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Abstract

This paper presents a minimalist teaching-learning sequence for quantum computation in
secondary education (5 x 60 minutes) grounded in the photon polarization approach. The
framework has been tailored to the secondary school level education omitting complex numbers,
matrices, and programming while relying on physics concepts with which students are already
familiar from photon polarization. Employing a design-based research methodology, we identified
the minimal set of concepts necessary for conceptual understanding: Dirac notation, the X and H
quantum gates, and the quantum advantage demonstrated using the penny flip game as an
example, which was tested on a real quantum computer. Students also explore the B92
cryptographic protocol and quantum entanglement in this course.

Keywords: quantum computing, quantum information science, quantum physics, polarization,

photon, qubit

INTRODUCTION

In the second half of the 20t century, a new scientific
era began: the second quantum revolution. As second-
generation quantum technologies (e.g., quantum
computing, quantum communication, quantum sensing,
etc.) have become increasingly relevant to industry, the
demand for a highly trained workforce with expertise in
quantum physics has grown substantially (Fox et al.,
2020; Greinert et al., 2023; Hughes et al., 2022; Merzel et
al., 2024; Meyer et al., 2024; Venegas-Gomez, 2020). In
Europe, efforts to develop such expertise have been
integrated into the Quantum Flagship (2023) initiative,
in which adapting knowledge for both secondary and
higher education has played a central role (European
Quantum Technology Education, 2024; QTIndu, 2023;
Quantum Technology Education Project, 2020; Sherson
& Goorney, 2023). The United Nations General
Assembly declared 2025 as the international year of
quantum science and technology, marking 100 years of
quantum science (Goorney et al., 2025; UNESCO, 2024).

It is not necessary for students to master the entire
underlying physical and mathematical apparatus in
order to become familiar with the foundations of
quantum computation. Indeed, a basic understanding of

simple two-state quantum systems at the high school
level is sufficient, given that a qubit is the state of such a
two-state quantum system. In such a system, all states
can be described by two basis states, a mathematical
apparatus that is well within the scope of high school
mathematics. In response to this need, numerous
quantum technology educational resources have been
developed in recent years, specifically targeting high
school learners and beginning university students
(Bernhardt, 2019; Billig, 2018; Bley et al., 2024; Bronner et
al., 2009; Hughes et al., 2021; IBM, 2020; Kohnle et al.,
2014, 2015; Microsoft, n. d.; Migdat et al., 2022; Miiller &
Greinert, 2024; University of St. Andrews, 2013). The
present article introduces a new minimalist teaching-
learning sequence on quantum computation that
employs the photon-polarization approach, which is
designed to be feasible even at the high school level.

RESEARCH BACKGROUND
Introducing Learners to Quantum Physics via Light

Polarization: Brief Overview

Qubits can be physically realized in various ways,
thus giving rise to multiple educational approaches for
teaching quantum physics. Among the most widely used

© 2025 by the authors; licensee Modestum. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
B4 tothk0711@gmail.com (*Correspondence) B< philipp.bitzenbauer@uni-leipzig.de (*Correspondence)


https://doi.org/10.29333/ejmste/17388
http://creativecommons.org/licenses/by/4.0/
mailto:tothk0711@gmail.com
mailto:philipp.bitzenbauer@uni-leipzig.de
https://orcid.org/0000-0001-7274-0241
https://orcid.org/0000-0001-5493-291X

Toth & Bitzenbauer / A teaching approach to quantum computing at the secondary school level

Contribution to the literature

e  We present a novel minimal approach to quantum information science that employs the context of photon

polarization.

e This approach avoids the use of complex numbers and matrices. The development process was informed
by the cyclical principle of design-based research (DBR).

e This newly designed teaching-learning sequence was subjected to a pilot educational experiment in a real
classroom setting. The experiment revealed certain difficulties in students learning.

are the electron-spin (Bernhardt, 2019; Feynman, 1965;
Sakurai, 1985), the which-path (Bitzenbauer & Meyn,
2020; Marshman & Singh, 2017; Miiller & Wiesner, 2002),
the double-well (Faleti¢, 2020), and the photon-
polarization approach (Michelini et al., 2000, 2004, 2022;
Téth et al., 2024b). Two-state approaches are not only
effective for introducing quantum computing but also
demonstrate superior performance over traditional
methods in promoting conceptual understanding (see
Bitzenbauer, 2021; Bitzenbauer et al., 2024).

Among the educational approaches that employ two-
state systems, the photon-polarization approach is
particularly significant because

(1) the underlying phenomenon (light polarization)
can be readily explored and understood in school
settings (Toth et al., 2024a) and is also covered by
several curricula,

(2) it has a decades-long tradition, providing access to
well-established educational resources (Michelini
et al., 2000, 2004, 2022; Té6th et al., 2024b), and

(3) it is especially effective in promoting students’
conceptual understanding (Bitzenbauer et al.,
2024; Michelini & Stefanel, 2008; Michelini et al.,
2022; Montagnani et al., 2023; Té6th et al., 2024b;
Zuccarini et al., 2024).

In the photon-polarization approach, students
initially engage in thought experiments and computer
simulations involving single-photon sources and
polarizers. It is established that the transmission of
photons through a polarizer is random by principle and
that the outcomes of many repeated, identical
experiments can only be described probabilistically. This
probability is consistent with Malus law, with which
students are already familiar. In this context, the cos? 9
term acquires a new interpretation at the single-photon
level: it represents the probability p of photon
transmission through a polarizer, with 9 denoting the
angle between the transmission axis of the polarizer and
the photon’s polarization direction.

Students develop an intuitive understanding that
photon states can be represented by unit vectors in a
plane, which is made concrete through the assignment
of vectors to polarization directions. They recognize that
the transmission of photons through a polarizer can be
calculated as the square of a scalar product, with p = cos?
¥ arising naturally: if the state vector y represents the
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initial state and h the transmitted state, then the
probability of a state change is

ply — h)=(h - w2 = (] Iyl cos 2= 1-1-cos§ (1)

We emphasize that the photon polarization approach
in secondary schools focuses exclusively on linear
polarization, thus avoiding complex numbers (which
would arise in the case of circular polarization).
Therefore, the mathematical formalism is simplified, as
shown in Eq. (1), because it does not require the adjoint
of the state.

Building on their elementary knowledge of linear
algebra, students also discover the superposition
principle: not only the basis states corresponding to
certain measurement outcomes (e.g., the horizontal
polarization state k and the vertical polarization state v)
are possible, but also arbitrary linear combinations of
these states (e.g., the diagonally polarized state),

w = yih +yon. 2

In this representation, the squared coefficients (v}
and @?2) correspond to the measurement probabilities
associated with the respective states (the absolute value

can be neglected because only linear polarization states
are considered), restricting only real numbers.

