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Abstract 

Understanding students’ alternative conceptions is important, as such conceptions can prevent 

them from making mathematical connections, thereby hindering their conceptual development. 

For this reason, this research aimed to identify the alternative conceptions that emerge when a 

group of pre-university students engage with derivative and integral tasks presented in algebraic, 

graphical, and application problems contexts. Alternative conceptions were defined as 

conceptions inconsistent with those accepted by the mathematical community. Twenty-five 

students from a Mexican public institution participated. Data were collected through task-based 

interviews and analyzed using thematic analysis. Nine alternative conceptions were identified. The 

most frequent included: the integral of the derivative of a polynomial function is obtained by 

finding the derivative and the integral separately and, the instantaneous velocity of an object is 

calculated using the formula 𝑣 = 𝑑/𝑡. These findings highlight the importance of explicitly 

addressing such conceptions in mathematics instruction to promote deeper conceptual learning. 

Keywords: alternative conceptions, derivative and integral, pre-university, thematic analysis, 

mathematical connections 

 

INTRODUCTION 

The derivative and the integral are two central 
concepts of calculus: they are necessary to understand 
the fundamental theorem of calculus (FTC) and are very 
important for later courses in mathematics and useful to 
solve problems in different contexts. However, the 
research focused on the understanding of calculus 
showed that some earlier concepts, as rate of change, 
limit, tangent and function, cause problems to the 
students, even in university level (Denbel, 2014; Dolores 
& García-García, 2017; Rodríguez-Nieto & Font, 2025). A 
great part of their knowledge of limits, continuity and 
differentiation lies in isolated facts and procedures; they 
have a deficient conceptual understanding of the 
relationships between these concepts (Bezuidenhout, 
2001). On the other hand, one of the goals of teaching 
calculus is the achievement of conceptual understanding 
(Bezuidenhout, 2001), but to accomplish that, a student 
first needs to be able to make mathematical connections 

(García-García, 2024; García-García & Dolores-Flores, 
2018, 2021a; Hiebert & Carpenter, 1992; Noss et al., 1997; 
Silver et al., 2009; Stekete & Scher, 2016).  

For its part, Muzangwa and Chifamba (2012) admit 
that superficial knowledge of the concepts of calculus 
affects the understanding of a great number of 
disciplines where this knowledge is used, including 
mathematics itself. This superficial knowledge could 
also facilitate the emergence and persistence of 
mistaken–understood as errors that may be procedural 
or momentary–and alternative conceptions, which 
reflect deeper, stable mental models that conflict with 
accepted mathematical meanings, in students. In this 
sense, differentiation and integration are recognized as 
some of the concepts that cause alternative conceptions 
(Kaplan et al., 2015); therefore, it is important to identify 
these conceptions to find their origin and causes of 
emergence.  

Chhabra and Baveja (2012) argued that it is important 
to explore the conceptions of the students to identify 
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what they understand, because these play an important 
role in their learning process; they may even prevent it, 
as recognized by Lucariello et al. (2014). So, research on 
conceptions of the students and their role in the learning 
process has become one of the main domains in 
education (Duit & Treagust, 2003; Vezzani et al., 2018). It 
is possible that previous conceptions cause alternative 
conceptions in the students while learning a new concept 
and those could be inconsistent with the new one. This 
justifies, in part, why the alternative conceptions are 
resistant to change and are kept even after careful 
instruction (Bostan, 2016; Chi et al., 2012; Denbel, 2014) 
and persist across ages and levels of education (Thijs & 
Berg, 1995). 

Alternative conceptions pose significant challenge to 
both teaching and learning, as they can lead students to 
develop misleading perceptions of mathematical 
knowledge (Chhabra & Baveja, 2012). This occurs 
because students’ learning is shaped by their prior 
beliefs and their conceptions about the nature of 
knowledge and learning itself (García-García & Dolores-
Flores, 2021a; Greeno et al., 1996). Such embedded 
conceptions may not only diverge from scientifically 
accepted meanings but can also be in direct contradiction 
to them (Duit & Treagust, 2003). These conceptions tend 
to persist over time because they are often functional and 
operative in other domains or everyday contexts, which 
reinforces their viability from the learner’s perspective 
(Fujii, 2014).  

Moreover, alternative conceptions often encourage 
rote learning of facts and procedures, particularly in 
preparation for assessments. However, as pointed out by 
Duit and Treagust (2003), students frequently revert to 
their original conceptions in novel contexts. This 
highlights the importance of investigating these 
alternative conceptions, as understanding their nature is 
a critical step toward designing teaching strategies that 
foster conceptual understanding (Bezuidenhout, 2001; 
Bezuidenhout & Olivier, 2000; Chow, 2011; Denbel, 
2014). 

The study of alternative conceptions also allows the 
identification of patterns of mistakes and the analysis of 
their possible causes (An & Wu, 2012), as well as their 
relationships to newly introduced mathematical 
concepts (Fujii, 2014). In particular, Serhan (2015) 
suggests the importance of studying derivatives and 
integrals because the alternative conceptions associated 
with them could also become an impediment to the 

construction and understanding of future concepts 
(García-García & Dolores-Flores, 2021a). We add that it 
is important to study them because they appear when 
students try to make mathematical connections.  

Although the concepts of derivative and integral are 
central to calculus–especially through the application of 
theorems and properties–, several studies have shown 
that students, both university level and preservice 
teachers or teachers in practice, experience substantial 
difficulties (Hayes, 2024; Lumbantoruan & Manalu, 
2024; Mkhatshwa, 2024; Muñoz-Pinto et al., 2025; Santos 
et al., 2024). These difficulties are often rooted in 
students’ inability to meaningfully connect symbolic, 
graphical, and numerical representations, as well as in 
limited understanding of the conceptual meanings 
associated with differentiation and integration (Galindo-
Illanes & Breda, 2024; Pino-Fan et al., 2018; Rodríguez-
Nieto et al., 2022, 2023, 2024). In addition, the scarcity of 
tasks that promote visual analysis, functional 
interpretation and real-world modeling contributes to 
superficial learning (Ledezma et al., 2024; Rodríguez-
Nieto et al., 2024). 

