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Abstract 

This paper presents an approach of progressive levels of inferential reasoning on the Chi-square 

statistic, going from informal to formal reasoning. The proposal is based on epistemic criteria 

retrieved from a historical-epistemological study of such statistic and the contributions of 

statistics education literature on inferential reasoning. In this regard, some theoretical and 

methodological notions from the onto-semiotic approach were used to identify meanings 

attributed to the Chi-square statistic throughout its evolution and development. The 

mathematical characteristics of those meanings are closely linked to the indicators of the levels 

proposed. The nature of the four levels on the Chi-square statistic allowed us to develop an initial 

approach to levels of inferential reasoning, which could be applied to other statistics such as z, 

student’s t and F. 
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INTRODUCTION 

In the last decades statistics has acquired greater 
relevance in the curricula and researchers have shown 
an increased interest in new ways of approaching 
statistical inference. In the scientific literature on 
statistical education, it has been proposed that the 
notions of inference could be introduced informally from 
an early age, seeking to familiarize students with these 
notions, so that when they approach topics of statistical 
inference they can understand integral formal notions, 
procedures and language. 

Among the proposals to introduce inference 
informally, activities that promote the idea of prediction, 
generalization, the relationship between sample and 
population, mean, sampling distributions, sampling 
variability, distribution and probability stand out (Doerr 
et al., 2017; English & Watson, 2018; Makar, 2016; 
Pfannkuch, 2007; Rossman, 2008). In addition, research 
has emerged on an informal approach to hypothesis 
testing, confidence intervals, correlation and linear 
regression, and analysis of variance (e.g., Dierdorp et al., 
2011; Dolor & Noll, 2015; Stohl Lee et al., 2010; 
Trumpower, 2013, 2015; Weinberg et al., 2010). 

In the Chilean mathematics curriculum, as has 
happened in the curricula of various countries, the topics 
of statistical inference are now found at the pre-

university level and students are expected to be able to 
make inferences about the mean and variance by 
applying procedures confidence intervals or hypothesis 
tests (Mineduc, 2019). In this context, on the one hand, 
research has been carried out in primary education on 
early learning of statistics and probability, these studies 
involve aspects of informal inferential reasoning (IIR), 
literacy and statistical reasoning (e.g., Vasquez & Alsina, 
2019; Vidal-Szabó et al., 2020). On the other hand, studies 
have been carried out in secondary education on IIR 
(e.g., Estrella et al., 2023), elements of informal inference 
have been identified in eighth grade mathematics 
textbooks (Sanchez & Ruiz, 2022) and on inferential 
reasoning with mathematics teachers (e.g., Lugo-
Armenta & Pino-Fan, 2021c, 2022). 

Some proposals have developed on novel ways of 
addressing inference, both from the standpoint of 
informal inference and from a movement toward formal 
inference. On the one hand, the perspective of IIR aims 
at integrating and giving meaning to statistical notions, 
as well as developing a preliminary approach to 
Inferential Statistics (e.g., Doerr et al., 2017; Makar & 
Rubin, 2009; Zieffler et al., 2008). Regarding this, Zieffler 
et al. (2008), propose a framework focused on three types 
of tasks to develop IIR, as well as the ways of thinking 
involved in it, they include: estimating and graphing a 
population, comparing two samples of data, and judging 

https://doi.org/10.29333/ejmste/14119
http://creativecommons.org/licenses/by/4.0/
mailto:jesus.lugo@ulagos.cl
mailto:luis.pino@ulagos.cl
https://orcid.org/0000-0001-6679-5115
https://orcid.org/0000-0003-4060-7408


Lugo-Armenta & Pino-Fan / An approach to inferential reasoning levels 

 

2 / 19 

between two competing models. Each of the three tasks 
incorporates the three components of IIR:  

(1) making judgments or predictions,  

(2) using or integrating prior knowledge, and  

(3) articulating evidence-based arguments.  

Simultaneously, Makar and Rubin’s (2009) 
framework, which is based on concepts they initially saw 
as critical, propose three principles that are essential in 
informal inference:  

(1) generalization, going beyond describing the data;  

(2) using data as evidence in generalizations; and  

(3) using probabilistic language in describing the 
generalization. 

On the other hand, some research (e.g., Jacob & 
Doerr, 2014; Makar & Rubin, 2018; Pfannkuch et al., 
2015), suggests that students should be introduced to 
inference in stages, in other words, that they should be 
taught to use formal inferential reasoning (FIR) in a 
progressive fashion. Pfannkuch et al. (2015) indicate 
some fundamental concepts, for informal inference 
(‘making a call’, sample-population ideas, sampling 
variability) and for formal inference (bootstrap method 
and randomization method), which can be worked at 
various moments in the school curriculum. They also 
present some learning activities comprising the 
comparison of boxplots and the use of software that help 
explain each of the fundamental concepts. However, the 
question of how we can build a FIR on the basis of IIR is 
still being debated. 

Topics such as hypothesis testing, confidence 
intervals, and so on, are usually approached in a formal 
way in university courses and, according to several 
investigations (Batanero et al., 2012; Garfield & Ben-Zvi, 
2008; Harradine et al., 2011; Makar & Rubin, 2018; Sotos 
et al., 2007), both, students and professors have 
presented difficulties when working on inference topics. 
According to Bakker and Derry (2011) and Makar and 
Ben-Zvi (2011), one of the main problems facing the 
teaching of statistics is that notions are taught in isolation 
(both from each other and from the context from which 
the data arise). For example, notions such as the Chi-
square statistic, its distribution, probability, significance, 
p-value, among others, are commonly taught with a 
predominantly algorithmic approach (Batanero, 2013; 

Matis et al., 2004) and without emphasizing the 
connections between them; this contrasts with the 
holistic approach required for statistical reasoning. Thus, 
the importance of generating an initial approach to 
statistical inference is recognized (Bakker & Derry, 2011; 
English & Watson, 2018; Makar et al., 2011; Zieffler et al., 
2008). Therefore, creating learning opportunities that 
facilitate the progressive development of the 
understanding of the key notions of statistical inference 
is critical. 

In order to progressively promote a FIR, it is essential 
to understand how statistical notions emerge from the 
mathematical practices that have contributed to the 
solution of different types of problems, as this makes 
possible to identify the different meanings of the same 
notion. In this study, we take as an example the Chi-
square statistic, for its importance in the application of 
inferential statistics and in statistics education, and 
which hypothesis tests are part of applied statistics; 
contributing significantly to medicine, psychology, 
genetics, aquaculture, biology, financial analysis, 
econometrics, industry and marketing research. Despite 
the importance of the Chi-square statistic, making 
inferences based on its tests requires a deep 
understanding of the statistic and the notions that are 
related to it, because although students may perform the 
procedures seemingly adequately, they may have 
difficulties in understanding or connecting the statistical 
notions involved. In this regard, several studies have 
documented errors and difficulties in the understanding 
of the Chi-square statistic (e.g., Cañadas et al., 2012; 
Vallecillos, 1994; Vera & Díaz, 2013; Vera et al., 2011). 
The findings include difficulties in interpreting in the 
context of the problem, confusion between the critical 
value and the p-value, recognizing the value of the 
probability associated with the value obtained from the 
statistic, confusion between the degrees of freedom and 
the homogeneity test with the independence test, the 
null and alternative hypotheses, confusion between the 
parameter and the statistic, etc. In addition to that, on a 
previous study, we have identified various meanings 
attributed to the Chi-square statistic throughout its 
evolution and historical development. These meanings 
provided epistemic criteria for the construction of levels 
of inferential reasoning on the same statistic.  