The teaching-learning sequence also examines the
features of photons emitted from a single-photon source
onto a birefringent calcite crystal, where the behavior of
the photons remains inherently random. In accordance
with the superposition principle, photons are detected in
the spatial locations of the ordinary and extraordinary
beams, for example, in states h and v with probabilities
lpf and 1,05, respectively. Birefringent calcite crystals
allow students to observe that the behavior of photons
cannot be described as continuous in space and time.
This conclusion is based on the observation that the
photonic state @ = wih + v does not correspond to a
certain spatial location h and v; rather, quantum states
permit only statistical predictions. For more details on
the photon polarization approach, see Michelini et al.
(2000, 2004, 2022) and Téth et al. (2024b).

Naturally, certain learning difficulties were also
identified in the photon polarization approach: many
students retained the classical way of thinking and
found it particularly challenging to grasp and accept the
absence of classical motion (Téth et al., 2024b).
Misconceptions  regarding quantum state and
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measurement have also emerged, as indicated in the
literature (Michelini & Stefanel, 2021; Michelini et al.,
2022; Montagnani et al., 2023; Pospiech et al., 2021; Singh
& Marshman, 2015; Téth et al., 2024b). A primary benefit
of the polarization-based approach is that its central
element is not the lack of classical motion but
polarization itself-a concept that is less burdened by
classical interpretations. This approach appears to
facilitate students’ conceptual understanding, enabling
them to comprehend numerous features of quantum
physics, which may be particularly beneficial when
introducing quantum computation.

Teaching-Learning Quantum Information Science in
Secondary Schools

In recent years, books have been published that are
aimed at high school students and focus on teaching
quantum technology (Bernhardt, 2019; Billig, 2018;
Hughes et al., 2021; Miiller & Greinert, 2024). However,
these books do not follow the minimalist approach that
is espoused in this article (refer to our design principle
later). For instance, Billig (2018) and Bernhardt (2019)
immediately introduce column vectors and matrices,
including concepts from infinite-dimensional systems,
which exceeds the level of knowledge expected of
students in public education. Bernhardt (2019) utilizes
the Stern-Gerlach experiment in which electron spins are
employed as qubits; however, it this experiment is not
included in the standard physics curriculum in several
countries (Stadermann et al., 2019). Hughes et al. (2021)
introduce the superposition principle and its
mathematical representation using the analogy of a coin
toss. We believe this detour is unnecessary, given that
some quantum physics concepts are already part of the
general high school curriculum. Subsequently the Stern-
Gerlach experiment is introduced, and the mathematical
language employed is characterized by a substantial
reliance on matrices. Miiller and Greinert’s (2024) book
is designed for engineering university students;
however, a substantial portion is also appropriate for
secondary school students. Overall, the language is
overly abstract, particularly due to the extensive use of
complex numbers.

Quantum technology education literature also
encompasses games (Piispanen et al., 2025), computer-
based simulations and experiments (Bronner et al., 2009;
Migdat et al., 2022; Solvang et al., 2025; University of St.
Andrews, n. d.) and extended open-access learning
materials that facilitate students toward a deeper
understanding of the field (Hellstern et al., 2024; IBM,
2020; Microsoft, n. d.) and teaching experiments (Hu &
Singh, 2024; Zuccarini et al., 2024). Escanez-Exposito et
al. (2025) introduce quantum physics in a block-based
programming format accessible to students, using
classical physical analogies and minimal prior
knowledge requirements. It extends well-established
quantum learning material, but it includes classical

analogies. However, the primary focus of our novel
teaching-learning sequence is not on the programming
aspects but rather on the application of a qubit. Similarly,
Sun et al. (2024) have proposed an alternative approach
that involves a reduction in the necessity for advanced
mathematics. This approach entails a presentation of the
subject starting from classical computing concepts,
fostering students from IT to quantum information
theory. Additionally, there are resources dedicated to
certain topics, such as teaching quantum cryptography
(see DeVore & Singh, 2020; Weissman et al., 2024).
Zuccarini et al. (2024) underscore the physical
implementation of quantum gates in a manner that is
accessible and comprehensible to students within the
context of photon polarization.

Despite the emergence of professional educational
resources in recent years, there are still gaps in the
literature regarding the combined appearance of the
following three aspects:

1. It focuses solely on the minimal knowledge
required for conceptual understanding and
begins quantum computing from quantum
physics rather than information theory. It is
designed to be a comprehensive unit that spans
multiple, interconnected quantum computing
topics, providing a coherent and complete
introductory journey rather than focusing on a
single isolated concept.

2. Itis built upon a research-validated and effective
quantum physics educational approach: the
photon polarization approach. This foundation is
scientifically sound yet remains fully accessible
and appropriate for the high school level.

3. It excludes mathematical formalisms not typically
taught in high school, such as complex numbers
and matrix algebra. This choice enables students
to engage with fundamental quantum concepts
without being encumbered by prerequisites in
advanced mathematics, thereby ensuring the
material’s genuine applicability within the
standard secondary school curriculum.

DEVELOPMENT OF A NEW TEACHING-
LEARNING SEQUENCE ON QUANTUM
COMPUTING AT THE SECONDARY
SCHOOL LEVEL

Goal of the Teaching-Learning Sequence

The article presents a teaching-learning sequence that
requires minimal prior knowledge and is based on
proven-effective  teaching approach, introducing
quantum computing as an application of quantum
physics. The sequence is designed to require a total of
five hours, employs intuitive examples, and provides
foundational knowledge necessary for the topic. As a
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Table 1. The summary of the teaching-learning sequence (each lesson was 60 minutes long)

Lessons Topic Details

1 e Dirac notation

e Quantum gates quantum gates.

Students are introduced to Dirac notation for quantum states, as well as X and H

2 ¢ Quantum penny flip game A simple game provides students with an opportunity to experience the power of

¢ IBM quantum computer

superposition from the perspective of quantum computation. They then ran this

game on a real quantum computer, which can be programmed via the cloud using
basic quantum circuit elements.