One particularly persistent difficulty involves the 
graphical interpretation of functions and their 
derivatives (García-García & Dolores-Flores, 2021a). For 
instance, Natsheh and Karsenty (2014) highlighted that 
some students fail to construct function graphs from the 
properties of their derivatives, due to a procedural and 
symbolic approach. Similarly, Fuentealba et al. (2018) 
and Ikram et al. (2020) also pointed out the difficulty of 
relating derivatives to characteristics such as monotony 
and curvature, as well as the poor ability to graph 
without algebraic expressions. Despite proposals such as 
that of Borji et al. (2024), focused on partial derivatives 
and visualization in several variables, the disconnect 
between theory and practice persists. Even the FTC, 
which establishes the relationship between 
differentiation and integration, is difficult to grasp 
because students still lack a solid foundation in 
functions, limits, continuity, and the power of graphical 
representations, underscoring the rapid urgency of 
improving pedagogical approaches to teaching these 
abstract concepts (Munyaruhengeri et al., 2024). 

The literature reflects a long-standing interest in the 
study of students’ alternative conceptions across a range 
of mathematical and scientific domains–from junior high 
school to university levels, and even among teachers–. 
These studies span subjects such as physics (Chhabra & 

Contribution to the literature 

• The study reports alternative conceptions in a population that has been little studied concerning a concept 
that is highly relevant in school mathematics. 

• Most of the alternative conceptions identified have not been previously reported in the existing literature. 

• The data collection method allowed for in-depth exploration of participants’ answers, increasing the 
reliability of the findings. 
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Baveja, 2012; Narjaikaewa, 2013; Mulhall & Gunstone, 
2012), arithmetic (An & Wu, 2012; Kennedy, 2015), 
algebra (Chow, 2011; Lucariello et al., 2014), and calculus 
(Bezuidenhout, 2001; Bezuidenhout & Olivier, 2000; 
Denbel, 2014; Dolores, 2004; Dolores et al., 2019; Kaplan 
et al., 2015; Muzangwa & Chifamba, 2012; Özkan & Ünal, 
2009; Serhan, 2015; Ubuz, 2007). While many calculus-
related studies have focused on university-level 
students, some have addressed high school or pre-
university learners, albeit to a lesser extent. 

Focusing on the pre-university level is essential, since 
this is often where students begin to form deeply rooted 
ideas about calculus that may conflict with formal 
mathematics later on. These early alternative 
conceptions can hinder students’ ability to grasp more 
advanced mathematical concepts once they transition to 
higher education. Therefore, the research question 
guiding this study is: What alternative conceptions emerge 
among a group of pre-university students when making 
mathematical connections while solving derivative and 
integral tasks? 

FRAMEWORK 

A common goal of school curricula in many countries 
is the ability to make mathematical connections with real 
life, other mathematical domains or scientific disciplines 
in mathematics class (Evitts, 2004; Özgen, 2013). This is 
because, among other reasons, it encourages a view of 
mathematics as an integrated field (Evitts, 2004; Jaijan & 
Loipha, 2012; Mwakapenda, 2008) and aims to improve 
the mathematical understanding of the students (Eli et 
al., 2011; García-García, 2024; Mhlolo, 2012). Therefore, 
understanding and mathematical connections are 
essential in mathematics class. However, they are 
preceded by the students’ beliefs and conceptions 
(García-García & Dolores-Flores, 2018, 2021a) as they 
promote or interfere with the construction of 
mathematical connections and the achievement of 
mathematical understanding (Figure 1).  

In this research, mathematical connections play a 
fundamental role and are assumed from the position of 
García-García and Dolores-Flores (2018, 2021a), García-
García (2024), Rodríguez-Nieto et al. (2022), Rodríguez-
Nieto (2025) and are classified as: instruction-oriented, 
modeling, different representations, procedural, part-
whole, implication, reversibility, feature, meaning, inter-
conceptual, extra-conceptual, metaphorical, mnemonic-
based metaphorical, and idealizing. These connections 
do not emerge in the order proposed above but depend 
on how the subject activates and models their 
mathematical practice and also the type of problems they 
are solving. 

According to Kastberg (2002), a conception involves 
the communication of feelings and ideas about a concept 
and impacts the way students use this concept. In a 
similar way, Thijs and Berg (1995) defined conception as 

a personal idea about the meaning of a concept. This 
interpretation has some idiosyncratic characteristics 
even if the individual is scientific.  

On the other hand, Amirali (2010) assumed that 
conceptions are cognitive and affective beliefs, conscious 
or not, personal meanings, mental images and 
preferences constructed from experiences inside and 
outside school. In this sense, we agree with Confrey 
(1990) when he said that students arrive on formal 
instruction with previous conceptions and beliefs as a 
result of their relationship with their context. These 
conceptions are critical for further learning because they 
interact with the knowledge that students find in class 
(Chow, 2011). 

In this way, students use their beliefs and previous 
conceptions to try to give sense to a mathematical 
concept when it is introduced. These attempts conform 
to a collection of beliefs (Katsberg, 2002) that may be 
adequate to the previous system or constitute an 
impediment to assimilate the new concept. In the latter 
case, the students keep their previous system of beliefs, 
at least for a while. To the contrary, if the new concept 
reaches a higher status than the previous system then a 
conceptual exchange may take place (Treagust & Duit, 
2009). In this case, the system of beliefs connected with 
the mathematical concept is reinforced and improved in 
a significant way allowing the possibility to make 
mathematical connections and, consequently, a 
mathematical understanding (Figure 1). However, this 
does not mean that the replaced conception is forgotten, 
it could be totally or partially restored at a future date 
(Treagust & Duit, 2009). 

For Katsberg (2002), a student understands a 
mathematical concept when, based on the analysis of 
evidence, the system of beliefs attributed to the student 
is consistent with the culturally accepted beliefs about 
that concept, namely, with the meanings and knowledge 

 
Figure 1. Relationship between beliefs system, 
mathematical connections and mathematical 
understanding (García, 2018) 
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accepted or negotiated by the mathematical community. 
However, the inconsistencies may be caused by the 
presence of alternative conceptions.  

Konicek-Moran and Keely (2015) defined alternative 
conceptions as mental models conceived by an 
individual to try to explain the natural phenomena. In 
this way, these conceptions are the basis to build new 
and more complete conceptions even if they are 
apparently wrong or naïve. In general, the authors in 
mathematics education agree that alternative 
conceptions refer to a conception or idea that contradicts 
or is inconsistent with some aspects of the concept as per 
the negotiated or accepted scientific constructs (Chhabra 
& Baveja, 2012; Confrey, 1990; Narjaikaewa, 2013; Thijs 
& Berg, 1995) or differ from the knowledge proposed to 
be acquired (Mevarech & Kramarsky, 1997). 

In the specific mathematical domain, Fujii (2014) 
considers alternative conceptions manifest when the 
students’ conceptions are in conflict with the accepted 
meanings in mathematics. Therefore, their 
understanding is frequently limited by the 
incompatibility of the mathematical notions to be 
acquired and the knowledge of the students (Tirosh & 
Tsamir, 2004).  

