
skills. Subsequent to this, the description is generalized, 
while still avoiding complex numbers. The 
representation of the school-level material is extended 
by using column vectors, transposes, and matrices is 
introduced (Tóth, 2023). 

Students then discover the complex description 
through circular polarization, as they can no longer 
describe circularly polarized states using only real 
numbers (Tóth, 2024). In this way, students become 
thoroughly familiar with the general description of two-
state quantum systems. Thereafter, students are 
introduced to higher-dimensional systems through 
quantum entanglement via the entanglement of 
polarization. They were then introduced to the 
traditional wave mechanics approach and its application 
in atomic physics. The course concludes with didactics 
of quantum physics education. The teaching-learning 
sequence presented in this study was developed to 
ensure that students, based on their prior knowledge, are 
capable of teaching the described concepts, thus laying 
the groundwork for future quantum technology 
education. 

TEACHING-LEARNING SEQUENCE 

Lesson 1. Dirac Notation, Quantum Gates 

Dirac notation 

The bits 0 and 1 can be assigned to the horizontal (h) 
and vertical (v) polarization states, respectively. 
Students are introduced to Dirac notation using the 
standard conventions in quantum information theory: 
|0⟩ = h, |1⟩ = v. By full analogy with Eq. (1), not only the 
qubits |0⟩, |1⟩ are possible, but also their linear 
combination (in the classroom, with only real numbers 
ψ

1
 and ψ

2
 satisfying ψ

1
2 + ψ

2
2  = 1) is a qubit: 

 |ψ⟩ = ψ
1
|0⟩ + ψ

2
|1⟩. (3) 

In the classroom, students encounter quantum 
measurements exclusively in the {|0⟩, |1⟩} basis. As 
shown in Figure 1, every (linear polarization) state can 
be represented by a vector in a plane that lies on a unit 
circle. Owing to the choice of polarization context, the 
orthogonal states form a 90° angle, which is completely 
natural in the context of photon polarization (in contrast, 
for example, to electron spin). We note that this is not the 
standard Bloch sphere representation of quantum states; 
rather, it assumes a more simplified form. 

Students are also introduced to bra-vectors: the scalar 
product of state |1⟩ with state |0⟩ is written in Dirac 
notation as ⟨0|1⟩. Since in the lessons every state was 
expressed as a superposition of |0⟩ and |1⟩, students 
were required to memorize the following relationships 
between the states: ⟨0|0⟩ = ⟨1|1⟩ = 1 and ⟨0|1⟩ = ⟨1|0⟩ = 
0. These do not merely appear as mathematical rules but 
also carry a well-understood physical context: 
horizontally polarized photons are certain to pass 
through a polarizer with horizontal permitted direction, 
while certain photons are absorbed by a polaroid with 
vertical permitted direction. 

Students then considered an experiment with a 
polaroid with horizontal permitted direction. The 
probability of transmission (see Eq. [1]) can be expressed 
as 

p(|𝜓⟩ → |0⟩) = ⟨0|𝜓⟩2 = ⟨0|𝜓⟩ ∙ ⟨0|𝜓⟩ = ⟨𝜓|0⟩ ∙
⟨0|𝜓⟩ = ⟨𝜓|𝑃̂0|𝜓⟩, 

(4) 

where 𝑃̂0 = |0⟩⟨0| is a projector, and the “ket-bra” 
operation is the outer product. We note that the absolute 
value is neglected again because we omit complex 
numbers. Students recognize that the sequence of two 
states in the expression is not a scalar product. Rather, 
when an outer product acts on a state, that state is first 
scalar-multiplied by the bra-vector (yielding a number), 
and this result is then multiplied by the ket-vector of the 
projector, thereby producing a new vector. 

Quantum gates 

Building on students’ prior knowledge of quantum 
measurement and projectors, they are introduced to the 
fact that quantum states can be manipulated and that 
these transformations are carried out by quantum gates. 
Students are not expected to engage with the physical 
implementation of quantum gates; rather, their existence 
is assumed. The only requirement for a quantum gate is 
unitarity (Nielsen & Chuang, 2010): if a quantum logic 
gate is applied twice in succession, the result is as if 
nothing has occurred. Therefore, the inverse of a 
quantum gate (its reverse action) is the gate itself. 
Following the minimalist approach, students are 
introduced to only two single-photon gates: the X and H 
gates, which are presented in three representations - 
algebraically as a sum of outer products, geometrically 

 
Figure 1. As posited by Tóth & Tél (2023), the geometrical 
representation of the Hilbert space (state circle) is consistent 
with secondary school mathematics 
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on the state circle, and in the quantum circuit diagram 
notation used in programming quantum computers. 