3 e Quantum cryptography
4-5 ¢ Quantum entanglement

Students become familiar with the B92 quantum key distribution protocol.
The students explore single-photon entanglement along with its mathematical

representation, where the spatial location and polarization state of photons are
entangled. Through a program that simulates real experiments, students gain
insights into photon pairs that are entangled in their polarization. The course
content also encompasses the implementation of entanglement in quantum circuits.

result, students are introduced to a new discipline,
quantum computing, and acquire the conventional
notation, Dirac notation, which is imperative for
comprehending the extant literature. They grasp key
concepts, including qubits, quantum gates, and
quantum entanglement. Moreover, they recognize the
advantages of quantum computation over classical
computation and gain hands-on experience with the
noise inherent in real quantum computers and explore
quantum cryptography. It is posited that this teaching-
learning sequence can guide students toward future
quantum engineering education, thereby enabling them
to build on these conceptual foundations. We further
posit that quantum computing can be reconciled with
students’ intuitive conceptions of nature because the
probabilistic outcomes of measurements arise not from a
lack of knowledge but from the fundamental
superposition principle that goes beyond classical
physics. This is of particular significance because
students frequently hold two misconceptions:

(1) certain predictions are impossible and

(2) probabilistic descriptions stem from experimental
contingency or lack of knowledge rather than the
intrinsic dynamics of quantum mechanics
(Bitzenbauer et al., 2024; Michelini et al., 2022;
Montagnani et al., 2023; Singh & Marshman, 2015;
Styer, 1996; T6th et al., 2024b).

Within the domain of quantum computing, both
misconceptions can be explicitly addressed. Indeed, the
study of quantum computing can facilitate students’
understanding of two fundamental principles:

(1) quantum states can be controlled and

(2) the inherently probabilistic nature arising from
superposition states can be harnessed for societal
benefit.

This highlights the constructive potential of the
unavoidable probabilistic behavior. Therefore, we argue
that our newly developed teaching-learning sequence
not only represents a novel approach to promoting
quantum computing and orienting students toward
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quantum engineering majors but also substantially
improves students” understanding of quantum physics.

Description of the Design Process, Time
Requirements, and Learning Prerequisites

The structure of the teaching-learning sequence is
presented in Table 1. As demonstrated in Table 1, the
underlying concepts can be introduced within five
lessons, which fit within the limited timeframe available
in high school education. However, we emphasize that
students required two lessons for the phenomenon-
based exploration of light polarization (Té6th et al., 2024a)
and an additional six lessons for the photon-polarization
approach to quantum physics (Michelini et al., 2000;
Toéth et al.,, 2024b), resulting in a total of 13 lessons.
Knowledge of light polarization and quantum physics
can be integrated into the standard curricula, as these
concepts are currently part of the standard school
curriculum. This integration would facilitate the
practical incorporation of our approach into real
classroom settings.

The teaching-learning sequence was developed
according to the model of educational reconstruction
(Duit et al., 2012). This paper is part of a DBR process
involving development, evaluation, and refinement
(Anderson & Shattuck, 2012). In this research, the first
evaluation cycle is reported, with the main aim of
constructing a secondary school teaching-learning
sequence after a first trial.

Design Principles of the Teaching-Learning Sequence

DP1. Using the context of photon polarization

The teaching-learning sequence is structured around
the photon-polarization approach, and this context is
maintained throughout. Abstract and overly general
reasoning can pose challenges for students, particularly
in quantum physics. In contrast, the phenomenon of
photon  polarization  provides an  accessible,
experimentally observable foundation. Prior to the
quantum studies, we followed the suggestion of Téth et
al. (2024a) because light polarization can be understood
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phenomenologically without invoking wave optics.
Leveraging this approach allows valuable instructional
time to be saved while reducing the prerequisite
knowledge required of students.

DP2. Dirac notation and vector representation

In the photon-polarization approach, the
introduction of quantum states through vector
representation is intuitive because polarization can be
associated with a direction that is easily comprehensible
to students and can be represented by a unit vector. A
major advantage of this approach is that it utilizes two
arrows to represent two orthogonal quantum states (e.g.,
horizontal and vertical polarization states), with a 90°
separation between them. This is in contrast to
approaches such as electron spin, where orthogonality
corresponds to oppositely oriented spins. In quantum
computing, the use of Dirac notation for quantum states
(or qubits) is essential, as it is the prevailing notation in
the field; without it, the literature becomes largely
incomprehensible. Therefore, the vector representations
of the states are expressed in Dirac notation.

DP3. Minimalistic approach to formalism

The introduction of concepts not covered in standard
high school mathematics can imposes a significant
cognitive and temporal burden on students. Therefore,
one of our principles is to eschew mathematical
knowledge that exceeds the level of high school.
Consequently, complex numbers are avoided; therefore,
only linearly polarized states are considered. The
coordinate representation of quantum states and matrix
operations is entirely omitted. Using linearly polarized
states, quantum states are represented as vectors in a
plane, which can be depicted on a unit circle, the state
circle (Pospiech et al., 2021; Té6th & Tél, 2023). This
provides a straightforward mathematical background
that is also well known from high school mathematics.
Consequently, the Hilbert space adopts a structure
analogous to the familiar Cartesian coordinate system.

DP4. Nucleus-body-periphery distinction of a
curriculum

In the design of the teaching-learning sequence, we
adopted the innovative curricular approach of the
discipline-culture framework (cf. Weissman et al., 2022).
This framework classifies educational content into three
categories: the nucleus (core features of a discipline), the
body (applications and related experiments), and the
periphery (border areas of the discipline). In this study,
quantum physics is treated as a distinct discipline within
physics, with a foundation that is structured around the
photon-polarization approach. In this way, students
discovered the most fundamental features of the topic,
some of its basic laws, and a simplified version of its
mathematical apparatus, which constituted the nucleus

of learning. They also understood that, in the limit of
very large numbers of photons (peripheral), classical
physics is recovered, and light can be described using its
classical representation. The presented quantum
computing teaching-learning sequence complements the
existing body of quantum studies, focusing on a specific
application area (body). Care was taken not to include
more advanced topics from classical computer science,
thereby keeping students within the quantum physics
context while still allowing them to explore connections
with information theory (periphery).

DP5. Minimalistic approach to quantumn computing

Owing to its cultural significance (The Nobel
Committee for Physics, 2022), its positive results
regarding the teachability of the topic in schools (Brang
et al, 2024), and its role in quantum computing,
quantum entanglement is included in the teaching-
learning sequence. However, because the experimental
components needed to generate entangled photon pairs
are very expensive and the phenomenon itself is
challenging to grasp, students are initially introduced to
single-photon  entanglement wusing inexpensive
birefringent calcite crystals (Zuccarini & Michelini, 2023;
Zuccarini et al., 2024). In this way, students acquire
formalism in accordance with DP2 and subsequently
deepen  their  understanding of photon-pair
entanglement through an interactive screen experiment
(Bronner et al., 2009).

Following DP3, a mere three quantum gates are
incorporated into the teaching-learning sequence: the X
gate (quantum NOT gate), the H gate (which can create
a superposition), and the CNOT gate (sufficient for
entanglement). These gates are sufficiently elementary
for high school students to comprehend. We did not
focus on the complex physical implementations of
quantum gates, thereby saving time and cognitive
resources. The physical realization of the quantum gates
presented in the instructional sequence is well illustrated
by Zuccarini et al. (2024) within the context of photon

polarization, allowing seamless integration into
classroom lessons.
In this study, we focused on the simplest

instructional sequence that conveys the minimal
knowledge necessary for conceptual understanding. We
consider the quantum penny flip game and B92 protocol.