In this study, alternative conceptions are understood 
as students’ conceptions that are inconsistent with what 
is accepted as true and has been socially constructed and 
negotiated within the mathematical community. Such 
conceptions may hinder the ability to make 
mathematical connections when solving tasks, thereby 
impeding the development of an adequate mathematical 
understanding. A student exhibits an alternative 
conception when their conception is mathematically 
incorrect or only partially accurate. In this context, the 
knowledge the student relies on is insufficient to 
correctly solve the given task. 

From practical terms, alternative conceptions are 
inferred through students’ observable actions and the 
verbal or written justifications they provide during task 
resolution. These may include, for instance, the 
misapplication of a familiar procedure, informal 
reasoning that conflicts with formal definitions, or the 
generation of explanations grounded in personal 
experience rather than instruction. These conceptions 
are not merely mistakes; rather, they represent coherent, 
albeit non-normative, cognitive structures that are often 
resistant to change. Analyzing these productions 
involves not only examining what the student 
concludes, but also how and why they arrive at such 
conclusions. This perspective assumes that students’ 
conceptions is shaped by implicit conceptual 
frameworks that may coexist or compete with formal 
mathematical knowledge. 

In this sense, a distinction is made between 
occasional mistakes and alternative conceptions. 
Mistakes typically refer to procedural or sporadic 

misunderstandings that do not necessarily reflect an 
underlying model. In contrast, alternative conceptions 
are more persistent, structured, and internally consistent 
beliefs that deviate from accepted meanings and 
interfere with conceptual learning. Furthermore, these 
conceptions are closely tied to students’ beliefs and 
thoughts. Beliefs–understood as convictions about the 
nature of mathematics, learning, and oneself as a 
learner–influence how students interpret problems, 
justify their procedures, and construct meaning. 
Therefore, identifying alternative conceptions requires 
attention not only to students’ answers but also to the 
implicit and explicit beliefs that guide their reasoning. 
Beliefs, thoughts, and conceptions are interdependent 
elements that collectively shape the emergence and 
persistence of alternative conceptions. 

METHODOLOGY  

This is qualitative research where task-based 
interviews were used to collect data. According to 
Goldin (2000), this method involves “a subject (the 
problem solver) and an interviewer (the clinician), 
interacting in relation to one or more tasks (questions, 
problems, or activities) introduced to the subject by the 
clinician in a pre-planned way” (p. 519). Task-based 
interviews provide opportunities to develop the 
understanding of the conceptual knowledge of the 
students instead of simply evaluating it. According to 
Assad (2015), the protocol of the interview can be semi-
structured which allows the interviewer to judge the 
appropriate response to the student’s mathematical 
reasoning. Task-based interviews allow observation, 
record and interpretation of complex behavior and 
patterns of behavior, including the words used by the 
subjects (Goldin, 2000). 

Design of Task-Based Interviews 

We used a semi-structured questionnaire that 
included derivative and integral tasks in three different 
representations: algebraic, graphical and application 
problems. These tasks were taken from García-García 
and Dolores-Flores (2018, 2021a, 2021b) because they 
allowed for the exploration of mathematical connections 
when students’ responses were mathematically 
consistent. However, they also enabled the identification 
of alternative conceptions when students’ responses 
reflected mathematically incorrect or partially correct 
knowledge, resulting in an inability to solve the tasks 
consistently. These tasks were provided to the students 
on printed sheets.  

For the algebraic representations, we proposed nine 
tasks. These included tasks involving the derivative at a 
point, the definite integral and, the application of the 
FTC through tasks requiring the derivative of the 
integral of a polynomial function and vice versa. In 
addition, we asked guiding questions such as: what is a 
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derivative? What is an integral? How did you get your 
result? What do your results mean? Can you get the 
same result using another procedure?  

We designed two tasks for the graphical 
representation. In the first, students were given a graph 
of a polynomial function 𝑓(𝑥) and asked to sketch the 
graph of its derivative 𝑓′(𝑥). In the second, they were 
provided the graph of 𝑓’(𝑥) and asked to students to 
sketch the original function 𝑓(𝑥).  

On the other hand, four application problems were 
included. In the biological context, students were 
presented with a function modelling the total population 
of an animal species and were asked to describe 
mathematically the growth rate at both a specific instant 
and over a general time interval and vice versa. In the 
physical context, students worked with two graphs: one 
representing the position of an object over time, and the 
other representing the velocity of the object at a specific 
moment. In the first case, students were required to 
derive the velocity function at both an instant and over 
time; in the second, they were asked to reconstruct the 
position function considering a given initial value.  

Throughout all tasks, the interview questions were 
formulated to encourage students to articulate their 
reasoning. This made it possible to detect indicators of 
alternative conceptions, such as incorrect interpretations 
of graphical features, misapplication of formulas, or 
conceptual confusion between accumulation and rate. 
These indicators were essential for identifying the nature 
of students’ conceptions beyond their final answers. 

Participants 

This research was conducted at a pre-university 
school in the state of Guerrero, Mexico. The participants 
were selected based on the following criteria:  

(1) they were enrolled at the pre-university level,  

(2) they had successfully completed differential and 
integral calculus in the semester prior to data 
collection, and  

(3) they voluntarily agreed to participate in the study.  

Based on these criteria, a total of 25 students between 
17 and 18 years of age participated. For the purposes of 
this study, we will refer to them as S1, S2, S3, …, S25. 

Data Analysis 

While a student solved each task, the interviewer 
asked auxiliary questions to identify the alternative 
conceptions of the students when they tried to solve 
them. In this study, describing an alternative conception 
involved analyzing the student’s response, actions, or 
written work to determine the mental model or prior 
belief guiding their conception. For example, a student 
might apply a known procedure in an incorrect context, 
misinterpret mathematical symbols or graphs, or offer 
informal justifications that rely on personal experience 

rather than formal instruction. These behaviors were 
used as evidence to describe the alternative conception. 

The activity was video, and audio taped for its 
analysis. All interviews were transcribed in their totality 
to analyze the narratives of the students together with 
their written production that students made during the 
interview. The first author of this paper and a PhD 
student with previous experience as an interviewer, and 
with complete knowledge of the goal of our research, 
conducted the interviews during four working days. The 
average length of each interview was 80 minutes. 