Contribution to the literature 

• The proposal for progressive levels of inferential reasoning, from informal to formal, on the Chi-square 
statistic, based on the mathematical richness retrieved from the historical-epistemological study on this 
statistic and of the Statistics Education literature on inferential reasoning. 

• The ‘indicators’ of the levels of inferential reasoning can serve as an initial guideline both for lesson 
planning, the design of activities that progressively promote inferential reasoning, and for studies on the 
level of inferential reasoning that is promoted in the mathematical practice of students. 

• Another contribution of this research is related to the identification of a future line of research that allows 
characterizing the inferential reasoning. 
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Based on the previous, the objective of this article is 
to present a proposal of progressive levels of inferential 
reasoning, from the informal to the formal, on the Chi-
square statistic, based on both the mathematical richness 
retrieved from the historical-epistemological study on 
this statistic, and the contributions of the literature of 
statistics education on inferential reasoning. The 
proposed IIR levels present adjustable indicators in 
generalization and formalization processes, which allow 
designing activities that progressively promote 
inferential reasoning, as well as performing detailed 
analyses of mathematical practices (curriculum, 
textbooks, students, etc.) to determine the levels of IR 
being promoted. 

THEORETICAL-METHODOLOGICAL 
FRAMEWORK 

For the development of this study, we have used the 
onto-semiotic approach (OSA) to mathematical 
knowledge and instruction (Godino et al., 2007, 2019). 
Presmeg (2014) points out that OSA is an inclusive 
theoretical system that tries to articulate various 
approaches and theoretical models, which allow 
studying phenomena in the research in mathematics 
education, referring to at least six large dimensions (in 
OSA called facets) present in the processes of teaching 
and learning mathematics: epistemic facet (relative to the 
mathematical richness and complexity of a given 
mathematical content, i.e., institutional meaning of 
reference, planned or implemented of the mathematical 
content); ecological facet (the connections of the content to 
be taught with other areas, as well as the social, political, 
economic factors, etc., that condition the teaching and 
learning processes); cognitive facet (regarding the level of 
development of the students, that is, comprehension and 
mathematical competence, difficulties and errors in the 
study of the content); mediational facet (material, 
technological and temporary resources, their uses to 
promote the teaching of content, their impact on the 
stability of the personal meanings that students achieve); 
interactional facet (organization of discourse in the 
classroom and of the interactions between the agents 
involved in the teaching and learning processes of the 
contents, considering the learning difficulties of the 
students and the negotiation of meaning); affective facet 
(Emotions, attitudes, beliefs, values, interests and needs 
of students regarding the mathematical content). 

In this article, aspects related to the epistemic facet 
are of special interest, particularly in relation to the 
epistemological and ontological problem summarized 
with the questions How does mathematics emerge and 
develop? What is a mathematical object? What types of 
objects are involved in mathematical practices? In order 
to answer the epistemological problem, an 
anthropological (Wittgenstein, 1953) and pragmatist 
(Peirce, 1958) vision of mathematics is assumed; 

therefore, the activity of people in problem solving is 
considered the central element in the construction of 
mathematical knowledge (Godino, 2022; Godino et al., 
2007; Pino-Fan et al., 2017). 

The notion of mathematical practice takes on a 
fundamental role in OSA and is understood as “any 
performance or manifestation (verbal, graphic, etc.) 
carried out by someone in order to solve mathematical 
problems, to communicate the solution to others, to 
validate the solution and to generalize it to other 
contexts and problems” (Godino & Batanero, 1994, p. 
334). The practices can be idiosyncratic of a person 
(personal practices) or shared within an institution 
(institutional practices), but indeed, it is the operative 
and discursive practices of people that, in solving certain 
types of problems, give rise to ‘mathematical 
knowledge’. Mathematical practices involve ostensive 
objects (symbols, graphs, etc.) and non-ostensive objects 
(concepts, propositions, etc.), which we evoke when 
doing mathematics and which are represented in textual, 
oral, graphic or even gestural form. From the systems of 
operative and discursive mathematical practices, at least 
six new objects (or primary entities) emerge that come 
from them and account for their organization and 
structure: linguistic elements (representations), 
situations/problems, concepts/definitions, 
properties/propositions, procedures and arguments 
(Godino et al., 2007, 2019). These primary entities, which 
in OSA are called primary mathematical objects, interact to 
shape mathematical activity.  

Particularly, situations-problems are the starting point 
or basis of the activity; language allows for the 
representation of the remaining entities and serves as 
instrument for action; arguments justify the procedures 
and propositions that connect concepts to one another. 
Godino et al. (2011), indicate that these primary 
mathematical objects can be analyzed from a process-
product perspective, which implicates considering the 
following processes: communication (using linguistic 
elements), problematization (types of problems), 
definition (of concepts), enunciation (of 
propositions/properties), algorithmization (allows to 
elaborate the procedure), and argumentation. Other 
processes in OSA that allow to understand the complex 
and progressive nature of mathematical objects are 
generalization, particularization (exemplification), 
materialization, representation, modeling, idealization 
(outlining), signification, reification and decomposition 
(Font & Rubio, 2017; Medrano & Pino-Fan, 2016).  

So, OSA recognizes a dual nature for mathematics: as 
a system of objects and as a system of practices. OSA 
adopts the anthropological and pragmatism view of 
socio-epistemic relativism of the system of practices, of 
the emergent objects and meanings of them, which 
allows addressing the semiotic-cognitive problem 
summarized with the questions: What does a 
mathematical object O mean for a person or institution 
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at a given moment and context? What is it to know a 
mathematical object? Hence, when we ask, what is the 
Chi-square statistic? What is the student’s t? And in 
general, what is the meaning of a particular 
mathematical object? OSA proposes that: it is the system 
of practices that a person carries out (personal meaning), 
or that is shared within an institution (institutional 
meaning) to solve a type of situations-problems. In this 
way, it is evident that a certain mathematical object does 
not constitute a single idea to be taught, but each 
mathematical object, each content, has multiple 
meanings, adjustable in processes of generalization and 
formalization, which emergence is progressive as a 
result of the activity (practice) of people at different 
times to respond to different situations-problems (Font 
et al., 2013). Each mathematical concept is understood in 
an anthropological, pragmatic and systemic way, 
implying various partial meanings (PM) or senses (e.g., 
Pino-Fan et al., 2011, 2017, 2018), which relate in a 
complex way and address the contexts in which they are 
used and institutional frameworks. Godino (2022), 
points out the following: 

As a basis for the didactic analysis, it is considered 
necessary to reconstruct a global or holistic 
meaning of the mathematical object through the 
systematic exploration of the contexts of use of the 
object and the systems of practices that are put 
into play for its solution. Said holistic meaning is 
used as an epistemological and cognitive 
reference model of the PM or senses that said 
object can adopt and constitutes a methodological 
tool for the onto-semiotic analysis of cognition: A 
method to delimit the various meanings of 
mathematical objects, and, Therefore, for the 
reconstruction of the epistemological and 
cognitive reference models, it is the analysis of the 
systems of practices (personal and institutional) 
and the onto-semiotic configurations involved in 
them (p. 9). 