Pedagogical Trajectory in the Context of Teacher
Training

The instruction of quantum computation requires
substantial prerequisite knowledge from physics
teachers. Quantum physics is a component of the E6tvos
Lordnd University teacher training program, and the
photon polarization approach has been integrated into it
(cf. Toth, 2023, 2024). Students begin their studies with
the study of photon polarization. In this phase, students
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learn  the  specific, ~ photon-polarization-based
educational material (Michelini et al., 2000, 2004, 2022,
Toth et al., 2024b), using only real numbers (i.e.,
considering only linear polarization states) and avoiding
matrix representation. The only difference is that
university students cover this material within a shorter
timeframe than secondary school students. This is not
only a pedagogical best practice that facilitates
comprehension but also equips students with didactic
skills. Subsequent to this, the description is generalized,
while still avoiding complex numbers. The
representation of the school-level material is extended

by using column vectors, transposes, and matrices is
introduced (Té6th, 2023).

Students then discover the complex description
through circular polarization, as they can no longer
describe circularly polarized states using only real
numbers (Téth, 2024). In this way, students become
thoroughly familiar with the general description of two-
state quantum systems. Thereafter, students are
introduced to higher-dimensional systems through
quantum entanglement via the entanglement of
polarization. They were then introduced to the
traditional wave mechanics approach and its application
in atomic physics. The course concludes with didactics
of quantum physics education. The teaching-learning
sequence presented in this study was developed to
ensure that students, based on their prior knowledge, are
capable of teaching the described concepts, thus laying
the groundwork for future quantum technology
education.

TEACHING-LEARNING SEQUENCE

Lesson 1. Dirac Notation, Quantum Gates

Dirac notation

The bits 0 and 1 can be assigned to the horizontal (h)
and vertical (v) polarization states, respectively.
Students are introduced to Dirac notation using the
standard conventions in quantum information theory:
|0) = h, |1) = v. By full analogy with Eq. (1), not only the
qubits |0), |1) are possible, but also their linear
combination (in the classroom, with only real numbers
w, and p, satisfying g2 + 5 = 1) is a qubit:

lw) =y, 10) +y, |1). ©)

In the classroom, students encounter quantum
measurements exclusively in the {|0), |1)} basis. As
shown in Figure 1, every (linear polarization) state can
be represented by a vector in a plane that lies on a unit
circle. Owing to the choice of polarization context, the
orthogonal states form a 90° angle, which is completely
natural in the context of photon polarization (in contrast,
for example, to electron spin). We note that this is not the
standard Bloch sphere representation of quantum states;
rather, it assumes a more simplified form.

6/ 16

[1)=v

10y =h

Figure 1. As posited by Téth & Tél (2023), the geometrical
representation of the Hilbert space (state circle) is consistent
with secondary school mathematics

Students are also introduced to bra-vectors: the scalar
product of state |1) with state |0) is written in Dirac
notation as (0|1). Since in the lessons every state was
expressed as a superposition of |0) and |1), students
were required to memorize the following relationships
between the states: (0]0) =(1|1)=1and (0|1) =(1|0) =
0. These do not merely appear as mathematical rules but
also carry a well-understood physical context:
horizontally polarized photons are certain to pass
through a polarizer with horizontal permitted direction,
while certain photons are absorbed by a polaroid with
vertical permitted direction.

Students then considered an experiment with a
polaroid with horizontal permitted direction. The
probability of transmission (see Eq. [1]) can be expressed
as

p(IP) - 10)) =(0[y)? = (0ly) - (Oly) = ([0) - 4
Ol) = WP ),

where P, = |0)0]| is a projector, and the “ket-bra”
operation is the outer product. We note that the absolute
value is neglected again because we omit complex
numbers. Students recognize that the sequence of two
states in the expression is not a scalar product. Rather,
when an outer product acts on a state, that state is first
scalar-multiplied by the bra-vector (yielding a number),
and this result is then multiplied by the ket-vector of the
projector, thereby producing a new vector.

Quantum gates

Building on students” prior knowledge of quantum
measurement and projectors, they are introduced to the
fact that quantum states can be manipulated and that
these transformations are carried out by quantum gates.
Students are not expected to engage with the physical
implementation of quantum gates; rather, their existence
is assumed. The only requirement for a quantum gate is
unitarity (Nielsen & Chuang, 2010): if a quantum logic
gate is applied twice in succession, the result is as if
nothing has occurred. Therefore, the inverse of a
quantum gate (its reverse action) is the gate itself.
Following the minimalist approach, students are
introduced to only two single-photon gates: the X and H
gates, which are presented in three representations -
algebraically as a sum of outer products, geometrically
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Figure 2. Effect of the X gate, indicated by blue arrows, on
the state circle (left) & the quantum circuit symbol is a cross
inside a blue circle (right) (by definition, the quantum
circuit can also be read backward as X |1) = |0) (Source:
Authors’ own elaboration)

on the state circle, and in the quantum circuit diagram
notation used in programming quantum computers.

X gate: The X gate is the quantum analogue of the
classical NOT gate: |0) < |1). The X gate also acts on
superposition states, as illustrated on the state circle (see
left-hand side of Figure 2), where the X gate reflects
states across the +45° axis. The quantum circuit symbol
for the X gate is a cross inside a blue circle, as shown on
the right side of Figure 2. Its algebraic form is

X =0)1] +1)0]. ®)

Students verified that the X gate behaves as described
above:  X10) = (J0X1] + [1)01)]0) = [0)(1]0) + [1)(0[0) =
0)-0+[1)-1=[1) and  X[1)=(l0X1]+[1}O0DI1)=
[0)(11T) + [1)(0[1) = 0) - 1+ [1) - 0 =0).

Therefore, the action of the X gate on a general state
ltp) = w,10) +w,I1) is X (1,10} +,I1)) =

X, 0y +Xp, [1) =1, X10)+yp, X[1) =1, [1)+1,|0).

H gate: The H gate creates superposition states from
the basis states |0) and |1), as shown on the state circle
and in the two quantum circuit examples in Figure 3. Its
algebraic form is

H=~2)((10) + [1)(0] + (10) — [1))(11). (6)
Using Eq. (6), students can verify that the H gate
generates a superposition state: a0y = 1/ \/E)((IO) +
11))(0[0) + (10} — [1))(1]0)) = (1/v2)(|0) + [1)) = |D)
and H 1) = (1/v2) ((10) + [1)) (0[1) + (|0) —
1) (1[1)) = (1/¥2) (10) — [1)) = |A)

Lesson 2. Quantum Penny Flip

We adapted the idea of Miiller and Greinert (2024) on
teaching-learning the quantum penny flip game, which
serves as an intuitive demonstration of the power of
superposition. Students are first introduced to the

classical version of the game, extending the approach of
Miiller and Greinert (2024).