X gate: The X gate is the quantum analogue of the 
classical NOT gate: |0⟩ ↔ |1⟩. The X gate also acts on 
superposition states, as illustrated on the state circle (see 
left-hand side of Figure 2), where the X gate reflects 
states across the +45° axis. The quantum circuit symbol 
for the X gate is a cross inside a blue circle, as shown on 
the right side of Figure 2. Its algebraic form is 

 X̂ = |0⟩⟨1| + |1⟩⟨0|. (5) 

Students verified that the X gate behaves as described 

above: X̂ |0⟩ = (|0⟩⟨1| + |1⟩⟨0|)|0⟩ = |0⟩⟨1|0⟩ + |1⟩⟨0|0⟩ = 

|0⟩ ∙ 0 + |1⟩ ∙ 1 = |1⟩ and X̂ |1⟩ = (|0⟩⟨1| + |1⟩⟨0|)|1⟩= 
|0⟩⟨1|1⟩ + |1⟩⟨0|1⟩ = |0⟩ ∙ 1 + |1⟩ ∙ 0 = |0⟩. 

Therefore, the action of the X gate on a general state 

|ψ⟩ = ψ
1
|0⟩ + ψ

2
|1⟩ is X̂ (ψ

1
|0⟩ + ψ

2
|1⟩) = 

 X̂ ψ
1
 |0⟩ + X̂ ψ

2
 |1⟩ = ψ

1
 X̂ |0⟩ + ψ

2
 X̂ |1⟩ = ψ

1
 |1⟩ + ψ

2
 |0⟩. 

H gate: The H gate creates superposition states from 
the basis states |0⟩ and |1⟩, as shown on the state circle 
and in the two quantum circuit examples in Figure 3. Its 
algebraic form is 

 Ĥ = (1/√2)((|0⟩ + |1⟩)⟨0| + (|0⟩  −  |1⟩)⟨1|). (6) 

Using Eq. (6), students can verify that the H gate 

generates a superposition state: Ĥ |0⟩ = (1/√2)((|0⟩ + 

|1⟩)⟨0|0⟩ + (|0⟩  −  |1⟩)⟨1|0⟩) = (1/√2)(|0⟩ + |1⟩) = |D⟩ 

and Ĥ |1⟩ = (1/√2) ((|0⟩ + |1⟩) ⟨0|1⟩ + (|0⟩  −  

|1⟩) ⟨1|1⟩) = (1/√2) (|0⟩  −  |1⟩) = |A⟩ 

Lesson 2. Quantum Penny Flip 

We adapted the idea of Müller and Greinert (2024) on 
teaching-learning the quantum penny flip game, which 
serves as an intuitive demonstration of the power of 
superposition. Students are first introduced to the 
classical version of the game, extending the approach of 
Müller and Greinert (2024). 

Classical case 

In the classical version, two players, Alice and Bob, 
play with coins. The outcome of the coin toss determines 
the winner: If the result is heads (bit 0), Alice wins; if it 
is tails (bit 1), Bob wins. The game proceeds as follows: 

1. Alice places the coin in an arbitrary state (heads: 0 
or tails: 1) inside a box that completely shields it 
from the outside. 

2. Bob then reaches into the box and decides either 
to flip the coin or to leave it unchanged. He does 
not know the state of the coin before or after his 
action. 

3. Alice next reaches into the box and likewise 
decides whether to flip the coin. 

4. Finally, the box is opened, and the state of the coin 
reveals the winner of the round. 

Throughout the process, neither player discloses 
their decision. 

During the lesson, the students quickly recognized 
the winning strategy for the players. If Bob does not flip 
the coin, Alice’s chances of winning increase, because 
she knows the initial state she set in step 1. If this state is 
favorable to her, she will certainly win without further 
flips. To prevent this, Bob is forced to flip the coin. As a 
result, each player has a winning probability of 1/2. 

Quantum case 

In the quantum version, the coin is replaced with a 
qubit. The winner is determined by measuring the qubit 
in the {|0⟩, |1⟩} basis: If the outcome is |0⟩, Alice wins; if 
|1⟩, Bob wins. During the game, Alice understands and 
applies the laws of quantum physics, whereas Bob treats 
the qubit as a classical bit or coin. Neither party reveals 
their decision, and the game proceeds as follows: 

1. Alice arbitrarily transforms the |0⟩ qubit state, 
corresponding to placing the coin in the box. 

2. Bob performs an operation on the qubit. Since he 
treats it like a coin, he can only do one of two 

 
Figure 2. Effect of the X gate, indicated by blue arrows, on 
the state circle (left) & the quantum circuit symbol is a cross 
inside a blue circle (right) (by definition, the quantum 

circuit can also be read backward as X̂|1⟩ = |0⟩ (Source: 
Authors’ own elaboration) 

 
Figure 3.The effect of the H gate, which generates 
superposition states, is shown on the state circle (left) & its 
quantum circuit symbol is an “H” inside a red square (right) 
as demonstrated through two examples (Source: Authors’ 
own elaboration) 
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things: either do nothing or apply the quantum 
analogue of a coin flip. This “coin flip” consists of 
applying the X gate with a probability of 1/2. 