On that basis, we could say that in OSA the reasoning 
is assumed as a “social and epistemic macro-process”, 
which involves putting into play both the primary 
mathematical objects, and the aforementioned processes, 
to solve a situation-problem (e.g., Lugo-Armenta & 
Pino-Fan, 2021b; Godino et al., 2015; Molina, 2019). Then, 
to say that a subject ‘understands’ the 𝜒2 we must 
observe that in his reasoning associated with his 
practices (to solve different types of 
situations/problems), primary mathematical objects and 
processes linked to the meanings of this notion, emerge 
gradually, systematically and progressively. In order to 
characterize inferential reasoning using the levels of 
inferential reasoning presented in this article, then, it is 
done in terms of the types of mathematical/statistical 
tasks, objects, and processes involved in the practice. 

MEANINGS OF CHI-SQUARE STATISTIC 

The historical-epistemological study on the Chi-
square statistic has revealed major issues that were 
crucial to its genesis, development, and generalization. 
Distinct problem-situations, linguistic elements, 
concepts/definitions, properties/propositions, 
procedures, and arguments were mobilized in the 
mathematical practices used to address these difficulties, 
allowing different (partial) meanings to be identified. 

Four main meanings for the Chi-square statistic 
(Lugo-Armenta et al., 2021) have been identified, which 
are made up of twelve PM (Figure 1). We will use the 
notations M1, M2, M3, and M4 to refer to the respective 
identified meanings; similarly, we will use PM1, PM2, 
PM3, and so on, to refer to the corresponding PM. 

A goodness-of-fit test with the 𝜒2 statistic, as 
hypothesis testing, seeks to assess the extent to which a 
group of observed data is adjusted to a certain pre-
established theoretical distribution, by means of the 
contrast of observed and expected frequencies. The 
graphic method (PM1𝜒2) corresponds to an intuitive 
goodness-of-fit test, where the deviations from each 
sample data are analyzed from the mean value of the 
same sample. The second meaning, the test of 
independence, allows us to determine whether two 
variables are associated. It should be noted that in 
PM6𝜒2 (test of independence through contingency with 
𝜒2) the notion of association was generalized (from 
PM5𝜒2–association test with Q coefficient–), giving rise 
to the test of independence with the 𝜒2 statistic. 
Although the test of independence and the test of 
homogeneity test are mathematically identical, the latter, 
determines whether it is possible that several samples 
come from the same population. As the 𝜒2 statistic 
evolved, to solve various problems, the 𝜒2 distribution 
also evolved, since Pearson (1900) obtained it as the 
asymptotic distribution of the 𝜒2 statistic when working 
on the goodness-of-fit problem for a frequency curve. 

From this historical-epistemological study we 
identified primary mathematical objects, from the 
various PM, that could constitute possible ‘paths or 
trajectories’ for each major meaning of this statistic. 

For example, if we consider the goodness-of-fit test 
(M1𝜒2) of the Chi-square statistic, we note that this type 
of fit could be assessed initially with more intuitive 
methods (first stage of the path), such as the 
intercomparison method and the graphical method 
(Galton, 1875, 1885) of the PM1𝜒2. From the PM1𝜒2 we 
highlight primary mathematical objects such as the 
concepts/definitions ogive, quartiles, percentiles, 
deviations; properties/propositions normal 
distribution, 𝑚 at 1 

2
, 𝑝 at 1 

4
, 𝑞 at 3 

4
, probable error, and 𝑞 −

𝑚 = 𝑚 − 𝑝. Following the path indicated by the 
historical study, in a second stage the goodness-of-fit 
could be assessed by interpreting the probability, 
obtained from the calculated Chi-square statistical value, 
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as a measure of occurrence of a complex system of 𝑛 
errors occurring with a frequency as large or larger than 
that of the observed system. In addition, the hypothesis 
implicit in the problem could be identified and stated in 
natural language. In this case primary mathematical 
objects of PM2𝜒2 and PM3𝜒2 are involved, of which the 
concepts/definitions of observed frequency, theoretical 
frequency, probability, and the properties/propositions 
𝑒 = 𝑚′ − 𝑚, Chi-square probability distribution and 
Chi-square statistic of PM2𝜒2 stand out. The same 
happens with the concepts/definitions degrees of 
freedom, significance and the properties/propositions 
𝑘 = 𝑛 − 𝑟 and decision rule of PM3𝜒2. In a third stage, 
we could introduce the limitation of using the Chi-
square statistic when the sample we are analyzing has 
expected frequencies of less than five and the use of the 
Chi-square statistic with continuity factor. In addition, 
one could approach significance as indicative of the level 
at which the possibility of the effect should receive 
serious consideration and apply a decision rule to 
conclude on whether the observed data conform to the 
expected theoretical distribution. In order to carry out 
what was proposed in this third stage we highlight the 
relevance of primary mathematical objects such as the 
concept/definition continuity correction factor and the 

property/proposition 𝜒𝑐
2 = ∑

(|𝑚′−𝑚|−0.5)
2

𝑚
 of the PM4𝜒2 

and those pointed out in the second stage. In the fourth 
stage of the trajectory, the goodness of fit could be 
assessed based on the statistical techniques of the 

hypothesis testing methodology, for which the statistical 
hypotheses could be formulated, using the Chi-square 
statistic, with the continuity correction factor if 
necessary, finding the probability value associated with 
the value of the statistic and using the decision rule (p-
value or critical value) to conclude whether the observed 
frequencies are distributed as expected. At this stage of 
the trajectory, we highlight the primary mathematical 
objects previously described in the third stage and the 
decision rule (property/proposition of the PM4𝜒2). 

Each of the stages of the trajectories, previously 
exemplified for the goodness-of-fit test, constituted a 
significant input for the construction of our proposed 
levels for the Chi-square statistic. In the following 
section we present the primary mathematical objects that 
make up each of the trajectories linked to the indicators 
of the levels of inferential reasoning. 

INFERENTIAL REASONING LEVELS FOR 

THE CHI-SQUARE STATISTIC ( 𝝌𝟐) 

In this section, we present four levels of inferential 
reasoning for the 𝜒2 statistic, which combine the 
contributions of the statistics education literature, such 
as the primary mathematical objects, and the processes 
identified in each of PM emerging from the historical-
epistemological study. Then, the essential characteristics 
(primary mathematical objects) of PM will be enunciated 
based on their gradualness in generalization -i.e., from 

 
Figure 1. Meanings of the Chi-square statistic (adapted from Lugo-Armenta et al., 2021) 
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the particular to the general- and formality -i.e., from the 
intuitive to the formal-, which gives an account for the 
progressivity of the proposed levels. 