H gate 1
IO)—.—E(IOH 19

H gate

i —l— 00 -m

I
S 040) \me
-l0y 10)
\ |
)
V2 — e —
)
Figure 3.The effect of the H gate, which generates
superposition states, is shown on the state circle (left) & its
quantum circuit symbol is an “H” inside a red square (right)

as demonstrated through two examples (Source: Authors’
own elaboration)

1

ﬁ(IUH 1)

Classical case

In the classical version, two players, Alice and Bob,
play with coins. The outcome of the coin toss determines
the winner: If the result is heads (bit 0), Alice wins; if it
is tails (bit 1), Bob wins. The game proceeds as follows:

1. Alice places the coin in an arbitrary state (heads: 0
or tails: 1) inside a box that completely shields it
from the outside.

2. Bob then reaches into the box and decides either
to flip the coin or to leave it unchanged. He does
not know the state of the coin before or after his
action.

3. Alice next reaches into the box and likewise
decides whether to flip the coin.

4. Finally, the box is opened, and the state of the coin
reveals the winner of the round.

Throughout the process, neither player discloses
their decision.

During the lesson, the students quickly recognized
the winning strategy for the players. If Bob does not flip
the coin, Alice’s chances of winning increase, because
she knows the initial state she set in step 1. If this state is
favorable to her, she will certainly win without further
flips. To prevent this, Bob is forced to flip the coin. As a
result, each player has a winning probability of 1/2.

Quantum case

In the quantum version, the coin is replaced with a
qubit. The winner is determined by measuring the qubit
in the {|0), | 1)} basis: If the outcome is |0), Alice wins; if
|1), Bob wins. During the game, Alice understands and
applies the laws of quantum physics, whereas Bob treats
the qubit as a classical bit or coin. Neither party reveals
their decision, and the game proceeds as follows:

1. Alice arbitrarily transforms the |0) qubit state,
corresponding to placing the coin in the box.

2. Bob performs an operation on the qubit. Since he
treats it like a coin, he can only do one of two
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H gate H gate

o—Jl— @0+ 1 —Jl—w

Figure 4. Quantum circuit for one scenario of the quantum
coin-flipping game (by convention, qubits in quantum
computing are initially in the |0) state; thus, in the first step,
Alice’s creation of the superposition state is implemented
with the H gate & next, Bob does nothing, and Alice applies
H gate again, resulting in the final |0) state) (Source:
Authors’ own elaboration)

H gate X gate H gate

1 1
10—l 00+ 1)—@— 5 v +10) —Jl—0

Figure 5. Quantum circuit diagram of the alternative
scenario of the quantum coin toss game (Alice creates a
superposition state using the H gate, then Bob “tosses the
coin”, and it “flips” (X gate), and finally Alice applies
another H gate & the final state is always |0), so Alice
always wins) (Source: Authors” own elaboration)

things: either do nothing or apply the quantum
analogue of a coin flip. This “coin flip” consists of
applying the X gate with a probability of 1/2.

3. Alice performs an operation on the qubit.

4. The qubit is measured, yielding the final state and
determining the winner of the game.

The game is played in a classroom. Each player
records their decisions in a notebook. To simulate the
quantum “flip,” students physically toss a coin: if heads,
they do nothing; If tails, they record the application of an
X gate. If Alice applies to the H gate twice, she will
always win. The quantum circuit representation of this
process is shown in Figure 4 and Figure 5, respectively.
In this game, Alice corresponds to quantum
computation, and Bob represents classical computation.
Alice’s victory is enabled by the existence of
superposition states.

Quantum penny flip using a real quantum computer

Students were introduced to a real quantum
computer interface (IBM, 2016), and they tested the
quantum penny flip game on a real quantum device. The
quantum circuit executes on multiple real quantum
computers online. Access to these machines is limited
and subject to a queue that depends on the quality of the
device. Students observed that on real quantum
computers, the expected measurement outcomes are not
always realized owing to factors such as environmental
noise or nonideal experimental conditions.
Imperfections in the experimental implementation
prevent the perfect control of quantum states, resulting
in measurement outcomes that may differ from the
expected results. This phenomenon is referred to as
noise.

Since higher-quality devices (with lower noise and
more qubits) typically have longer queues, we used a
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Figure 6. Results of 1024 repeated measurements on a noisy
quantum computer for both cases (contrary to expectations
(1024 measurements of |0)), only 765 measurements
yielded |0) and 259 measurements yielded |1) due to
noise) (Source: Authors” own elaboration)

noisy machine with fewer qubits, allowing students to
perform their first live quantum programming exercise
during the lesson. Due to noise, Bob can occasionally
win. Figure 6 shows the results of 1024 repeated
measurements conducted on a low-quality quantum
computer. In this case, only 765 measurements resulted
in Alice’s victory, instead of the expected 1024. The
quantum computer initially operated at higher error
rates than students expected. To address this, we
prepared in advance by selecting a higher-quality
quantum computer several days before the lesson. This
allowed students to observe the measurement outcomes
with much lower noise after waiting in the queue. For
example, following an approximately four-hour queue,
1023 measurements yielded |0) and only 1 measurement
yielded [1).

Lesson 3. Quantum Cryptography (B92)

Students are introduced to a method for generating a
secret key: the B92 quantum key distribution protocol.
We demonstrated the protocol through a simulation of
B92, available via the QuVis homepage (University of St.
Andrews, n. d.). In this procedure, the 0 and 1 bits
forming the secret key are determined based on the
polarization states. Alice prepares photons using only
two polarization states, keeping these polarizations a
secret. The two chosen polarizations cannot be
orthogonal; otherwise, a photon’s polarization could be
easily inferred using a polarizer aligned with one of the
polarizations, thereby compromising the secrecy of the
key.

Alice transmits photons either in the horizontal |0) or
diagonal |D) = (1/v2)(]0) + |1)) polarization, while Bob
measures using polarizers with vertical or antidiagonal
(orthogonal to diagonal) permitted directions. Photons
polarized as |0) correspond to 0 bits, and photons
polarized as |D) correspond to 1 bit (note that in this
protocol, not qubit |1), but |D) that represents bit 1).
Alice signals Bob that single photons have been sent but
keeps their polarizations secret. Bob’s goal is to infer the
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polarization of each transmitted photon. As a result,
both parties maintain a list: Alice’s list contains the
indices of all signals and the corresponding bits for each
transmitted photon, whereas Bob’s list contains the
indices but leaves some bits blank if he cannot infer the
polarization or records a bit if he can deduce it. Bob
indicates which photons were detected, allowing a
shared secret key to be formed from the bits Bob
recorded, while Alice discards the remaining bits.