3. Alice performs an operation on the qubit. 

4. The qubit is measured, yielding the final state and 
determining the winner of the game. 

The game is played in a classroom. Each player 
records their decisions in a notebook. To simulate the 
quantum “flip,” students physically toss a coin: if heads, 
they do nothing; If tails, they record the application of an 
X gate. If Alice applies to the H gate twice, she will 
always win. The quantum circuit representation of this 
process is shown in Figure 4 and Figure 5, respectively. 
In this game, Alice corresponds to quantum 
computation, and Bob represents classical computation. 
Alice’s victory is enabled by the existence of 
superposition states. 

Quantum penny flip using a real quantum computer 

Students were introduced to a real quantum 
computer interface (IBM, 2016), and they tested the 
quantum penny flip game on a real quantum device. The 
quantum circuit executes on multiple real quantum 
computers online. Access to these machines is limited 
and subject to a queue that depends on the quality of the 
device. Students observed that on real quantum 
computers, the expected measurement outcomes are not 
always realized owing to factors such as environmental 
noise or nonideal experimental conditions. 
Imperfections in the experimental implementation 
prevent the perfect control of quantum states, resulting 
in measurement outcomes that may differ from the 
expected results. This phenomenon is referred to as 
noise. 

Since higher-quality devices (with lower noise and 
more qubits) typically have longer queues, we used a 

noisy machine with fewer qubits, allowing students to 
perform their first live quantum programming exercise 
during the lesson. Due to noise, Bob can occasionally 
win. Figure 6 shows the results of 1024 repeated 
measurements conducted on a low-quality quantum 
computer. In this case, only 765 measurements resulted 
in Alice’s victory, instead of the expected 1024. The 
quantum computer initially operated at higher error 
rates than students expected. To address this, we 
prepared in advance by selecting a higher-quality 
quantum computer several days before the lesson. This 
allowed students to observe the measurement outcomes 
with much lower noise after waiting in the queue. For 
example, following an approximately four-hour queue, 
1023 measurements yielded |0⟩ and only 1 measurement 
yielded |1⟩. 

Lesson 3. Quantum Cryptography (B92) 

Students are introduced to a method for generating a 
secret key: the B92 quantum key distribution protocol. 
We demonstrated the protocol through a simulation of 
B92, available via the QuVis homepage (University of St. 
Andrews, n. d.). In this procedure, the 0 and 1 bits 
forming the secret key are determined based on the 
polarization states. Alice prepares photons using only 
two polarization states, keeping these polarizations a 
secret. The two chosen polarizations cannot be 
orthogonal; otherwise, a photon’s polarization could be 
easily inferred using a polarizer aligned with one of the 
polarizations, thereby compromising the secrecy of the 
key. 

Alice transmits photons either in the horizontal |0⟩ or 

diagonal |𝐷⟩ = (1/√2)(|0⟩ + |1⟩) polarization, while Bob 

measures using polarizers with vertical or antidiagonal 
(orthogonal to diagonal) permitted directions. Photons 
polarized as |0⟩ correspond to 0 bits, and photons 
polarized as |𝐷⟩ correspond to 1 bit (note that in this 
protocol, not qubit |1⟩, but |𝐷⟩ that represents bit 1). 
Alice signals Bob that single photons have been sent but 
keeps their polarizations secret. Bob’s goal is to infer the 

 
Figure 4. Quantum circuit for one scenario of the quantum 
coin-flipping game (by convention, qubits in quantum 
computing are initially in the |0⟩ state; thus, in the first step, 
Alice’s creation of the superposition state is implemented 
with the H gate & next, Bob does nothing, and Alice applies 
H gate again, resulting in the final |0⟩ state) (Source: 
Authors’ own elaboration) 

 
Figure 5. Quantum circuit diagram of the alternative 
scenario of the quantum coin toss game (Alice creates a 
superposition state using the H gate, then Bob “tosses the 
coin”, and it “flips” (X gate), and finally Alice applies 
another H gate & the final state is always |0⟩, so Alice 
always wins) (Source: Authors’ own elaboration) 

 
Figure 6. Results of 1024 repeated measurements on a noisy 
quantum computer for both cases (contrary to expectations 
(1024 measurements of |0⟩), only 765 measurements 
yielded |0⟩ and 259 measurements yielded |1⟩ due to 
noise) (Source: Authors’ own elaboration) 
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polarization of each transmitted photon. As a result, 
both parties maintain a list: Alice’s list contains the 
indices of all signals and the corresponding bits for each 
transmitted photon, whereas Bob’s list contains the 
indices but leaves some bits blank if he cannot infer the 
polarization or records a bit if he can deduce it. Bob 
indicates which photons were detected, allowing a 
shared secret key to be formed from the bits Bob 
recorded, while Alice discards the remaining bits. 