It is important to highlight that this four-level 
proposal considers a transition from level 1 (informal) to 
level 4 (formal), considering the transit through levels 3 
and 4 (pre-formal). In this sense, there are indicators of 
different levels that are linked, for example, at levels 2, 3, 
and 4 indicators are presented on the approach of 
statistical hypotheses, ranging from the identification of 
the null hypothesis implicit in the problem and its 
approach in natural language, up to the approach of the 
null and alternative hypotheses with statistical 
language. Thus, when considering progressive 
indicators, the levels of inferential reasoning 
complement each other. However, given the nature of a 
certain educational level, only one level could be used, 
for example, in higher-level Statistics courses at the 
university level, the fourth level indicators can be used 
both for class planning and design, and to characterize 
the inferential reasoning that students exhibit in their 
mathematical/statistical practices. While in secondary 
education (14 to 18 years) the indicators of levels 1, 2, and 
3 can be used. 

Level 1–Informal 

This level provides ‘indicators or elements’ that 
correspond to an IIR, where the visualization of graphs 
is used to establish conjectures and then, data is 
analyzed. Mathematical objects from descriptive 
statistics and probability intervene to make 
substantiated conjectures.  

Visualization  

The student is expected to be able to conjecture and 
argue whether the data of a sample follow a normal 
distribution through the elements present in the graphs 
(e.g., shape, dispersion, quartile amplitude, median, 
skewness). This, in a similar fashion to how Zieffler et al. 
(2008) tackled the first portion of task 1 to promote IIR. 
Figure 2 shows the type of charts that can be presented 

to students or that they could graph from the observed 
frequencies. 

Working with data  

The student can analyze the data in a sample under 
Galton’s graphical method (Galton, 1875, 1885) to 
conjecture whether the data group follows a normal 
distribution; this can be seen in two parts. 

The first corresponds to the method called 
intercomparison, involving primary mathematical 
objects of PM1𝜒2 (e.g., concepts/definitions such as 
ogive, quartiles, percentiles and deviations; and 
properties/propositions such as normal distribution, 𝑚 
at 1 

2
 or 0°, 𝑝 at 1 

4
 or −25°, 𝑞 at 3 

4
 or 25°, and conditions for 

a symmetric series). In the second part of the graphical 
method, the student can use the results of the first part 
to calculate and graph the deviations, positive and 
negative, with respect to the median, for which he makes 
use of the mean error concept and the probable error 
property of PM1𝜒2. It is possible to make the connection 
of deviations from the median with the error (𝑒 = 𝐹𝑂 −
𝐹𝐸) of the 𝜒2 statistic of Pearson (1900) (PM1𝜒2 and 
PM2𝜒2). 

Intuitive association  

The student can establish whether there is an 
association between two variables, with an attribute of 
each variable, by means of the coefficient of association 
𝑄. Specifically, from this sublevel it is possible to observe 
in the practices the use of: 

• Basic concepts/definitions of probability and 
their properties –e.g., variable, qualities or 
attributes, frequency, probability sets, association, 
(𝐴𝐵)(𝑈) = (𝐴)(𝐵), and (𝐴𝐵)(𝛼𝛽) = (𝐴𝛽)(𝛼𝐵), 

• Representation of data with 2 × 2 contingency 
tables is shown in Table 1. 

 
Figure 2. Graphics belonging to PM1χ2 of goodness-of-fit-test (Galton, 1875, 1885) 

Table 1. 2×2 contingency table 

 (B) (β) 
(A) (AB) (Aβ) 
(α) (αB) (αβ) 
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• The process of relating the property of the 
coefficient of association 𝑄 to Pearson’s 
correlation coefficient concepts because the 
meaning of the association with this coefficient is 
in terms of correlation for continuous variables. 
Eq. (1) shows Q. 

 𝑄 =
(𝐴𝐵)(𝛼𝛽)−(𝐴𝛽)(𝛼𝐵)

(𝐴𝐵)(𝛼𝛽)+(𝐴𝛽)(𝛼𝐵)
. (1) 

The primary mathematical objects found at this level 
correspond to PM5𝜒2 of M2𝜒2. 

It is important to remember the importance of 
working with types of situations-problems in contexts 
close to students, since various research (e.g., Bakker & 
Derry, 2011; Bakker et al., 2017; Ben-Zvi & Aridor-
Berger, 2016; Gil & Ben-Zvi, 2011; Makar & Ben-Zvi, 
2011; Makar et al., 2011) have highlighted the importance 
of context in promoting an IIR in students. This type of 
reasoning is not only based on the statistical knowledge 
of students, but also considers the role of informal 
reasoning and informal knowledge, as stated by Zieffler 
et al. (2008). 

Level 2–Pre-Formal 

Some ‘indicators or elements’ of this level have IIR 
features, such as how it approaches the null hypothesis, 
as it is implicit in the problem, and the meaning given to 
probability. That is why this level can be considered as 
pre-formal. 

These ways of approaching the tests can be seen in 
history, for example, at the beginning of the goodness-
of-fit test, Pearson (1900) asked a question about the 
problem he was raising; we can see this question as the 
null hypothesis. 

Identify non-parametric test needed to analyze data  

In order for a student to identify the appropriate 𝜒2 
test to analyze the data, the following indicators need to 
be observed in the practices: 

• Recognize the type of data you are working on 
(e.g., whether it is a sample or a population, are 
qualitative or quantitative, are classified 
according to one or two variables, sample type 
and number of samples). 

• Understand the problem to be solved. 

• Understand and enunciate the uses of the 
goodness-of-fit test (M1𝜒2), independence (M2𝜒2) 
and homogeneity (M3𝜒2). For example, the 
goodness-of-fit test seeks to determine whether 
the data follows a certain theoretical distribution; 
the test of independence is used to determine 
whether two variables have association or are 
independent; and the test of homogeneity allows 
to study whether different populations are 
homogeneous with respect to any variable. 

• Be able to select the right test, although he cannot 
yet develop it. 

An approximation of tests with 𝝌𝟐 statistic 

Once the test has been identified, to respond to the 
problem raised the student must: 

• Identify the null hypothesis that is implicit in the 
problem. Statistical enquiry cycles such as the 
PPDAC have as their first component the 
generation of a research question, which must be 
given in a particular context that is about which 
one want to inquire. Some investigations (e.g., 
Pfannkuch & Wild 2004; Pfannkuch et al., 2016; 
Stohl Lee et al., 2010), have taken up this first 
component, recognizing that most of these 
questions have form of conjecture or hypothesis. 

• Enunciate and use the properties of the 𝜒2 
distribution (e.g., is positively skewed, has as its 
only parameter the degrees of freedom, as the 
degrees of freedom increase it approaches to the 
normal curve and cannot take negative values). In 
order for the student to understand the notion of 
distribution, some research has relied on 
technology, generating, for example, simulations 
(e.g., Bakker & Gravemeijer, 2004; Dinov et al., 
2018; Reading & Reid, 2006; Rossman, 2008).  