Thematic analysis (Braun & Clarke, 2006, 2012) was 
used as a method to analyze the data. The main goal of 
this method is to identify patterns of meanings (themes) 
through a set of data obtained from the answers to the 
research questions. Among the advantages of thematic 
analysis, we draw attention to the possibility to use it 
with a wide range of frameworks and different research 
questions. It may also be used to analyze different types 
of data, that is, it allows working with a great deal of data 
or with little information; finally, it can be used to 
produce data-driven analysis or theory-driven analysis. 
This method was used in this research following the next 
six phases (Braun & Clarke, 2006): 

Phase 1. Getting familiar with the data. A general 
reading of all the narratives of the students was made 
several times. During this process, some initial 
observations were made. This was important to get ideas 
for possible initial codes to infer the alternative 
conceptions of the students. 

Phase 2. Generating the initial codes. We established 
initial codes for a first classification based on the reading 
of the narratives. We look for phrases or statements 
where the relationships established by the students 
between mathematical ideas, concepts, procedures, 
representations, theorems or meanings were 
inconsistent from the mathematics’ point of view, that is 
to say, where alternative conceptions appear. For 
example, from the following excerpt from the interview 
with S6 the code was formed “an expression of the form 
𝑓 (𝑥), by itself means function”. 

Interviewer: Here you can see an expression (the 
expression 𝑓(𝑥)  =  3𝑥2 is shown). What does the 
expression represent to you and what elements 
constitute it? 

S6: The up function, the equal sign that tells me it 
is an equality, a high unknown value with 
exponent 2. 

Interviewer: How do you know that is a function? 

S6: Because it has the 𝑓 and in parentheses it has 

the 𝑥. 

Phase 3. Looking for themes. We created, assigned and 
modified the codes to understand their relationships and 
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establish a family of codes (potential themes). Once the 
initial codes were established, we contrasted the excerpts 
associated with each of them to look for themes between 
the codes. This allowed us to cluster the patterns of 
responses of the students associated with specific 
alternative conceptions in themes. For example, from the 
answers of other students, the code described above was 
established as the next theme “in the expression 𝑓(𝑥) =

3𝑥2, 𝑓(𝑥) is considered simply a function by itself”. 

Phase 4. Reviewing the themes. The themes were 
discussed with professionals in mathematics education 
with research experience from phase 1. The title or 
descriptions of some themes were modified. We also 
establish clusters of initial themes and eliminate those 
that do not have enough evidence to support the ideas of 
the students and we generate new themes when it is 
necessary. 

Phase 5. Defining and naming themes. The themes that 
encompassed the main ideas of the students and that 
answer the research questions were defined. Likewise, 
the description of each alternative conception was made, 
associating to each of them representative extracts of the 
collected data set.  

Phase 6. Writing the report. Finally, we will write the 
final report of the study.  

To further support the identification of alternative 
conceptions, the framework of mathematical 
connections proposed by García-García and Dolores-
Flores (2018, 2021a), García-García (2024), Rodríguez-
Nieto et al. (2022), Rodríguez-Nieto (2025) was used as 
an analytical lens. Once themes related to alternative 
conceptions were established through thematic analysis, 
we examined whether and how these conceptions 
affected the students’ ability to activate specific types of 
mathematical connections. This classification provided a 
structured basis to interpret not only what alternative 
conceptions emerged, but also how these conceptions 
interfered with or prevented mathematical connections.  

RESULTS 

The nine alternative conceptions reported below 
emerged from a systematic thematic analysis proposed 
by Braun and Clarke (2006). We coded segments of 

student discourse that reflected inconsistencies with 
accepted mathematical meanings, grouped them into 
categories, and defined them as themes based on 
recurring patterns across different representations and 
tasks. Each alternative concept described below 
corresponds to one of these themes (Table 1). 

The alternative conceptions identified (Table 1) are 
explained below: 

1. The integral of the derivative of a polynomial function 
is obtained by finding the derivative and the integral 
separately. 

This alternative conception appeared in 20 students 

(80%) when solving tasks like ∫ [
𝑑

𝑑𝑥
(3𝑥2)] 𝑑𝑥. Rather 

than interpreting this expression through the lens of 
FTC, students sequentially applied procedural rules 
based on the order of operations and grouping symbols 
learned in earlier mathematics courses (e.g., arithmetic 
and algebra). They performed these operations in the 
following order: they first solve the math in parenthesis 
(derivative), and finish with the math in brackets 
(integral).  

This alternative conception illustrates a procedural 
overgeneralization, where students extend rules for 
simplifying algebraic expressions to contexts where 
conceptual understanding is required. The mental 
model guiding this reasoning treats integration and 
derivation as isolated, mechanical processes rather than 
as inverse operations–a hallmark of understanding the 
FTC–. Instead of recognizing the reversibility encoded in 
the theorem, students’ default to syntactic processing of 
symbols, privileging order-of-operations schemas over 
conceptual structure. This is not simply a mistake in 
execution, but a manifestation of an underlying 
alternative conception: that mathematical operations 
must always follow syntactic rules, even when 
conceptual relationships suggest a different approach. 

For instance, 20 students offered ∫ [
𝑑

𝑑𝑥
(3𝑥2)] 𝑑𝑥 =

3𝑥2 + 𝐶 (Figure 2) as an answer (Figure 2). This indicates 
that they do not use the FTC when polynomial functions 
satisfy the properties for their use. Instead, students 
perform the indicated operations considering the 
grouping symbols instead. In this particular case, the 

Table 1. Identified alternative conceptions associated with the derivative and integral tasks 

Alternative conceptions N 

The integral of the derivative of a polynomial function is obtained by finding the derivative and integral separately. 20 
The instantaneous velocity of an object is calculated using the formula 𝑣 = 𝑑/𝑡. 14 
The value of 𝑓´(𝑎) is interpreted only as the value of y when x equals a. 10 
In the expression 𝑓(𝑥) = 3𝑥2, 𝑓(𝑥) is considered simply a function by itself. 10 
A 𝑑𝑥 must be added after completing a derivative to represent its derivative nature. 5 
It is interpreted that 𝑓′(𝑎) corresponds to a point on the tangent line of the curve. 3 
The meaning of 𝑝’(𝑎) =  𝑘 is that it takes k years for the population to grow. 2 
The meaning of 𝑝’(𝑎) =  𝑘 is that k is the speed of population growth per year. 2 
The graphical interpretation of the derivative is seen as the tangent line that touches the curve at a maximum point. 1 

Total 67 

Note. N: Frequency 
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function 𝑓(𝑥) is continuous on the interval [𝑎, 𝑏], 

therefore, the FTC states that ∫ [
𝑑

𝑑𝑥
(𝑓(𝑥))] 𝑑𝑥 = 𝑓(𝑥). In 

other words, the students could have noticed the 
reversibility of the derivative and the integral if they 
understood the FTC and, consequently, the result of the 
integral of the derivative would be the original function.  