The security of this protocol relies on quantum
mechanics: An eavesdropper (Eve) cannot perfectly copy
photons with unknown polarization states. Because the
measurement outcomes are inherently probabilistic, Eve
is unlikely to determine the polarization of each photon
sent by Alice. Furthermore, the act of measurement
affects the quantum state, so Eve’s presence can be
revealed if Bob’s recorded bits deviate from Alice’s.

Scenario without an eavesdropper

Bob randomly selects a polarizer with either a vertical
or antidiagonal permitted direction with an equal
probability of 1/2. If Bob detects a photon (ie., the
photon passes through his polarizer and triggers the
detector), he can infer its original polarization. The
students investigated the scenario in which Alice sends
a diagonally polarized photon (|D)) and Bob measures it
with a polarizer with vertically permitted direction;
detection occurs with a probability of 1/2. Across
multiple trials, some |D) photons are detected. If Bob had
used a 135° polarizer, the |D) photons would be
absorbed, making detection impossible. Therefore, the
students discovered that if Alice signals that a photon
has been sent and Bob detects it, he can infer that the
photon was in the |D) state and record a 1 bit.

Students practiced this procedure in groups of three,
taking on the roles of Alice, Bob, and a referee. The
student playing Alice determined the bits of the secret
key by tossing a coin, recorded them privately, and
shared them only with the referee. Similarly, the student
playing Bob randomly selected the orientations of the
polarizers by coin tosses and reported them to the
referee. The referee then simulated the probabilistic
outcomes using additional coin tosses and informed Bob
which bits he could infer correctly and which he could
not.

Then, the students discussed that, because Bob
chooses the polarizer randomly and detection occurs
with a probability of 1/2 for the correct choice, he can
infer the polarization of photons with a probability of
1/4. Alice needs to know which photons were detected,
so Bob communicates the indices of detected photons via
a public channel. Only photons whose polarization Bob
confidently determines are used in the shared key,
ensuring that no bits are disclosed to others.

Scenario with an eavesdropper

Students, together with the teacher, first investigated
the B92 simulation available on the University of St.
Andrews (2013) website. Eve’s goal is to infer as many
photon polarizations as possible while remaining
undetected. If she knows Bob’s polarizer orientations,
she can attempt to measure Alice’s photons in a similar
manner. If successful, she sends identical photons to Bob
to conceal her presence. If Bob detects these photons, he
records the bits that are already known to Eve. If Eve
fails to detect a photon, she must still send a photon to
Bob and guess its polarization. Bob may detect incorrect
guesses.

To detect Eve, Alice and Bob perform a subset of bit-
checking: Bob randomly selects bits he knows and sends
their values and indices to Alice over a public channel.
These bits are not included in the secret key. If all the
checked bits match, the communication is considered
secure, and the remaining shared bits form the key. Any
discrepancy reveals Eve’s interference, and the key is
discarded.

Students playfully experimented with this scenario,
forming groups of four, with the fourth member acting
as a referee (similar to the case without eavesdropping).
Some students observed that Eve’s strategy involves
sending a photon aligned with her polarizer if she fails
to detect the original photon. Errors arise when Alice’s
transmitted photons are absorbed and originally had a
polarization at 45° relative to Eve’s polarizer. Since the
polarizer orientation is chosen with a probability of 1/2,
and the chance of sending a photon in the wrong
polarization is also 1/2, the probability that Eve sends a
photon incorrectly is 1/4. Bob detects these incorrect
photons with a probability of 1/4, resulting in an
expected 1/16 fraction of all photons yielding incorrect
bits. Therefore, among the bits Bob records, 1/4 are
expected to be erroneous, allowing Alice and Bob to
detect Eve’s presence.

In summary, students explored that the security of
the protocol relies on the quantum mechanical principle
that an eavesdropper cannot perfectly replicate
unknown photon polarizations. Due to the probabilistic
nature of quantum measurement, Eve is unlikely to
obtain full information about Alice’s photons, and her
presence can be detected because Bob’s recorded bits
will differ from Alice’s.

Lesson 4-5. Quantum Entanglement

Single-photon entanglement

Students, together with the teacher, investigate an
experiment that appeared in previous quantum physics
studies: A single photon is emitted onto a birefringent
crystal calcite. The students are able to express the
photonic state (2) in Dirac notation as: |} = 1]0) + 2[1),
where the |0) state corresponds to the ordinary beam and
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the |1) state corresponds to the extraordinary beam.
Previously, students considered the superposition state
in terms of polarization, where the |0) and [1) states
represented two orthogonal polarization states. We
emphasized to students that these states can also reflect
certain spatial modes, which can be explicitly indicated
as |p) = Y110)spar + P2l 1)spar. Since there is a correlation
between spatial mode and polarization, the state can
equivalently be written as

|W> = l//ll())pollo)spat + V/Zl 1)pol| 1)spat- (7)

As indicated by the subscripts, the first ket refers to
the polarization state, and the second ket immediately
following it refers to the spatial mode. The pairs
[0)pot| O)spat and [1)pol|1)spat do not denote scalar products
but rather new states (tensor product). These joint states
must be considered together, reflecting the fact that
knowledge of the spatial mode also determines the
polarization, since the corresponding properties are
realized simultaneously. The joint states |0)po1|0)spat and
[1)pol|1)spat correspond to mutually exclusive events and
are therefore orthogonal. The polarization and spatial-
mode degrees of freedom are entangled: It is not possible
to separate the photon’s state into independent
polarization and spatial-mode states, because these
properties are not independent and are always
measured together, even if only one degree of freedom
is accessed.

If we agree that the first ket corresponds to
polarization, the subscripts in Eq. (7) can be omitted,
yielding the more compact expression

lw) = y1]0)|0) + yo| 1)[1) =y, [00) + y, [ 11). 8)

In Eq. (8), the first number in the ket represents the
polarization state, and the second number denotes the
spatial-mode state: |0)pollO)spat = [0}|0) = [00) and
[Dpol spat = [1)[1) = [11).