The above indicators are for the three tests of the 𝜒2 
(M1, M2, and M3). But, additionally, other indicators to 
consider by test are: 

Goodness-of-fit-test (M1𝝌𝟐): The student can assess 
the extent to which a group of observed data is adjusted 
to a certain preset theoretical distribution, by contrasting 
the observed frequencies and theoretical frequencies. To 
make this assessment, the student: 

• Calculates the 𝜒2 statistic enunciating concepts or 
definitions and properties or propositions of 
PM2𝜒2 (e.g., observed frequency, theoretical or 
expected frequency), the Chi-square statistic seen 

as property 𝜒2 = ∑
e2

𝑚
= ∑

(𝐹𝑂−𝐹𝐸)2

𝐹𝐸
 and the error as 

𝑒 = FO − 𝐹𝐸. 

• Calculates and enunciates the degrees of freedom. 
According to its definition, indicates that it refers 
to the number of rows minus the number of 
independent linear restrictions on the frequencies, 
and the property 𝑘 = 𝑛 − 𝑟 (PM3𝜒2). 

• Uses the probability table of the 𝜒2 distribution to 
determine probability and can interpret it as a 
measure of occurrence of a complex system of 𝑛 
errors occurring with a frequency as large or 
larger than that of the observed system (for which 
the concept/definition of probability and the 
probability distribution property 𝜒2 is used, 
corresponding to PM2𝜒2). According to Stohl Lee 
et al. (2010), students will be making decisions 
naturally, either to maintain their current 



Lugo-Armenta & Pino-Fan / An approach to inferential reasoning levels 

 

8 / 19 

hypothesis or to alter it based on the probability 
obtained. 

Inter-level generalization process: Level 1.2, where 
PM1𝜒2 is considered, can only be applied when the 
purpose is to determine if the dataset follows a normal 
distribution; however, when working with the elements 
of level 2.2 (PM2𝜒2) the data can be contrasted with any 
theoretical distribution. 

Test of independence (M2𝛘𝟐) & homogeneity 

(M3𝛘𝟐): Because the tests of independence and 
homogeneity are mathematically identical, they share 
the following indicators: 

• Represent the observed frequency with 𝑟 × c 
tables (PM6𝜒2 concept). For the specific case of the 
2 × 2 contingency tables, recognize and use the 
tabular representation and symbology, as shown 
in Table 2. 

• Calculate the expected frequency under 
probabilistic independence (PM6𝜒2 concepts and 
PM11𝜒2 properties).  

o For 2 × 2 contingency tables (Table 3). 

o For contingency tables of 𝑟 × c, use Eq. (2). 

 𝑒𝑖𝑗 =
𝑛𝑖×𝑛𝑗

𝑛
. (2) 

o For 𝑟 × c contingency tables, use Eq. (3). 

 𝜒2 = ∑ {
(𝑛𝑢𝑣−𝑣𝑢𝑣)2

𝑣𝑢𝑣
} = ∑

(𝐹𝑂−𝐹𝐸)2

𝐹𝐸
. (3) 

• Enunciate properties of the PM7 to calculate the 
degrees of freedom 𝑘 = (𝑐 − 1)(𝑟 − 1). 

Intra-level generalization process: At level 2.2, when 
calculating the expected frequencies there is a 
generalization process, as well as when calculating the 
𝜒2 statistic, from the 2 × 2 contingency tables to those of 
𝑟 × 𝑐. 

Test of independence: The student can determine 
whether there is association between two variables (with 
𝑛 attributes each variable), for which he assesses to what 
extent the observed frequencies differ from probabilistic 
independence. To determine such an association, 
primary mathematical objects of PM6𝜒2 (e.g., variable 
concepts, contingency table, association) intervene. Once 
the student has calculated the value of the statistic and 
the degrees of freedom:  

• Identifies and enunciates the use that 𝜒2 statistic 
has for the test of independence. 

• Uses the probability table of the 𝜒2 distribution to 
determine probability and can interpret it as a 
measure of how far the observed system is 
compatible with the probabilistic independence 
bases. 

Inter-level generalization process: Level 1.3, where 
the PM5χ2 is used, can only be applied when the 
objective is to know if there is association between two 
variables, with one attribute each variable. However, 
when working with the elements of level 2.2, PM6χ2, the 
association between two variables with 𝑛 attributes each 
variable can be analyzed. 

Test of homogeneity: The student can determine 
whether two known samples may be from the same 
population, without having a priori knowledge of the 
population. Some of the primary mathematical objects of 
the PM9𝜒2 involved are sample concepts, independent 
samples, and population. Furthermore:  

• Identifies and enunciates the use that 𝜒2 statistic 
has for homogeneity.  

• Uses the probability table of the 𝜒2 distribution to 
determine the probability and can interpret it as a 
measure of the samples actually being random 
samples of the same population.  

Level 3–Pre-Formal 

Indicators at this level can be considered pre-formal, 
but with a higher degree of formality than at level 2. The 
aspects that mark a certain pre-formal degree are, for 
example, the way of working and arguing about the 
significance and the language used in the hypotheses. 

Restrictions of 𝝌𝟐 tests 

The student can recognize the restrictions of the 
hypothesis tests with the 𝜒2 statistic and apply the 
continuity correction factor when necessary. 

• Uses the 𝜒2 distribution as an approximation. This 
is because the 𝜒2 distribution is continuous, while 
the distribution we are trying to approximate is 
discrete.  

• Identifies and enunciates the limitations that this 
causes in the test. 

• Recognizes when to apply the continuity 
correction factor (PM4𝜒2 concept) 

• Enunciates the null and alternative hypothesis in 
natural language. 

In addition, some indicators per test are proposed: 

Goodness-of-fit-test:  

• Defines continuity correction factor and 
enunciates the following property to calculate it 
(concepts and properties of PM4𝜒2), as shown in 
Eq. (4). 

Table 2. Tabular representation & symbology 

a b a+b 

c d c+d 
a+c b+d a+b+c+d 

 

Table 3. Calculation of expected frequency 

(a+b)(a+c)/(a+b+c+d) (a+b)(b+d)/(a+b+c+d) a+b 
(c+d)(a+c)/(a+b+c+d) (c+d)(b+d)/(a+b+c+d) c+d 
a+c b+d a+b+c+d 
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 𝜒𝑐
2 = ∑

(|𝑒|−0.5)2

𝑚
= ∑

(|𝐹𝑂−𝐹𝐸|−0.5)2

𝐹𝐸
. (4) 

Test of independence and homogeneity: 

• Defines the continuity correction factor and 
enunciates the following property to calculate it 
(concept of PM4𝜒2 and property of PM8𝜒2): 

o For 2 × 2 contingency tables, use Eq. (5):  

 ∑ 𝜒𝑐
2 = ∑

((𝑎−
1

2
)(𝑑−

1

2
)−(𝑏+

1

2
)(𝑐+

1

2
))

2
 𝑁

(𝑎+𝑐)(𝑏+𝑑)(𝑎+𝑏)(𝑐+𝑑)
. (5) 

o For 𝑟 × c contingency table, use Eq. (6): 

 𝜒𝑐
2 = ∑

(|𝐹𝑂−𝐹𝐸|−0.5)2

𝐹𝐸
. (6) 

Intra-level generalization process: At level 3.1, when 
calculating the value of the 𝜒2 statistic, there is a 
generalization process, the way to calculate it when 
working with 2 × 2 contingency tables to those of 𝑟 × 𝑐. 