On the other hand, this alternative conception also 
means that students could consider this inequality 
𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] ≠ ∫ [

𝑑

𝑑𝑥
𝑓(𝑥)] 𝑑𝑥 as true when 𝑓(𝑥) is a 

polynomial function; the difference comes from the 
presence (or not) of the constant of integration C in their 
results (see excerpt of interview of S11). 

Interviewer: Do you consider that solving this 

operation (points the finger at ∫ [
𝑑

𝑑𝑥
(3𝑥2)] 𝑑𝑥) is 

the same or different than solving the previous 

one (points the finger at 
𝑑

𝑑𝑥
[∫(3𝑥2) 𝑑𝑥])? 

S11: It is different. There are integrals and 
derivatives in both of them, but in the first one you 
have to do one operation first and then the other 
one. In the second one, deriving results in an exact 
value, but you get a constant when you integrate, this 
means that the value may be inaccurate, and you 
have to add it. 

2. The instantaneous velocity of an object is calculated 
using the formula 𝑣 =  𝑑/𝑡. 

This alternative conception illustrates a 
misapplication of a correct formula in an inappropriate 
context, revealing a deep-seated misunderstanding of 
the concept of instantaneous rate of change. While the 
formula 𝑣 =  𝑑/𝑡 is accurate for calculating average 
velocity over an interval, it is not applicable to 
determining velocity at a specific instant, which requires 
an understanding of limits. Students’ reliance on this 
formula reflects a conceptual conflation between 
average and instantaneous velocity–an ambiguity often 
introduced during early science instruction without 
sufficient emphasis on their distinction–. Consequently, 
students tend to invoke the familiar expression 𝑣 =  𝑑/𝑡, 
even when it is conceptually mismatched to the nature 
of the task. 

This alternative conception appeared in 14 students 
(56%) when they were asked to find the velocity of a 

stone in any instant x given the graph of the position or 
trajectory of the stone (in meters per second). First, they 
were asked for the algebraic representation to solve the 
velocity in any instant of time and then at the instant 𝑡 =
2 seconds. The students obtained a velocity of 10 𝑚/𝑠 at 
𝑡 = 2 because they used the formula 𝑣 = 𝑑/𝑡 to find it 
(see Figure 3). This result is clearly inconsistent with the 
mathematical point of view because it is different from 
zero, which is the real velocity in the maximum height of 
the stone. 

3. The value of 𝑓´(𝑎) is interpreted only as the value of y 
when x equals a. 

This alternative conception reveals a semantic 
conflation between the function and its derivative, 
rooted in a superficial understanding of function 
evaluation. Students treat 𝑓’(𝑎) analogously to 𝑓(𝑎), 
implying that both expressions denote coordinate points 
on the graph of 𝑓. In this sense, ten students (40%) 
assumed that the only meaning of 𝑓’(𝑎) is a value for y 
when x takes the value of a and, consequently, it only 
represents the graph of a point.  

This reflects a limited representational flexibility, 
where students struggle to distinguish between different 
mathematical objects–namely, the function and its 
derivative–and their associated graphical 
interpretations. As shown in the interview with S13, 
there is a belief that 𝑓’(𝑎) yields a point on the original 
graph, when it actually describes a property of the graph 
at that point–the slope of the tangent–. 

Interviewer: Could you find the derivative when 
𝑥 = 1 (points the derivative function 𝑓′(𝑥) = 6𝑥 
obtained previously)? 

S13: (S13 does the corresponding operations) 

Interviewer: What does this mean? 

S13: The value of y is 6 when the value of x is 1; 
the coordinates are one comma six (the student 
writes (1, 6)). 

Interviewer: Could we say that it is a point of the 
graph? 

S13: It is going to be one of the points of the line. 

 
Figure 2. Answer of S10 to the integral of the derivative of 
a polynomial function (Source: Authors’ own elaboration) 

 
Figure 3. S10 using the formula 𝑣 = 𝑑/𝑡 to find the 
instantaneous velocity (Source: Authors’ own elaboration) 
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This alternative conception may stem from 
instruction that emphasizes procedural skills (like 
evaluating functions) over conceptual understanding of 
rate of change, supporting a procedural conception of 
derivatives. On the other hand, the student’s mental 
model is internally consistent–they correctly compute 
𝑓’(1)  =  6 and state it corresponds to the point (1, 6)–but 
this consistency is built upon a flawed conceptual base. 
This coherence within an incorrect framework is a 
hallmark of alternative conceptions. 

4. In the expression 𝑓(𝑥) = 3𝑥3, 𝑓(𝑥) is considered 
simply a function by itself. 

Ten students manifested this alternative conception 
when they associated the letter “𝑓” followed by the letter 
x in parenthesis to the concept of function without 
considering the complete elements of the expression. In 
this sense, students identify the presence of 𝑓(𝑥) as a 
sufficient indicator of function, without interpreting the 
meaning of the entire expression. 

It is possible that the letter f taken from the word 
function generates this idea in the students; however, 
this alternative conception could prevent the 
understanding of the meaning of this concept. It is 
possible that this occurs because the students associate 
their knowledge of algebra to give meaning to the literals 
in the algebraic symbolism of some concepts, the concept 
of function in this specific case. For example, if we write 
y instead of 𝑓(𝑥) in the algebraic expression after the 
equal sign, S6 would interpret it as a second-degree 
equation (see excerpt of S6).  

Interviewer: You can see here the expression 𝑓(𝑥) 
(points out the expression 𝑓(𝑥) = 3𝑥2). What does 
this expression represent to you and which 
elements compose it? 

S6: It is composed of the function, the equal sign 
that tells me this is equality and an unknown 
square variable. 

Interviewer: How do you know it is a function? 

S6: Considering the f followed by the x in 
parenthesis. 

Interviewer: Would it still be a function if we only 
write y equals three x square (𝑦 = 3𝑥2) instead of 
𝑓(𝑥)? 

S6: It would be a second-degree equation. 

This excerpt of S6 shows that the student considers at 
least two different mathematical objects in the 
expression 𝑓(𝑥) = 3𝑥2, the function represented by 𝑓(𝑥) 
placed before the equal sign and the quadratic equation 
placed after the equal sign. S10 recognized that is 
considered the expression 𝑓(𝑥) as a function only 
because it has the letter f. Such conception prioritizes 

surface features over underlying mathematical 
relationships and illustrates how students’ 
interpretations are shaped by their exposure to notation 
rather than to meaning. This type of conception may 
hinder the ability to work flexibly with function 
representations, a critical skill in calculus. 