Photon-pair entanglement

In the following experiments, instead of using
birefringent calcite crystals, nonlinear beta-barium
borate (BBO) crystals (Dehlinger & Mitchell, 2002a,
2002b) were employed within the interactive screen
experiment of Bronner et al. (2009). Students are
introduced to the experimental details. When a laser
beam of a specific frequency illuminates these nonlinear
crystals, the photons in the beam can be absorbed by the
crystals. The excess energy gained by the crystals is then
released via spontaneous emission of indistinguishable
photon pairs. Energy is conserved; therefore, the emitted
photons each have half the energy (and, therefore twice
the wavelength) of the absorbed photons. For example,
an absorbed violet photon (405 nm) produces an emitted
photon pair in the near-infrared (810 nm). Due to
momentum conservation, the two photons of each pair
lie in the same plane as the incident laser beam and form
equal angles with its propagation axis.
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Figure 7. Schematic representation of the experiment. A
laser beam impinges on the BBO crystal, and an obstacle
intercepts the transmitted beam (the crystals occasionally
emit photon pairs (red lines) & polarization beam splitters
direct photons such that detectors D1 and D4 register
vertical polarization, whereas D2 and D3 register horizontal
polarization) (Source: Authors” own elaboration)
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Figure 8. Screenshot from Bronner et al.’s (2009) interactive
screen experiment, which replicates the real experiment
and allows students to interactively explore photon pair
behavior

Polarization measurements can be performed using
50/50 polarization beam splitters (or birefringent calcite
crystals), because in this configuration, the photons’
spatial modes and polarization become entangled.
Signals from detectors placed at different locations then
provide polarization information. The transmitted beam
has vertical polarization, while the reflected beam has
horizontal  polarization. = Consequently,  photons
polarized at 45° incident on the beam splitter have a
probability of 1/2 of being detected in either the
transmitted or reflected path. Detectors placed after the
beam splitters provide information about polarization.
Figure 7 shows a schematic diagram of the experiment.
The Bronner et al. (2009) interactive screen experiment
also demonstrates this behavior: detectors signal for each
photon of a pair simultaneously. Figure 8 shows the
realization of Figure 7 in the interactive screen
experiment.
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Students investigated the behavior of a single photon
pair generated by the deposited crystals. They explored
that:

e Each photon has a probability of 1/2 of being
detected by either D1 or D2 (first photon) and a
probability of 1/2 of being detected by D3 or D4
(second photon).

e If D1 detects one photon, the other photon is
always detected by D4.

e If D2 detects one photon, the other photon is
always detected by D3.

From these detector signals, students concluded that
both photons of a pair are always found with the same
polarization; therefore, their polarization states must be
entangled. Together with the students, we represented
the state of a photon pair as a two-photon quantum
system:

ly) = y1{0)110)2 + ya| 1) [1),, ©)

where y; = y, = 1/V2. Here, each ket refers to
polarization, and the subscript 1 and subscript 2 identify
the individual photons. The coefficients g1 = g = 1/v2
correspond to a Bell state, reflecting that a measurement
yields either two horizontally or two vertically polarized
photons, each with a probability of (1/v2)2=1/2. In this
entangled state (9), the two photons are
indistinguishable, and their indices can be swapped or
omitted: |lp) = y|0)[0) + y2|1)|1) (the photons are
bosons). This indicates that the system can only be
meaningfully described as a whole (holism). As before,
the notation can be further compacted:

lw) = y,100) + w,|11).

Upon measurement, the system collapses
instantaneously into either the [00) or |11) state. This
phenomenon is referred to as “nonlocality”, because
entangled photons exhibit correlated behavior despite
being spatially separated. The entangled state |y) is a
special superposition with the following features:

(10)

(1) its eigenstates are composed of multiple states,
and

(2) the entangled state cannot be factorized into two
separate states; the system is only meaningful as a
whole.

Before measurement, the photon pair should not be
imagined as two separate, spatially isolated photons, as
doing so would conceptually fragment the quantum
system. Entanglement requires functional and
mathematical reasoning rather than purely visual
intuition, which students have come to understand.

For this reason, students see that the state in Eq. (10)
cannot be decomposed, illustrating feature (B). We
observed that students often initially propose that if |y)
were separable, each photon would be in the state |D). In
that case, the joint state would be

D)D), = [(AIWV2)10); + (IA2)[1)] [(1V2)[0), +
(IN2)[1),],
which expands to

(1/2)[0),10), + (1/2)I0), 1), + (1/2)|1)1]0), +
(1/2)|1),]1), = (1/2)(J00)+|01)+[10)+] 11)).

(11)

(12)

This state represents independent polarizations for
the two photons, without entanglement. Therefore, the
entangled state in Eq. (9) and Eq. (10) does not
correspond to the separable state in Eq. (11) and Eq. (12).

Entanglement as a quantum circuit

A less commonly discussed classical gate is the
controlled-NOT (CNOT) gate, which takes two input
bits and produces two output bits. One of the input bits
is called the control bit, and the other is the target bit. If
the control bit is 0, the CNOT gate has no effect; if the
control bit is 1, it acts on the target bit as a NOT gate.

The quantum CNOT gate operates similarly on two
input qubits and produces two output qubits.
Analogously, if the control qubit is |0), the gate has no
effect; if the control qubit is |1), it acts on the target qubit
via the quantum mechanical analog of the NOT gate,
that is, the X gate. Its algebraic definition is given by:

CNOT =]00)00] + [01)¢01] + [11){10] + [10)(11].  (13)

Our students examined the action of the gate on the
four fundamental qubit pairs (the first qubit is the
control, and the second is the target qubit). The states
correspond to mutually exclusive events and are
therefore orthogonal, with scalar products equal to zero,
as indicated in red:

CNOT|00) = |00)(00]00) + |01)(01]00) + ] 11)(10]00) +

110)(11]00) = 00). (14)
CNOT|01) =]00)(00]01) +|01)(01|01) + |11){10]01) + (15)
[10)(11]01) =101).
CNOT|10) = |00)(00]10) + |01)(01]10) +]11)(10]10) + 16
[10)(11]10) =]11). (16)
CNOT]|11) = ]00)(00|11) + [01){OT|11) + 11){10]11) + a7)

[10)(11]11) = |10).

The quantum CNOT gate only changes the two
qubits in the cases of (16-17) because the control qubit is
1).

The students investigated an important case in which
the control qubit was in the superposition state |D) and
the target qubit was |0). Since the control qubit was
neither [0) nor [1), the effect on the target qubit was not
straightforward. We expressed the initial system in the
two-qubit form: |D)[0) = (1/v2)(|0)+[1))|0)=
(1/~2)(10)[0) + [1)]0)) = (1/+2)(|00) + |10)). The action of
the CNOT gate can be calculated using Eq. (12) and Eq.
(14):
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Figure 9. The bell quantum circuit in our notation (the solid
black dot represents the control qubit, and the blue circle
with a cross (X gate) acts on the target qubit & the line
connecting them denotes the CNOT gate in the quantum
circuit) (Source: Authors” own elaboration)

CNOT(1~/2)(]00) + [10)) = (1/7/2)(CNOT]|00) +

CNOT]|10)) = (1/7/2)(|00) + | 11)). (18)

The calculation shows that if the control qubit is |0),
the target qubit remains |0), and if the control qubit is
[1), the target qubit becomes |1). Since the control qubit
is in a superposition of |0) and |1), the target qubit also
becomes a superposition and is entangled with the
control qubit. The (18) Bell state describes an entangled
photon pair, so the CNOT gate, when applied to an
appropriate input state, acts as the quantum circuit
element responsible for entanglement.