The security of this protocol relies on quantum 
mechanics: An eavesdropper (Eve) cannot perfectly copy 
photons with unknown polarization states. Because the 
measurement outcomes are inherently probabilistic, Eve 
is unlikely to determine the polarization of each photon 
sent by Alice. Furthermore, the act of measurement 
affects the quantum state, so Eve’s presence can be 
revealed if Bob’s recorded bits deviate from Alice’s. 

Scenario without an eavesdropper 

Bob randomly selects a polarizer with either a vertical 
or antidiagonal permitted direction with an equal 
probability of 1/2. If Bob detects a photon (i.e., the 
photon passes through his polarizer and triggers the 
detector), he can infer its original polarization. The 
students investigated the scenario in which Alice sends 
a diagonally polarized photon (|𝐷⟩) and Bob measures it 
with a polarizer with vertically permitted direction; 
detection occurs with a probability of 1/2. Across 
multiple trials, some |𝐷⟩ photons are detected. If Bob had 
used a 135° polarizer, the |𝐷⟩ photons would be 
absorbed, making detection impossible. Therefore, the 
students discovered that if Alice signals that a photon 
has been sent and Bob detects it, he can infer that the 
photon was in the |𝐷⟩ state and record a 1 bit. 

Students practiced this procedure in groups of three, 
taking on the roles of Alice, Bob, and a referee. The 
student playing Alice determined the bits of the secret 
key by tossing a coin, recorded them privately, and 
shared them only with the referee. Similarly, the student 
playing Bob randomly selected the orientations of the 
polarizers by coin tosses and reported them to the 
referee. The referee then simulated the probabilistic 
outcomes using additional coin tosses and informed Bob 
which bits he could infer correctly and which he could 
not. 

Then, the students discussed that, because Bob 
chooses the polarizer randomly and detection occurs 
with a probability of 1/2 for the correct choice, he can 
infer the polarization of photons with a probability of 
1/4. Alice needs to know which photons were detected, 
so Bob communicates the indices of detected photons via 
a public channel. Only photons whose polarization Bob 
confidently determines are used in the shared key, 
ensuring that no bits are disclosed to others. 

Scenario with an eavesdropper 

Students, together with the teacher, first investigated 
the B92 simulation available on the University of St. 
Andrews (2013) website. Eve’s goal is to infer as many 
photon polarizations as possible while remaining 
undetected. If she knows Bob’s polarizer orientations, 
she can attempt to measure Alice’s photons in a similar 
manner. If successful, she sends identical photons to Bob 
to conceal her presence. If Bob detects these photons, he 
records the bits that are already known to Eve. If Eve 
fails to detect a photon, she must still send a photon to 
Bob and guess its polarization. Bob may detect incorrect 
guesses. 

To detect Eve, Alice and Bob perform a subset of bit-
checking: Bob randomly selects bits he knows and sends 
their values and indices to Alice over a public channel. 
These bits are not included in the secret key. If all the 
checked bits match, the communication is considered 
secure, and the remaining shared bits form the key. Any 
discrepancy reveals Eve’s interference, and the key is 
discarded. 

Students playfully experimented with this scenario, 
forming groups of four, with the fourth member acting 
as a referee (similar to the case without eavesdropping). 
Some students observed that Eve’s strategy involves 
sending a photon aligned with her polarizer if she fails 
to detect the original photon. Errors arise when Alice’s 
transmitted photons are absorbed and originally had a 
polarization at 45° relative to Eve’s polarizer. Since the 
polarizer orientation is chosen with a probability of 1/2, 
and the chance of sending a photon in the wrong 
polarization is also 1/2, the probability that Eve sends a 
photon incorrectly is 1/4. Bob detects these incorrect 
photons with a probability of 1/4, resulting in an 
expected 1/16 fraction of all photons yielding incorrect 
bits. Therefore, among the bits Bob records, 1/4 are 
expected to be erroneous, allowing Alice and Bob to 
detect Eve’s presence. 