5. A 𝑑𝑥 must be added after completing a derivative to 
represent its derivative nature. 

This alternative conception stems from a 
misinterpretation of Leibniz’s notation, treating the 
differential 𝑑𝑥 as a quantity that must accompany any 
derivative result. Rather than understanding 𝑑𝑥 as part 
of the limit-based ratio in 𝑑𝑦/𝑑𝑥, students treat it as a 
literal symbol that must appear in the final expression. 
Five students who manifested this alternative 
conception indicate that the differential of x should be 
added to the result of a derivative (Figure 4). In this 
sense, it manifests when 𝑑𝑥 is interpreted as the result of 
the derivative instead of finding the derivative with 
respect to the variable x, that is, they don’t understand 
that dx represents an infinitesimal change.  

This alternative conception could become an 
impediment in finding the integral of a function because 
the meaning of 𝑑𝑥 is important to find double or triple 
integrals or when the function has more than one 
variable. It could even cause difficulties to find partial 
derivatives of any order. On the other hand, as 
mathematics becomes more formalized, students lacking 
clarity in symbolic representation may develop rigid or 
incorrect rules to compensate, resulting in this kind of 
persistent alternative conception. 

6. It is interpreted that 𝑓′(𝑎) corresponds to a point on the 
tangent line of the curve. 

This alternative conception is closely related to 
conception number 3, but it introduces a new 
interpretive layer: identifying 𝑓’(𝑎) with the point of 
tangency itself rather than with a numerical rate (slope). 
This conception appears to stem from an intuitive 
association between the geometric image of a tangent 
and the derivative, without internalizing that 𝑓’(𝑎) 
quantifies the slope at that point, not its location. 

For instance, even S11 recognize the relationship 
between 𝑓′(𝑎) and the tangent line, this conception is 
inconsistent with its meaning as the slope of the tangent 
line of 𝑓(𝑥) in 𝑥 = 𝑎 because his idea is associated with 
the point of tangency (see excerpt of S11). 

Interviewer: Could you find the derivative of 
𝑓(𝑥) = 3𝑥2 in 𝑥 = 1?  

 
Figure 4. Students S3 and S10 adding 𝑑𝑥 to the result of the 
derivative (Source: Authors’ own elaboration) 
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S11: Yes (S11 does the operations). It is only six. 

Interviewer: What does this mean? 

S11: […] It would be the point of intersection or 
the point where the tangent line touches the curve. 

This alternative concept may emerge from the fact 
that students assume that the tangent line of a curve is 
made of points, so 𝑓’(𝑎) could mean the point where the 
tangent line and the curve meet, the point of tangency. 
On the other hand, this alternative conception may not 
only prevent the understanding of the real meaning of 
𝑓’(𝑎), but also the meaning of 𝑓’’(𝑎) and their associated 
conceptions. 

This alternative conception signals a transitional 
understanding: students recognize a connection 
between derivatives and tangents but cannot yet 
separate geometric intuition from analytical meaning. 

7. The meaning of 𝑝’(𝑎) = 𝑘 is that it takes k years for the 
population to grow. 

This alternative conception illustrates a 
misattribution of units and context, where students 
focus on the input variable (time in years) and project it 
onto the output without considering the functional 
relationship. So, this alternative conception emerges 
from solving problems involving biological concepts. 
The students were given the function 𝑝(𝑡) = 2𝑡3 − 𝑡2 +
100 that models the total population of some animal 
species after t years. They were asked to find the speed 
of growth in t=2, that is, to find 𝑝′(2). The students 
explained that the meaning of 𝑝’(2) = 20 is that it takes 
20 years for the population of animals to grow (see 
excerpt of S20), ignoring that 𝑝′(2) represents the rate of 
change of the population at time 2 years.  

The students focused on the time t and associated the 
result with this data without considering that they were 
asked to find the speed of growth in this specific instant. 
They seem to reason that the result of substituting the 
value of 2 must be expressed in years because the 
meaning of t is time, and they were told the time was 
measured in years. 

Interviewer: What does this result mean to you 
(points the result of the derivative at 𝑡 = 2, that is, 
𝑝′(2) = 20)? 

S20: That it takes 20 years.  

Interviewer: Could you explain to me what you 
are saying in more detail?  

S20: Because t is time and it is measured in years; 
you substitute two years, square two years and get 
four. Then four times six, 24 years, minus two 
times two or four years. The result is 20 years. 

Interviewer: What is the meaning of this result in 
terms of the phenomena? 

S20: That the animal species grows in 20 years. 

S20’s interpretation–it takes 20 years–demonstrates a 
linearization of time as the dominant feature, ignoring 
that 𝑝’(2) refers to the rate of change at a specific time, 
not a duration. This conception is symptomatic of a pre-
functional view of change, where quantities are 
interpreted in static, contextualized terms rather than as 
variable-dependent quantities. It also illustrates the 
influence of everyday language in shaping mathematical 
meaning, as expressions like it takes time to grow are 
internalized and projected onto symbolic results. 

This alternative conception expressed by S20 could 
trigger mistaken explanations of future results of 
application problems. For example, it can be observed in 
his written production that he first derives the 
function 𝑝(𝑡) and then finds 𝑝’(2) correctly, but he does 
not associate the accurate meaning with this result and 
an alternative conception appears. This kind of over-
contextualization can lead students to systematically 
misinterpret derivatives in applied settings, making this 
a robust and coherent alternative conception. 

8. The meaning of 𝑝’(𝑎) =  𝑘 is that k is the speed of the 
population growth per year. 

This conception, though closer to the normative 
meaning, still misrepresents the derivative as a long-
term constant rate rather than an instantaneous one. 
Students interpret the rate of change as an average across 
future intervals, leading to extrapolations like 20, 40, 60, 
etc. 

This alternative conception appears when the 
students solved the problem described previously. 
However, in contrast with the previous one, two of the 
students who manifested this concept believe that the 
meaning of the result 𝑝’(2) = 20 is that the population of 
animals grows at a velocity of 20 animals per year (see 
excerpt of S4). This result, as the previous one, is not only 
closely linked to the variable t as a time, but also to their 
conception of average velocity. The response of the 
student implies that there will be 20 animals after one 
year, 40 after two years, 60 after three years, and so on.  