Connections & arguments 

• Defines significance as indicative of the level at 
which the possibility of the effect should receive 
serious consideration (PM2𝜒2 definition of 
significance). 

• Can find the value of the theoretical statistic, in the 
probability table of the 𝜒2 distribution, with 
respect to certain 𝑃 and 𝑛; and compares it against 
the value of the calculated 𝜒2 statistic. 

• Is capable of rejecting or not rejecting the null 
hypothesis under a contrast with a pre-established 
limit as a significant deviation, according to the 
decision rules regarding the probability and the 
value of the statistic (properties/propositions of 
the PM3𝜒2 and PM4𝜒2, respectively). 

• Manages to argue, based on significance, why he 
rejects or does not reject the null hypothesis. 

• Can connect test results to the context of the 
problem. 

In the indicators of levels two and three we can find 
the three key principles (generalization, use of data as 
evidence and the use of probabilistic language) that 
Makar and Rubin (2009) indicate as essential for informal 
statistical inference. These three key principles are found 
in different depths at both levels, since as they point out 
in this framework for informal inference, these 
principles can be applied at different moments of the 
school curriculum with different depths. 

Level 4–Formal 

In this level, indicators that correspond to a FIR are 
presented. As it was worked in previous levels and as it 
was observed in history, the hypothesis test is first 
addressed with the p-value and then with the critical 
region. The last indicators correspond to working with 
error type I and II, and the power of the test. 

Criteria for decision-making 

It is expected that the student could make decisions 
based on the statistical techniques of the hypothesis tests 
methodology.  

p-value: 

• Can state the null and alternative hypothesis with 
symbolic and natural language.  

• Identifies and uses the common values of the 
significance level. For example, 0.05 is very 
common and was popularized in Fisher’s test; and 
0.10, and 0.01 are used as significance level, which 
selection depends on the magnitude of the error 
that it is wanted to assume. It is also important to 
define (and use in the practice) the value of the 
significance level as the probability of concluding 
that a deviation or difference exists when in fact it 
does not exist; in other words, it is the probability 
of failing in the estimation.  

• Identifies the relation between significance level 
(𝛼) and confidence level (1 − 𝛼). 

• Enunciates and is able to apply the decision rule. 
If the 𝑣𝑎𝑙𝑢𝑒 − 𝑝 < 𝛼, is rejected 𝐻0, 
(property/proposition of PM3𝜒2). 

• Interprets the p-value as a continuous probability 
measure that the value of the calculated statistic is 
possible given the null hypothesis, with which it 
is usually interpreted that when there is a high p-
value the null hypothesis is not rejected, although 
when the p-value is low it is rejected. How low? 
Depends on the level of significance (Cohen, 
1994). However, we have to take caution because, 
on the one hand, the p-value and the level of 
significance do not quantify the effect size or the 
importance of a result and, on the other hand, the 
p-value does not measure the probability that the 
null hypothesis is true or that the alternative 
hypothesis is correct. 

Critical value: 

• Can identify the theoretical value of the 𝜒2 
statistic, according to the significance level and the 
degrees of freedom.  

• Can graphically represent the regions of 
acceptance and rejection and can argue about the 
relationships with the confidence level and the 
null hypothesis. 

• Enunciates and is able to apply the decision rule. 

If 𝜒2 ≥ 𝜒𝛼,𝑔𝑙
2 , 𝐻0 is rejected (property/proposition 

of PM4𝜒2). 

• Can provide a response to the problem by using 
the results of the test and develops arguments 
with statistical basis. 

Interpretation together with arguments, evidences 
the understanding and connections the student makes of 
statistical notions (Lane-Getaz, 2013; Makar et al., 2011). 
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Error type I & II, & power of test  

The student can evaluate the validity of the 
procedures and the inferences made based on such 
procedures, for which: 

• Argues when the error type I is made and the 

probability of making it: 𝑃 [
𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 

𝑖𝑠 𝑡𝑟𝑢𝑒
] = 𝛼. 

• Argues when the error type II is made and the 

probability of making it: 𝑃 [
𝑁𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 

𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
] =

𝛽. 

• Can calculate the probability of making the correct 
decision when 𝐻0 is true and when 𝐻0 is false. 

• Identifies the relation between error type I and the 
error type II. For example, can use a graphical 
representation and recognize that the larger 𝛼 is, 
the smaller 𝛽 is. It is also important not to confuse 

the conditional probabilities involved in type I 
and type II errors with single event probabilities 
(Birnbaum, 1982; Falk, 1986; Shaughnessy & Dick, 
1991; Sotos et al., 2007). 

• Enunciates the power of the test and can calculate 
it. Recognizes that power is related to sample size 

and significance level: 𝑃 [
𝐷𝑒𝑐𝑖𝑑𝑒 𝐻1|𝐻1 

𝑖𝑠 𝑡𝑟𝑢𝑒
] = 1 − 𝛽. 

• Argues about the validity of the inference made. 

According to Wild et al. (2018), in addition to the 
technical aspects, the reasoning behind the hypothesis 
tests is very important, since it can even be used to make 
decisions without quantitative data. Likewise, 
understanding the importance of expected values can 
help us make better decisions even in our daily lives. 

Figure 3 shows a summary of the indicators of the 
inferential reasoning levels for the Chi-square statistic, 

 
Figure 3. Progressive levels of inferential reasoning (from informal to formal) (Source: Authors’ own elaboration) 
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which are gradual and progressive in terms of 
generalization and formalization. 

INFERENTIAL REASONING ON THE CHI-
SQUARE STATISTIC 

To explain the inferential reasoning that could be 
promoted with the proposed levels of inferential 
reasoning for the Chi-squared statistic, we present 
examples of practices that “activate” each level. It should 
be noted that other finer analyses can be developed, and 
we do not intend to be exhaustive in the possible 
answers and their analyses, we only give a look at the 
use of the proposal of levels. For this we have adapted a 
Pearson (1904) problem, which allows us to transit on all 
levels. 

Situation/Problem 

Table 4 shows the data from a sample that was 
collected during a smallpox epidemic that occurred in 
1890 in a small town. The data in Table 4 concern the 
presence or absence of the scar of the smallpox vaccine 
and whether the people who received the vaccine 
recovered or died. Is there a link between the presence of 
vaccine scarring and smallpox recoveries? 