In summary, students explored that the security of 
the protocol relies on the quantum mechanical principle 
that an eavesdropper cannot perfectly replicate 
unknown photon polarizations. Due to the probabilistic 
nature of quantum measurement, Eve is unlikely to 
obtain full information about Alice’s photons, and her 
presence can be detected because Bob’s recorded bits 
will differ from Alice’s. 

Lesson 4-5. Quantum Entanglement 

Single-photon entanglement 

Students, together with the teacher, investigate an 
experiment that appeared in previous quantum physics 
studies: A single photon is emitted onto a birefringent 
crystal calcite. The students are able to express the 

photonic state (2) in Dirac notation as: |ψ⟩ = ψ1|0⟩ + ψ2|1⟩, 

where the ∣0⟩ state corresponds to the ordinary beam and 
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the ∣1⟩ state corresponds to the extraordinary beam. 
Previously, students considered the superposition state 
in terms of polarization, where the ∣0⟩ and ∣1⟩ states 
represented two orthogonal polarization states. We 
emphasized to students that these states can also reflect 
certain spatial modes, which can be explicitly indicated 

as |ψ⟩ = ψ1|0⟩spat + ψ2|1⟩spat. Since there is a correlation 

between spatial mode and polarization, the state can 
equivalently be written as 

 |ψ⟩ = ψ1|0⟩pol|0⟩spat + ψ2|1⟩pol|1⟩spat. (7) 

As indicated by the subscripts, the first ket refers to 
the polarization state, and the second ket immediately 
following it refers to the spatial mode. The pairs 
|0⟩pol|0⟩spat and |1⟩pol|1⟩spat do not denote scalar products 
but rather new states (tensor product). These joint states 
must be considered together, reflecting the fact that 
knowledge of the spatial mode also determines the 
polarization, since the corresponding properties are 
realized simultaneously. The joint states |0⟩pol|0⟩spat and 
|1⟩pol|1⟩spat correspond to mutually exclusive events and 
are therefore orthogonal. The polarization and spatial-
mode degrees of freedom are entangled: It is not possible 
to separate the photon’s state into independent 
polarization and spatial-mode states, because these 
properties are not independent and are always 
measured together, even if only one degree of freedom 
is accessed. 

If we agree that the first ket corresponds to 
polarization, the subscripts in Eq. (7) can be omitted, 
yielding the more compact expression 

|ψ⟩ = ψ1|0⟩|0⟩ + ψ2|1⟩|1⟩ = ψ
1
|00⟩ + ψ

2
|11⟩. (8) 

In Eq. (8), the first number in the ket represents the 
polarization state, and the second number denotes the 
spatial-mode state: |0⟩pol|0⟩spat = |0⟩|0⟩ = |00⟩ and 
|1⟩pol|1⟩spat = |1⟩|1⟩ = |11⟩. 

Photon-pair entanglement 

In the following experiments, instead of using 
birefringent calcite crystals, nonlinear beta-barium 
borate (BBO) crystals (Dehlinger & Mitchell, 2002a, 
2002b) were employed within the interactive screen 
experiment of Bronner et al. (2009). Students are 
introduced to the experimental details. When a laser 
beam of a specific frequency illuminates these nonlinear 
crystals, the photons in the beam can be absorbed by the 
crystals. The excess energy gained by the crystals is then 
released via spontaneous emission of indistinguishable 
photon pairs. Energy is conserved; therefore, the emitted 
photons each have half the energy (and, therefore twice 
the wavelength) of the absorbed photons. For example, 
an absorbed violet photon (405 nm) produces an emitted 
photon pair in the near-infrared (810 nm). Due to 
momentum conservation, the two photons of each pair 
lie in the same plane as the incident laser beam and form 
equal angles with its propagation axis. 

Polarization measurements can be performed using 
50/50 polarization beam splitters (or birefringent calcite 
crystals), because in this configuration, the photons’ 
spatial modes and polarization become entangled. 
Signals from detectors placed at different locations then 
provide polarization information. The transmitted beam 
has vertical polarization, while the reflected beam has 
horizontal polarization. Consequently, photons 
polarized at 45° incident on the beam splitter have a 
probability of 1/2 of being detected in either the 
transmitted or reflected path. Detectors placed after the 
beam splitters provide information about polarization. 
Figure 7 shows a schematic diagram of the experiment. 
The Bronner et al. (2009) interactive screen experiment 
also demonstrates this behavior: detectors signal for each 
photon of a pair simultaneously. Figure 8 shows the 
realization of Figure 7 in the interactive screen 
experiment. 