This alternative conception, as a result of the meaning 
assigned to the average velocity, limits their 
understanding of instantaneous velocity in the 
phenomena described previously. Such conception 
reflects the transfer of uniform motion models from 
physics to biological growth, disregarding the possibility 
of nonlinear or varying rates. This is consistent with the 
tendency to interpret derivatives through arithmetic 
sequences or linear growth models, which are more 
intuitive and familiar to students. 
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Interviewer: Can you solve the following question 
(indicates the question where S4 was asked to 
evaluate the function 𝑝’(𝑡) at 𝑡 = 2)? 

S4: Yes (he reads the question and substitutes the 
value of 𝑡 = 2 in the derivative found previously). 
It is 20. 

Interviewer: What is the meaning of 20 in the 
problem?  

S4: The population’s speed of growth will be 20 

per year.  

In contrast to alternative conception number 7, this 
one illustrates a misapplication of the concept of average 
rate of change, rather than an issue with units. However, 
both conceptions highlight students’ struggles to 
internalize the idea of instantaneous change as a local 
property of a function. 

9. The graphical interpretation of the derivative is seen as 
the tangent line that touches the curve at a maximum 
point.  

This alternative conception likely arises from an 
overemphasis on the visual connection between 
tangents and extrema in instructional examples. 
Students may associate maximum points with important 
locations, assuming the derivative is somehow 
represented by a tangent at that specific point. 

For instance, the first thing S12 does to draw the 
graph of the derivative given the graph of a polynomial 
function 𝑓(𝑥) is to sketch a straight line that touches 𝑓(𝑥) 
at the maximum point of this function (Figure 5). S12 
originally assumed that this line represents the 
derivative function but rectifies after the auxiliary 
questions of the interviewer and sketches an acceptable 
graph of 𝑓’(𝑥). 

The sketch by S12 confirms that this is not a random 
error, but a consistent pattern of interpretation: students 
treat the derivative as a visual object that is tangentially 
connected to salient points on the original function, 
rather than as a new function derived from analyzing 
slope behavior across an interval. 

DISCUSSION 

The research question in this paper was: What 
alternative conceptions emerge among a group of pre-
university students when making mathematical connections 
while solving derivative and integral tasks? We identified 
nine alternative conceptions (Table 2) through the 
thematic analysis; we also presented some possible 
causes (within mathematics education) for the 
alternative conceptions identified, as well as possible 
mathematical connections that could hinder them. 

These results show that the students’ mathematical 
understanding about derivatives and integrals is limited, 
as reported by Denbel (2014). Our results are similar to 

those of Kaplan et al. (2015) who also found that the 
students presented alternative conceptions associated 
with the instantaneous velocity in application problems 
in physics, that is, students find the instantaneous 
velocity using the formula 𝑣 = 𝑑/𝑡. On the other hand, 
the students that manifested the first alternative 

conception in Table 2 used the formula 
𝑑

𝑑𝑥
𝑎𝑥𝑛 = 𝑎𝑛𝑥𝑛−1 

to find the derivative; however, if they do not 
understand the meaning of this formula and the context 
where it can be used, then they could get results such as: 
the derivative of the function 𝑦 = 𝑥𝑥 is 𝑥𝑥𝑥−1, as reported 
by Muzangwa and Chifamba (2012). This leads the 
students to a misunderstanding of the FTC. Moreover, if 
the students do not understand the FTC, then they could 

even think that the meaning of ∫
1

𝑥
𝑑𝑥

1

−1
 is the area under 

the curve 𝑓(𝑥) =
1

𝑥
 in the interval −1 ≤ 𝑥 ≤ 1, as 

reported by Muzangwa and Chifamba (2012). This is not 
the real meaning of this integral because the function is 
not continuous at 𝑥 = 0. 

Instead, the idea surrounding the alternative 
conceptions “the value of f´(a) is interpreted only as the 
value of y when x equals a” and “It is interpreted that 
𝑓′(𝑎) corresponds to a point on the tangent line of the 
curve” is the extrapolation of the notion of function as a 
corresponding rule to the meaning of derivative function 
at a point. This guides the students to think that the 
meaning of 𝑓’(𝑎) and 𝑓(𝑎) is the same. They are 
assuming that “a function is a corresponding rule such 
that to each value of x, there is assigned exactly one value 
of y”. This is a correct idea, but with a limited 
understanding of the concept of function with domain in 

 
Figure 5. Sketch of 𝑓’(𝑥) made by S12 (Source: Authors’ own 
elaboration) 
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real numbers, as reported by Cuevas and Delgado 
(2016). The concept of function is a central topic in 
calculus, although it is difficult to understand for some 
students (Doorman et al., 2012; Elia et al., 2007; O’Shea et 
al., 2016). For example, the students usually have 
problems giving a correct definition of this concept and 
solving problems about functions involving conversions 
between different representations (Elia et al., 2007). In 
this sense, we can partially explain that the participants 
of this study state that “In the expression 𝑓(𝑥) = 3𝑥2, 
𝑓(𝑥) is considered simply a function by itself” turning 
out to be an alternative conception. 

To avoid these obstacles and allow a flexible use of 
functions, Best and Bikner-Ahsbahs (2017) suggest 
constructing their meaning of function both as a rule of 
correspondence and covariation within and among all 
types of possible representations, and also between 

 
1 Are true relationship between two or more ideas, concepts, definitions, theorems, or meanings with each other (García-García 
& Dolores-Flores, 2018). Also, these relationships are useful when trying to improve mathematical understanding (Businskas, 
2008). The usefulness of the relationships between mathematical concepts in achieving mathematical understanding is assessed 
by the expert (García-García & Dolores-Flores, 2021a). 

different functions. On the other hand, the alternative 
conceptions “the value of f´(a) is interpreted only as the 
value of y when x equals a” and “the instantaneous 
velocity of an object is calculated using the formula 𝑣 =
𝑑/𝑡 trigger other alternative conceptions while working 
with tasks involving graphics and application problems 
in biology”. This partially explains the alternative 
conceptions "the meaning of 𝑝’(𝑎) = 𝑘 is that it takes k 
years for the population to grow", "the meaning of 
𝑝’(𝑎) = 𝑘 is that k is the speed of population growth per 
year" and "the graphical interpretation of the derivative 
is seen as the tangent line that touches the curve at a 
maximum point" (Table 2) identified in this study. 

Likewise, alternative conceptions identified in this 
study obstruct the students from making some 
mathematical connections1 (Table 2), which are 
fundamental to achieve mathematical understanding. 

Table 2. Alternative conceptions associated with derivative and integral tasks, origin, and consequences 

Origin Alternative conception Affects understanding of 
Hinders mathematical 

connections 

Hierarchy of 
multiple operations 
in arithmetic 

The integral of the derivative of a 
polynomial function is obtained 
by finding the derivative and the 

integral separately. 