Example of Response Associated with Level 1 

Initially, if we look at the data from the 2 × 2 
contingency table, we can observe a large concentration 
at the intersection of those who have a scar and those 
who recovered, which may lead us to think that there 
may be an association between the recovery and the 
presence of the scar. If we analyze the data in the same 
sense as the correlation coefficient, but now with discrete 
variables using the coefficient of association, to test if 

there is an association between the variables. We 
calculate Q using Eq. (1), as follows: 

𝑄 =
(𝐴𝐵)(𝛼𝛽)−(𝐴𝛽)(𝛼𝐵)

(𝐴𝐵)(𝛼𝛽)+(𝐴𝛽)(𝛼𝐵)
=

(35)(4)−(1)(10)

(35)(4)+(1)(10)
=

140−10

140+10
= 0.8666. 

According to the value of the coefficient of 
association that is 0.8666, we can say that there is a 
relationship between the variables, that is, there is a 
relationship between the presence of a scar from the 
vaccine and those recovered from smallpox. 

Example of Response Associated with Level 2 

We are working with a sample of 50 individuals who 
received a smallpox vaccine and are classified into two 
(discrete) variables. One of the variables refers to a side 
effect of the vaccine, which is a scar, having as attributes 
the “presence or absence” of the scar left by the vaccine, 
while the attributes of the second variable are “recovered 
or dead”. Due to the type of data presented and since it 
is desired to know if there is any relationship between 
the presence of a scar from the vaccine and those 
recovered from smallpox, which seems to be the 
hypothesis that exists, a test of independence can be 
applied with the Chi-square statistic to test whether or 
not there is independence between variables. 

If we apply the test of independence, we can calculate 
the expected frequencies under independence to later 
calculate the Chi-square statistic, but since it is a 2 × 2 

 
Figure 3 (continued). Progressive levels of inferential reasoning (from informal to formal) (Source: Authors’ own 
elaboration) 

Table 4. Presence of scar from vaccine & recovered from 
smallpox 

Scar 
Type of response 

Recoveries Deaths Totals 

Present 35 1 36 
Absent 10 4 14 
Totals 45 5 50 
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contingency table, we can apply Eq. (3): 𝜒2 =

(𝑎𝑑−𝑏𝑐)2(𝑎+𝑏+𝑐+𝑑)

(𝑎+𝑐)(𝑏+𝑑)(𝑎+𝑏)(𝑐+𝑑)
=

((35×4)−(1×10))
2

(50)

(35+10)(1+4)(35+1)(10+4)
= 7.45149. 

Now, we proceed to calculate the degrees of freedom 
under the formula 𝑘 = (𝑐 − 1)(𝑟 − 1) = (2 − 1)(2 − 1) =

1.  

From these values and through the Chi-square 
distribution, we can obtain the probability that the data 
in the table are compatible with the probabilistic 
independence bases. There is a probability of occurrence 
of values such as those observed of 0.006338, that is, we 
could only see values like these 6.33 times in 1,000 cases 
if the variables were independent.  

From the procedures carried out with the test of 
independence, we could say that there is no 
independence between the presence of a scar from the 
vaccine and those recovered from smallpox. 

We can also consider the option of the student using 
statistical software to analyze the data. It is important 
that he can identify (on the output screen) and interpret 
the above. He could even establish the differences 
between the expected and observed frequencies as 
aspects of interest. It is important to note that in this case 
the student would ignore the warning generated by the 
software for observed frequencies below five. 

Example of Response Associated with Level 3 

To exemplify a response at this level, consider what 
was outlined in the response example associated with 
level two and the following: 

The null and alternative hypotheses are, 

𝐻𝑜: 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (there is no 
association between scar and smallpox recovery).  

𝐻𝑎: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
(there is an association between the scar and the recovery 
of smallpox). Two boxes in the 2 × 2 contingency table 
have observed frequencies below five, whence we must 
take precautions. This is because when we use the test of 
independence with small numbers, we can obtain a 
discrepancy because the test is made with a continuous 
distribution, while the distribution that is intended to 
approximate is direct. To reduce this discrepancy, we 
can use the Yates continuity correction factor. Then we 
calculate the statistic under Eq. (4): 𝜒𝑐

2 =

((𝑎−
1

2
)(𝑑−

1

2
)−(𝑏+

1

2
)(𝑐+

1

2
))

2
 𝑁

(𝑎+𝑐)(𝑏+𝑑)(𝑎+𝑏)(𝑐+𝑑)
=

((35−
1

2
)(4−

1

2
)−(1+

1

2
)(10+

1

2
))

2
 50

(35+10)(1+4)(35+1)(10+4)
=

(120.75−15.75)2(50)

(45)(5)(36)(14)
= 4.86111. 

With 4.86111 as the value of the statistic and with one 
degree of freedom we have a probability of occurrence 
of having values, under independence, such as those 
observed of 0.02746. 

If we consider a probability of 0.05 as a significant 
deviation limit, since the probability obtained is less, we 
will have to say that the variables are not independent. 

Under this same limit the theoretical statistic is 3.84145. 
And if we compare them, the calculated statistic is larger 
than the theoretical statistic. This means that it exceeds 
our limit, therefore the deviations from expectations are 
clearly significant. 

Another possibility that is within this level, although 
to a lesser degree, would be that the student uses 
software to take the test and that, when seeing the 
warning on the output screen - which in this case would 
indicate that “two cells have a count less than 5 “– as 
highlighted in Figure 4, the student develops a reflection 
of how frequencies below five could affect the value of 
the statistic and therefore the probability, and why. 
However, the student would not take the test with the 
continuity correction factor. 

Example of Response Associated with Level 4 

In addition to what was expressed in the answer of 
the previous level, an answer at this level could consider 
the following aspects: 

The problem it poses does not indicate the 
significance level, whence I will use the most common 
one, 𝛼 = 0.05.  

Considering that we have a statistic value with 
correction 𝜒𝑐

2 = 4.86111 and with a p-value of 0.02746, 
we can see that our p-value is less than alpha, thence 𝐻𝑜 
is rejected. Another criterion for making the decision is 
to contrast the value of the statistic that we calculate with 

the theoretical one and as 𝜒.05,1
2 = 3.84145, we have then 

that 4.86111 > 3.84145, therefore, the difference is 
significant, which leads us to reject 𝐻𝑜.  

In Figure 5 we can see that the graph on the left shows 
the critical region from the value of the theoretical 
statistic (according to the significance level of and 
degrees of freedom), while in the graph on the right we 
can see the statistic calculated and its associated 
probability, and how it is within the rejection zone. 

Based on the above, with a confidence level of 95% 
we can reject 𝐻𝑜 and accept 𝐻𝑎 as probably true, that is, 
that the variables are not independent and therefore 
there is an association between scar and smallpox 
recovery. 

 
Figure 4. Output screen of test for association in Minitab 
(Source: Authors’ own elaboration) 
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The probability that we have of making the error type 
I, since we have rejected 𝐻𝑜, is 0.05, that is, of rejecting 
𝐻𝑜 when it is really true. Regarding the power of the test, 
a minimum of 80% is usually requested, and in this case, 
using software to perform the calculation, we obtained a 
probability of 0.86275, which indicates that there is a 
constant prevalence in the population. We can also say 
that the probability of making the error type II in this test 
is 0.13725.  