 
Figure 7. Schematic representation of the experiment. A 
laser beam impinges on the BBO crystal, and an obstacle 
intercepts the transmitted beam (the crystals occasionally 
emit photon pairs (red lines) & polarization beam splitters 
direct photons such that detectors D1 and D4 register 
vertical polarization, whereas D2 and D3 register horizontal 
polarization) (Source: Authors’ own elaboration) 

 
Figure 8. Screenshot from Bronner et al.’s (2009) interactive 
screen experiment, which replicates the real experiment 
and allows students to interactively explore photon pair 
behavior 
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Students investigated the behavior of a single photon 
pair generated by the deposited crystals. They explored 
that: 

• Each photon has a probability of 1/2 of being 
detected by either D1 or D2 (first photon) and a 
probability of 1/2 of being detected by D3 or D4 
(second photon). 

• If D1 detects one photon, the other photon is 
always detected by D4. 

• If D2 detects one photon, the other photon is 
always detected by D3. 

From these detector signals, students concluded that 
both photons of a pair are always found with the same 
polarization; therefore, their polarization states must be 
entangled. Together with the students, we represented 
the state of a photon pair as a two-photon quantum 
system: 

 |ψ⟩ = ψ1|0⟩1|0⟩2 + ψ2|1⟩1|1⟩2, (9) 

where ψ1 = ψ2 = 1/√2. Here, each ket refers to 
polarization, and the subscript 1 and subscript 2 identify 

the individual photons. The coefficients ψ1 = ψ2 = 1/√2 
correspond to a Bell state, reflecting that a measurement 
yields either two horizontally or two vertically polarized 

photons, each with a probability of (1/√2)2 = 1/2. In this 
entangled state (9), the two photons are 
indistinguishable, and their indices can be swapped or 

omitted: |ψ⟩ = ψ1|0⟩|0⟩ + ψ2|1⟩|1⟩ (the photons are 

bosons). This indicates that the system can only be 
meaningfully described as a whole (holism). As before, 
the notation can be further compacted: 

 |ψ⟩ = ψ
1
|00⟩ + ψ

2
|11⟩. (10) 

Upon measurement, the system collapses 
instantaneously into either the ∣00⟩ or ∣11⟩ state. This 
phenomenon is referred to as “nonlocality”, because 
entangled photons exhibit correlated behavior despite 
being spatially separated. The entangled state ∣ψ⟩ is a 
special superposition with the following features: 

(1) its eigenstates are composed of multiple states, 
and 

(2) the entangled state cannot be factorized into two 
separate states; the system is only meaningful as a 
whole. 

Before measurement, the photon pair should not be 
imagined as two separate, spatially isolated photons, as 
doing so would conceptually fragment the quantum 
system. Entanglement requires functional and 
mathematical reasoning rather than purely visual 
intuition, which students have come to understand. 

For this reason, students see that the state in Eq. (10) 
cannot be decomposed, illustrating feature (B). We 
observed that students often initially propose that if ∣ψ⟩ 
were separable, each photon would be in the state ∣D⟩. In 
that case, the joint state would be 

|D⟩1|D⟩2 = [(1/√2)|0⟩1 + (1/√2)|1⟩1] [(1/√2)|0⟩2 + 

(1/√2)|1⟩2], 
(11) 

which expands to 

(1/2)|0⟩1|0⟩2 + (1/2)|0⟩1|1⟩2 + (1/2)|1⟩1|0⟩2 + 

(1/2)|1⟩1|1⟩2 = (1/2)(|00⟩+|01⟩+|10⟩+|11⟩). 
(12) 

This state represents independent polarizations for 
the two photons, without entanglement. Therefore, the 
entangled state in Eq. (9) and Eq. (10) does not 
correspond to the separable state in Eq. (11) and Eq. (12). 

Entanglement as a quantum circuit 

A less commonly discussed classical gate is the 
controlled-NOT (CNOT) gate, which takes two input 
bits and produces two output bits. One of the input bits 
is called the control bit, and the other is the target bit. If 
the control bit is 0, the CNOT gate has no effect; if the 
control bit is 1, it acts on the target bit as a NOT gate. 

The quantum CNOT gate operates similarly on two 
input qubits and produces two output qubits. 
Analogously, if the control qubit is |0⟩, the gate has no 
effect; if the control qubit is |1⟩, it acts on the target qubit 
via the quantum mechanical analog of the NOT gate, 
that is, the X gate. Its algebraic definition is given by: 

CNOT̂ = |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|. (13) 

Our students examined the action of the gate on the 
four fundamental qubit pairs (the first qubit is the 
control, and the second is the target qubit). The states 
correspond to mutually exclusive events and are 
therefore orthogonal, with scalar products equal to zero, 
as indicated in red: 

CNOT̂|00⟩ = |00⟩⟨00|00⟩ + |01⟩⟨01|00⟩ + |11⟩⟨10|00⟩ + 
|10⟩⟨11|00⟩ = |00⟩. 