By convention, the initial qubits in quantum
computers are |0); therefore, an H gate must be applied
to the control qubit to generate entanglement. The
combination of these two operations is called a Bell
quantum circuit. Figure 9 shows a quantum circuit that
allows students to experiment with entangled qubits on
quantum computers.

CLASSROOM EXPERIENCES

In this paper, we presented a novel teaching-learning
sequence in the context of a pilot experiment conducted
within an extracurricular high school study group. Six
students aged between 17 and 18 years participated in
five sessions, each of which lasted 60 minutes. The
participants were recruited from a group of high school
students who were interested in the topic and
volunteered for the study. In the ensuing discussion, we
will summarize the classroom experiences that were
gathered during the initial pilot study, with a particular
focus on the learning difficulties encountered by the
students.

Learning Difficulties in the Context of Logic Gates

We found that three students encountered difficulties
due to their inability to recall the fundamental principles
of classic logic gates, a component that is not a central
element of the IT and mathematics curriculum in
Hungary. Consequently, a preliminary discussion was
deemed necessary. The alignment of classical
informatics knowledge with extracurricular courses is a
significant future objective.

Five students held the conviction that the eigenstates
of an operator are identical to the states resulting from
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the operator acting on a state. Consequently, some
students erroneously assumed that an H gate could be
realized by a polarizer with diagonally permitted
direction of 45°. This learning difficulty arises because
horizontally polarized photons in the initial |0) state
passing through such a polarizer are transformed into
the | D) = (1/+/2)(]|0)+|1)) state. However, in quantum
mechanics, the effect of an operator as an operation and
the eigenvalues and eigenstates of an operator
representing a physical quantity are entirely distinct
concepts - an issue also identified among university
students in the publication (Sing & Marshman, 2015).

A further challenge emerged from the perspective of
four students, who held the conviction that quantum
gates were non-reversible. This misconception
originated from photon polarization experiments,
wherein photons are frequently absorbed or annihilated,
thereby rendering the transformations irreversible. The
issue was identified in the treatment of quantum gates
as black boxes; in this respect, the paper by Zuccarini et
al. (2024) can be integrated into the teaching-learning
sequence.

Learning Difficulties in the Context of Quantum
Cryptography

It was evident that a conceptual revision of the notion
of a secret key was necessary for some students, as the
concept of classical encryption was not entirely clear. We
observed that all students tended to use term “detection”
and “quantum measurement” synonymously, a finding
that is consistent with the observations reported Té6th et
al. (2024b). This has given rise to certain difficulties in the
B92 protocol, in which the absorption of photons must
also be considered as a measurement outcome.
Consequently, it was imperative to engage the students
in a comprehensive discussion on the meaning of
quantum measurement: when the quantum system
interacts with a measuring device or its environment,
information about the system is released to the outside
world. It is noteworthy that interaction with a polarizer
is regarded as a quantum measurement, whereas
interaction with birefringent calcite crystals or beam-
splitter cubes is not. In such cases, only the detector
signal can be considered a quantum measurement. We
found that this dialogue was sufficient to clarify the
students’ reasoning. The potential benefits of employing
calcite crystals in future encryption applications in lieu
of polarizers merit exploration, given the observation
that detection and measurement occur concurrently at
these points.

Learning Difficulties in the Context of Entanglement

Three students required assistance in rewriting the
state of two non-entangled photons from two two-
dimensional states into a four-dimensional state (and
vice versa). Given the novelty of these operations, the
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lessons was supplemented with practical exercises to
facilitate student comprehension. We also observed that
some participants experienced difficulty distinguishing
between the states (1/v/2)(|0)+|1))(1/v2)(]0)+|1)) and
(1/4/2)(]00)+ | 11)). When expressing photon-pair states
in four dimensions, some students mistakenly assumed
that they were always entangled, which is not always the
case.

Three students found it difficult to accept that the
state of an entangled photon pair cannot be decomposed
into the states of the individual photons. Therefore, for
these students, we provided a derivation (cf. Bernhardt,
2019) showing that a state representing an arbitrary
entanglement cannot be decomposed into a product of
two individual photon states. We also emphasized that
the components of an entangled photon pair are
indistinguishable.

We also observed that the conceptualization of
entanglement of photon pairs posed a significant
challenge for students, as this phenomenon defies
classical intuition. However, we discovered that
students who has already demonstrated an
understanding of the nonlocality of a single photon
exhibited comprehension of the concept of photon-pair
entanglement. A significant benefit of the polarization-
based teaching approach is its capacity to promote the
development of a quantum mechanical way of thinking
(Bitzenbauer et al., 2024), thereby enhancing the
comprehension of entanglement, which is crucial for
quantum computing, in comparison to traditional
teaching approaches.

CONCLUSIONS

In this study, we presented a new, minimalist
teaching-learning sequence to quantum computing
based on photon polarization. We found that students
were strongly interested in topics at the forefront of
science that are frequently highlighted in the media. One
educational advantage of quantum computing is its
ability to clearly demonstrate the possibilities inherent in
superposition and entanglement.

Future Research

The teaching-learning sequence outlined in this
article enable more in-depth analysis of students” mental
models and conceptual understanding in future studies.
For instance, students are instructed on quantum
entanglement via a novel pedagogical approach that
incorporates the use of a real quantum computer.
However, a study was conducted that investigated
students” conceptions about quantum entanglement
(Brang et al., 2024), but through a completely different
approach. Consequently, an investigation into students’
conceptions about entanglement in our approach has the
potential to contribute to existing literature. As Hennig
et al. (2024) demonstrated, an acceptance survey can

facilitate a more profound exploration of learning
difficulties experienced during the teaching-learning
sequence. Furthermore, educational experiments on
teaching the BB84 quantum key distribution protocol
have been conducted (DeVore & Singh, 2020; Weissman
et al.,, 2024); however, the impact of teaching the B92
protocol described in this article on students’ thinking
has not yet been investigated. A comparison of the
educational effectiveness of the BB84 and B92 protocols
may prove to be an interesting avenue for future
research. Another intriguing educational experiment
could involve examining the challenges associated with
utilizing diverse online programmable quantum
computers within the context of a technological
acceptance survey, similar to Dandl et al. (2024), who
conducted a study in a different context.
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