FTC Reversibility, implication 
(Eli et al., 2011; García-

García & Dolores-Flores, 
2021a, 2021b) 

Formula to find the 
velocity in physics 

The instantaneous velocity of an 
object is calculated using the 

formula 𝑣 = 𝑑/𝑡. 

Average velocity and 
instantaneous velocity 

Procedural, meaning, extra-
conceptual (García-García 
& Dolores-Flores, 2021b; 

García-García, 2024) 
Concept of function The value of 𝑓´(𝑎) is interpreted 

only as the value of y when x 
equals a. 

First and second order derivatives. 
Graphically 𝑓(𝑥) ≠ 𝑓′(𝑥). The 
meaning of the derivative at a 
point in application problems. 

Meaning, different 
representations, procedural 

(Businskas, 2008; García-
García & Dolores-Flores, 

2018, 2021a) 
The meaning of 
literals 

In the expression 𝑓(𝑥) = 3𝑥2, 𝑓(𝑥) 
is considered simply a function by 

itself. 

The meaning of expressions using 
different variables 

Meaning, feature (Eli et al., 
2011; García-García & 
Dolores-Flores, 2021a, 

2021b) 
Concept of 
derivative using the 

notation 
𝑑𝑦

𝑑𝑥
 

A 𝑑𝑥 must be added after 
completing a derivative to 

represent its derivative nature. 

The meaning of differential in 
partial derivatives or in double or 

triple integrals 

Meaning, procedural 
(Businskas, 2008; García-
García & Dolores-Flores, 

2021a, 2021b) 
Points that constitute 
a tangent line 

It is interpreted that 𝑓′(𝑎) 
corresponds to a point on the 

tangent line of the curve. 

The concept of first and second 
derivative in a point. Graphically 
𝑓(𝑥) ≠ 𝑓′(𝑥). The meaning of the 

derivative at a point in application 
problems. 

Meaning, different 
representations (Businskas, 

2008; García-García & 
Dolores-Flores, 2018, 

2021a). 
Meaning of the 
literal 

The meaning of 𝑝’(𝑎) =  𝑘 is that it 
takes k years for the population to 

grow. 

The concept of the derivative at a 
point in application problems 

Meaning, extra-conceptual 
(García-García & Dolores-

Flores, 2021b; García-
García, 2024) 

Concept of average 
velocity 

The meaning of 𝑝’(𝑎) =  𝑘 is that k 
is the speed of population growth 

per year. 

The meaning of velocity at a 
specific point in time 

Meaning, extra-conceptual 
(García-García & Dolores-

Flores, 2021b; García-
García, 2024) 
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This highlights the importance of these results and 
invites us to think about the role of teachers as a possible 
source of alternative conceptions because they can 
promote false ideas about previous concepts in students, 
for example, in algebra and arithmetic. Therefore, we 
agree with An and Wu (2012) who indicated that it is 
necessary to provide feedback to deal with these 
alternative conceptions in school situations. However, 
this would not be enough because some of these 
alternative conceptions have proven resistant to change. 
In this regard, Read (2004), Lucariello et al. (2014), 
Kennedy (2015), Bostan (2016), and Dolores et al. (2007) 
suggest the necessity to use methods that promote the 
conceptual change to replace these ideas in the students. 
Pajares (1992) considers the promotion of change of 
beliefs should be done when the existing ones are 
unsatisfactory. 

With regard to this conceptual change, Kennedy 
(2015) highlights the importance to make sure that the 
student is really changing his thoughts and not only 
giving the “right” answer because this could promote 
the memorization with the only purpose to pass a test, 
but keeping the previous conceptions for other contexts, 
as recognized by Libarkin (2001). This means that 
promoting conceptual change is not an easy task 
(Lucariello et al., 2014). Mulhal and Gunstone (2012) 
suggest the introduction of processes of problem-solving 
in the classroom soon after the development of previous 
concepts in the students. 

CONCLUSION 

The alternative conceptions identified in the group of 
25 pre-university students indicate that they could 
prevent the understanding of some more advanced 
concepts of calculus, such as partial derivatives, 
successive derivatives, graph of the first and second 
derivative, double and triple integrals, and hinder the 
understanding of the derivative and integral in 
application problems in physics, biology or other 
disciplines; specifically, the meaning of position and 
velocity in physics and the total population and speed of 
growth in biology. As a consequence, the students 
cannot make mathematical connections when they solve 
tasks that involve those mathematical and extra-
mathematical concepts.  

The fact that most of the 25 participants perform well 
academically explains why there are only 67 identified 

alternative conceptions. In contrast, many of the 
participants demonstrated mathematical connections 
similar to those reported by García-García and Dolores-
Flores (2018, 2021a, 2021b), which are not presented here 
due to space limitations. We believe this result suggests 
that students with lower academic performance may 
exhibit a greater number of alternative conceptions. 
Thus, further investigations could focus on the 
identification of these alternative conceptions related to 
the FTC in pre-university and university students with 
low academic performance both in calculus and in other 
mathematical domains. 

The findings of this research provide mathematics 
educators with concrete examples of how students may 
misconceive core ideas in calculus, allowing teachers to 
anticipate such conceptions in the classroom. By being 
aware of these alternative conceptions, educators can 
adapt their instruction to explicitly address and confront 
students’ misunderstandings through targeted 
explanations, visual representations, or problem 
variations that emphasize conceptual relationships. In 
particular, teachers may use these conceptions as 
diagnostic tools to guide formative assessment and to 
design learning experiences that foster deeper 
mathematical connections, both within and beyond 
calculus. 

One limitation of this study lies in the participant 
population, as a larger sample could help identify 
additional alternative conceptions that have not yet been 
reported in the literature. Therefore, future research 
should not only aim to identify alternative conceptions 
across a broader range of participants (including 
students at different educational levels, pre-service 
teachers, and in-service teachers) and for various 
mathematical concepts but also focus on the design of 
instructional approaches that support the transition 
toward the use of mathematical connections, thereby 
enhancing mathematical understanding.  
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Table 2 (Continued). Alternative conceptions associated with derivative and integral tasks, origin, and consequences 

Origin Alternative conception Affects understanding of 
Hinders mathematical 

connections 

Concept of tangent 
line 

The graphical interpretation of the 
derivative is seen as the tangent 
line that touches the curve at a 

maximum point. 

The graphical meaning of the first 
and second derivative 

Different representations, 
implication (Businskas, 

2008; Eli et al., 2011; García-
García & Dolores-Flores, 

2021a) 
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