(14) 

CNOT̂|01⟩ = |00⟩⟨00|01⟩ + |01⟩⟨01|01⟩ + |11⟩⟨10|01⟩ + 
|10⟩⟨11|01⟩ = |01⟩. 

(15) 

CNOT̂|10⟩ = |00⟩⟨00|10⟩ + |01⟩⟨01|10⟩ + |11⟩⟨10|10⟩ + 
|10⟩⟨11|10⟩ = |11⟩. 

(16) 

CNOT̂|11⟩ = |00⟩⟨00|11⟩ + |01⟩⟨01|11⟩ + |11⟩⟨10|11⟩ + 
|10⟩⟨11|11⟩ = |10⟩. 

(17) 

The quantum CNOT gate only changes the two 
qubits in the cases of (16-17) because the control qubit is 
|1⟩. 

The students investigated an important case in which 
the control qubit was in the superposition state |𝐷⟩ and 
the target qubit was |0⟩. Since the control qubit was 
neither |0⟩ nor |1⟩, the effect on the target qubit was not 
straightforward. We expressed the initial system in the 

two-qubit form: |D⟩|0⟩ = (1/√2)(|0⟩ + |1⟩)|0⟩ =  

(1/√2)(|0⟩|0⟩ + |1⟩|0⟩) = (1/√2)(|00⟩ + |10⟩). The action of 
the CNOT gate can be calculated using Eq. (12) and Eq. 
(14): 
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CNOT̂(1/√2)(|00⟩ + |10⟩) = (1/√2)(CNOT̂|00⟩ + 

CNOT̂|10⟩) = (1/√2)(|00⟩ + |11⟩). 
(18) 

The calculation shows that if the control qubit is |0⟩, 
the target qubit remains |0⟩, and if the control qubit is 
|1⟩, the target qubit becomes |1⟩. Since the control qubit 
is in a superposition of |0⟩ and |1⟩, the target qubit also 
becomes a superposition and is entangled with the 
control qubit. The (18) Bell state describes an entangled 
photon pair, so the CNOT gate, when applied to an 
appropriate input state, acts as the quantum circuit 
element responsible for entanglement. 

By convention, the initial qubits in quantum 
computers are |0⟩; therefore, an H gate must be applied 
to the control qubit to generate entanglement. The 
combination of these two operations is called a Bell 
quantum circuit. Figure 9 shows a quantum circuit that 
allows students to experiment with entangled qubits on 
quantum computers. 

CLASSROOM EXPERIENCES 

In this paper, we presented a novel teaching-learning 
sequence in the context of a pilot experiment conducted 
within an extracurricular high school study group. Six 
students aged between 17 and 18 years participated in 
five sessions, each of which lasted 60 minutes. The 
participants were recruited from a group of high school 
students who were interested in the topic and 
volunteered for the study. In the ensuing discussion, we 
will summarize the classroom experiences that were 
gathered during the initial pilot study, with a particular 
focus on the learning difficulties encountered by the 
students. 

Learning Difficulties in the Context of Logic Gates 

We found that three students encountered difficulties 
due to their inability to recall the fundamental principles 
of classic logic gates, a component that is not a central 
element of the IT and mathematics curriculum in 
Hungary. Consequently, a preliminary discussion was 
deemed necessary. The alignment of classical 
informatics knowledge with extracurricular courses is a 
significant future objective. 

Five students held the conviction that the eigenstates 
of an operator are identical to the states resulting from 

the operator acting on a state. Consequently, some 
students erroneously assumed that an H gate could be 
realized by a polarizer with diagonally permitted 
direction of 45°. This learning difficulty arises because 
horizontally polarized photons in the initial |0⟩ state 
passing through such a polarizer are transformed into 

the |D⟩ = (1/√2)(|0⟩+|1⟩) state. However, in quantum 
mechanics, the effect of an operator as an operation and 
the eigenvalues and eigenstates of an operator 
representing a physical quantity are entirely distinct 
concepts - an issue also identified among university 
students in the publication (Sing & Marshman, 2015). 

A further challenge emerged from the perspective of 
four students, who held the conviction that quantum 
gates were non-reversible. This misconception 
originated from photon polarization experiments, 
wherein photons are frequently absorbed or annihilated, 
thereby rendering the transformations irreversible. The 
issue was identified in the treatment of quantum gates 
as black boxes; in this respect, the paper by Zuccarini et 
al. (2024) can be integrated into the teaching-learning 
sequence. 