Consequently, in Figure 6 we present an example of 
a response made by a prospective teacher on this same 
problem. 

However, although the prospective teacher mobilizes 
mathematical objects that correspond to level 4, he seems 
to misunderstand the p-value, since he is really working 
with the critical value or statistical value. The proposal 
of levels of inferential reasoning on the Chi-square 
statistic promotes the progressive understanding of 
notions such as the p-value. The prospective teacher 
could start with an informal approach to the p-value, 
using software for simulations or for calculating the 
probability of the Chi-square statistic (level 2), and thus 
support his or her inference (Rossman, 2008; Rossman & 
Chance, 2014). For the teacher to develop a more robust 
level 4 practice, he could work with type I and type II 

 
Figure 5. Chi-square distribution graphs for values of statistic of 3.84145 & 4.86111 (Source: Authors’ own elaboration) 

 
Figure 6. Practice of prospective teacher (Source: Authors’ own elaboration) 
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errors and understand the relationships between these 
errors and validate his inference by making use of the 
power of the test. 

FINAL REFLECTIONS 

The aim of this paper was to present a proposal of 
progressive levels of inferential reasoning, from 
informal to formal, on the Chi-square statistic, based on 
the mathematical richness retrieved from the historical-
epistemological study on this statistic and from the 
statistics education literature on inferential reasoning. 
This proposal is not intended to be definite; on the 
contrary, we consider it to be an initial approach to levels 
of inferential reasoning. Certainly, it could be extended 
to other statistics, and from hypothesis testing to 
confidence intervals, to name a few. This will occur as 
additional studies of this type, and historical-
epistemological studies on the key notions of inference, 
are developed.  

The proposal consists of four progressive levels, the 
indicators of the first level are closely linked to an IIR, 
while those of the fourth level to a FIR. Therefore, both 
the second and the third level, which we have called pre-
formal, contain features of both informal and formal 
inference, though at varying degrees of graduality. Thus, 
the four levels provide gradable ‘indicators’ for 
generalization and formalization processes. We consider 
that this approach allows us to account for a seamless 
transition from an IIR to a FIR, in other words, it could 
provide a mechanism to encourage students to develop 
an IIR first, and then build a FIR based on that reasoning. 

An important element to note is that although we 
consider visualization as a key aspect at level one, it is 
not exclusive to it. It is initially desirable that students 
could make conjectures only from the information 
presented in the graph through the elements presented 
in it (see level 1), which would be consistent with various 
proposals on IIR (e.g., Zieffler et al., 2008). On other 
levels, visualization can be used for other purposes, for 
example, to understand the distribution (level 2), and to 
graphically represent the acceptance and rejection 
regions for the null hypothesis (level 4). These levels are 
related to the mathematical practices that are developed 
to solve a problem, that is, the levels are not predictors 
of problem types but of mathematical practice. Then, the 
same problem can activate practices associated with any 
of the four levels that we propose.  

Although the levels are progressive, it is not 
necessary for the student to transit through the four of 
them. The teacher can decide whether the class should 
be based on the criteria of level 1 or another level. 
However, we suggest that the transition should be made 
through the four levels of inferential reasoning 
proposed, as they allow the student to approach the 
mathematical object intuitively at first, then pre-formally 
and lastly formally. Therefore, we can say that the 

criteria for each level bring the student closer to the 
criteria of the next level, which is consistent with 
statistics education research studies (e.g., Makar & 
Rubin, 2018; Pfannkuch et al., 2015; Zieffler et al., 2008).  

It should be noted that the proposal’s perspective on 
reasoning is based on a pragmatist view of mathematical 
knowledge formation (as well as school mathematical 
knowledge), which incorporates the semiotic, 
anthropological, and pragmatic postulates of OSA 
(Godino et al., 2007, 2019). That is to say, in accordance 
with the suggestions of Aké (2013) for algebra, and 
Molina (2019) for geometry, in order to speak about 
school statistics, one must resort to an integrated and 
transdisciplinary vision that involves Statistical 
thinking, Statistical reasoning, and Statistical literacy, 
since each of these approaches to school statistics is 
developed from psychological, epistemic, and semiotic 
perspectives, respectively. Thus, by considering 
reasoning in terms of practices, and (primary 
mathematical) objects and mathematical processes used 
in them, one moves in a certain sense through the 
definitions given by Ben-Zvi and Garfield (2004) for 
statistical literacy, statistical reasoning and statistical 
thinking.  

The indicators of the IR levels here proposed, can 
serve as an initial guideline for lesson planning, 
designing activities that promote inferential reasoning 
progressively, and studying the levels of IR being 
promoted in the mathematical practice of students, 
teachers, or the curriculum, as observed in previous 
studies (Lugo-Armenta & Pino-Fan, 2021a, 2022). 
Teaching based on the indicators of our proposed IR 
levels could have an impact on students’ understanding 
of the Chi-square statistic and related notions in their last 
pre-university and first university years. For example, 
we can refer to a progression to work at various times on 
the p-value (levels 2, 3, and 4), significance (level 3 and 
level 4) and the posing of the null and alternative 
hypotheses (levels 2, 3, and 4); notions that might lead to 
errors and generate difficulties for students and teachers, 
as observed in previous studies (Biehler et al., 2015; 
López-Martín et al., 2019; Sotos et al., 2007; Vera & Díaz, 
2013).  

It is noteworthy that currently, there is an ongoing 
discussion about the p-value and the level of 
significance, initially promoted by the American 
Statistical Association (ASA) in ASA statement on p-
values and statistical significances, where they 
recommended abandoning the declaration of ‘statistical 
significance’. This recommendation stems from the 
usage observed both in the teaching of statistics and in 
published research, where the p-value has often been 
perceived more as a static rule rather than considering it 
as a continuous probability value. We hold that the 
indicators of the proposed levels of IR, considering the 
progression of the p-value and the level of significance 
at various levels could assist in enabling students to 
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interpret the p-value appropriately and to recapture 
Fisher’s (1925) original concept that statistical 
significance should be viewed as a tool indicating when 
a result, ‘deemed significant’, warrants further scrutiny. 

The nature of the proposed IR levels’ indicators 
transcends the purely algorithmic aspects and focuses on 
the progression of inferential reasoning using various 
mediational resources, hence these proposed levels can 
be used to promote or characterize inferential reasoning, 
whether with or without the use of statistical software, 
this arises from algorithmic developments or internal 
processes of the software alone are insufficient for 
making inferences. In both cases it becomes crucial, 
besides the conclusion to the problem within its own 
context, the evidence and reasoning upon the inference 
was realized, aligns with Rossman’s (2008) proposal 
regarding what constitutes inference. The proposal of 
levels of inferential reasoning on the Chi-square statistic 
has a progressive nature, allowing for exploration of the 
various notions at various moments (in the levels) with 
varying degrees of complexity, depth, and formality. 
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