Learning Difficulties in the Context of Quantum 
Cryptography 

It was evident that a conceptual revision of the notion 
of a secret key was necessary for some students, as the 
concept of classical encryption was not entirely clear. We 
observed that all students tended to use term “detection” 
and “quantum measurement” synonymously, a finding 
that is consistent with the observations reported Tóth et 
al. (2024b). This has given rise to certain difficulties in the 
B92 protocol, in which the absorption of photons must 
also be considered as a measurement outcome. 
Consequently, it was imperative to engage the students 
in a comprehensive discussion on the meaning of 
quantum measurement: when the quantum system 
interacts with a measuring device or its environment, 
information about the system is released to the outside 
world. It is noteworthy that interaction with a polarizer 
is regarded as a quantum measurement, whereas 
interaction with birefringent calcite crystals or beam-
splitter cubes is not. In such cases, only the detector 
signal can be considered a quantum measurement. We 
found that this dialogue was sufficient to clarify the 
students’ reasoning. The potential benefits of employing 
calcite crystals in future encryption applications in lieu 
of polarizers merit exploration, given the observation 
that detection and measurement occur concurrently at 
these points. 

Learning Difficulties in the Context of Entanglement 

Three students required assistance in rewriting the 
state of two non-entangled photons from two two-
dimensional states into a four-dimensional state (and 
vice versa). Given the novelty of these operations, the 

 
Figure 9. The bell quantum circuit in our notation (the solid 
black dot represents the control qubit, and the blue circle 
with a cross (X gate) acts on the target qubit & the line 
connecting them denotes the CNOT gate in the quantum 
circuit) (Source: Authors’ own elaboration) 
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lessons was supplemented with practical exercises to 
facilitate student comprehension. We also observed that 
some participants experienced difficulty distinguishing 

between the states (1/√2)(|0⟩+|1⟩)(1/√2)(|0⟩+|1⟩) and 

(1/√2)(|00⟩+|11⟩). When expressing photon-pair states 
in four dimensions, some students mistakenly assumed 
that they were always entangled, which is not always the 
case. 

Three students found it difficult to accept that the 
state of an entangled photon pair cannot be decomposed 
into the states of the individual photons. Therefore, for 
these students, we provided a derivation (cf. Bernhardt, 
2019) showing that a state representing an arbitrary 
entanglement cannot be decomposed into a product of 
two individual photon states. We also emphasized that 
the components of an entangled photon pair are 
indistinguishable. 

We also observed that the conceptualization of 
entanglement of photon pairs posed a significant 
challenge for students, as this phenomenon defies 
classical intuition. However, we discovered that 
students who has already demonstrated an 
understanding of the nonlocality of a single photon 
exhibited comprehension of the concept of photon-pair 
entanglement. A significant benefit of the polarization-
based teaching approach is its capacity to promote the 
development of a quantum mechanical way of thinking 
(Bitzenbauer et al., 2024), thereby enhancing the 
comprehension of entanglement, which is crucial for 
quantum computing, in comparison to traditional 
teaching approaches. 

CONCLUSIONS 

In this study, we presented a new, minimalist 
teaching-learning sequence to quantum computing 
based on photon polarization. We found that students 
were strongly interested in topics at the forefront of 
science that are frequently highlighted in the media. One 
educational advantage of quantum computing is its 
ability to clearly demonstrate the possibilities inherent in 
superposition and entanglement.  

Future Research 

The teaching-learning sequence outlined in this 
article enable more in-depth analysis of students’ mental 
models and conceptual understanding in future studies. 
For instance, students are instructed on quantum 
entanglement via a novel pedagogical approach that 
incorporates the use of a real quantum computer. 
However, a study was conducted that investigated 
students’ conceptions about quantum entanglement 
(Brang et al., 2024), but through a completely different 
approach. Consequently, an investigation into students’ 
conceptions about entanglement in our approach has the 
potential to contribute to existing literature. As Hennig 
et al. (2024) demonstrated, an acceptance survey can 

facilitate a more profound exploration of learning 
difficulties experienced during the teaching-learning 
sequence. Furthermore, educational experiments on 
teaching the BB84 quantum key distribution protocol 
have been conducted (DeVore & Singh, 2020; Weissman 
et al., 2024); however, the impact of teaching the B92 
protocol described in this article on students’ thinking 
has not yet been investigated. A comparison of the 
educational effectiveness of the BB84 and B92 protocols 
may prove to be an interesting avenue for future 
research. Another intriguing educational experiment 
could involve examining the challenges associated with 
utilizing diverse online programmable quantum 
computers within the context of a technological 
acceptance survey, similar to Dandl et al. (2024), who 
conducted a study in a different context. 
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