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Abstract 

This study leverages student performance data and the Funk-singular value decomposition (Funk-

SVD) model to identify conceptual weaknesses in first-year calculus learning and generate 

targeted practice recommendations. Rather than relying on error counts or instructor judgment, 

the model infers individual learning gaps based on predicted success probabilities. Using data 

from six exams administered to 850 students, the model achieved strong predictive performance, 

with an F1-score of 0.794. Simulated intervention analysis revealed that the most substantial 

learning gains occurred among lower-achieving students. Frequently recommended items 

indicated persistent difficulties with volume integration, curvature, and Riemann sums. These 

findings underscore the potential of advanced recommendation models to support scalable, 

personalized learning–grounded in precise, data-informed diagnosis of conceptual weaknesses–

thereby enabling more effective instructional support and promoting long-term academic 

continuity. 
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INTRODUCTION 

Calculus represents a foundational subject in higher 
education, essential not only for mathematics majors but 
also for students across various specialized disciplines 
such as engineering, computer science, and the natural 
sciences. In Taiwan, where the economy is driven by 
industries such as electrical engineering, computer 
science, and semiconductors, proficiency in calculus is 
essential for future professionals. However, the abstract 
nature and significant conceptual shift from high school 
mathematics pose substantial challenges. 

A unique factor in Taiwan’s education system further 
compounds this issue. Although calculus is introduced 
in the 12th grade, it is not covered in the primary college 
entrance examination–the general scholastic ability test. 
Consequently, many students enter university without a 
solid calculus foundation, resulting in pronounced 
academic struggles, particularly among first-year 
students. Early difficulties with calculus concepts often 
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correlate with course failure, impeding academic 
progression and essential skill development. 

Moreover, the conceptual complexity of calculus 
demands a deeper understanding of function properties 
and abstract reasoning. Unlike procedural mathematics 
emphasized in high school, where speed and 
algorithmic proficiency are typically emphasized. 
Calculus was introduced as a broader range of problem-
solving strategies and conceptual frameworks. Students 
often perceive calculus merely as a collection of 
definitions and formulas, without grasping underlying 
principles (Cheng, 2007). This disconnect often leads to 
surface learning approaches, further exacerbating 
difficulties in mastering the subject. 

Recent institutional data further highlights the extent 
of this issue. At many universities in Taiwan, first-year 
calculus courses report high rates of failure or course 
withdrawal, particularly among students from non-
mathematics backgrounds. Common difficulties include 
gaps in fundamental concepts such as limits, derivatives, 
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and integral applications, as well as challenges in 
transitioning from procedural computation to 
conceptual understanding. These struggles not only 
impact academic performance but also contribute to 
decreased confidence and motivation, which may have 
long-term consequences on students’ educational 
trajectories. In fact, persistent failure in foundational 
subjects like calculus is frequently cited as a key factor 
influencing students’ decisions to transfer to other 
institutions after their first year–or even to discontinue 
their university studies entirely. 

In light of these challenges, we employ the Funk-
singular value decomposition (Funk-SVD) model to 
analyze data from six exams administered over two 
semesters. The dataset includes responses from more 
than 850 students and 138 distinct calculus problems. 
Unlike traditional diagnostic methods, this approach 
captures patterns in students’ problem-solving 
behaviors without requiring manual content analysis, 
thereby enabling fine-grained, data-driven predictions 
of individual student performance. 

Building upon these predictive insights, the system 
provides tailored practice recommendations designed to 
strengthen each student’s proficiency in calculus. At the 
same time, it offers instructors valuable feedback to 
refine their teaching strategies. This dual approach 
supports both personalized learning and data-driven 
pedagogical decision-making. 

Moreover, the scalability and adaptability of the 
proposed system suggest potential applications beyond 
the domain of calculus, contributing to the broader 
discourse on educational analytics and personalized 
learning systems.  

Accordingly, this study is guided by the following 
research questions: 

RQ1. How accurately can the Funk-SVD model 
predict individual student performance? 

RQ2. Can a personalized practice recommendation 
system effectively enhance students’ calculus 
learning outcomes while supporting 
instructors in adjusting their teaching 
strategies? 

RQ3. Which groups of students are likely to benefit 
the most from this system? 

RQ4. What are the primary weaknesses in students’ 
calculus problem-solving abilities?  

RELATED WORK 

Teaching and Learning of Calculus 

Mathematics educators generally recognize that the 
concepts in calculus pose significant challenges for 
learners (Baker et al., 2000). In the initial learning phase, 
limits serve as the foundation for understanding 
derivatives and integrals, making them a primary 
concept for students to grasp (Sofronas et al., 2011). 
Understanding limits requires a type of reasoning 
distinct from algebraic thinking, which many students 
struggle to develop (Cappetta & Zollman, 2013). 
Additionally, the use of language and terminology can 
interfere with students’ comprehension of limits. 
Bressoud et al. (2016) and Larsen et al. (2017), citing 
Cornu’s (1981, 1983, 1991) research, which found that 
students, influenced by everyday language, often 
interpret the term “approach” as a process of getting 
closer to an unattainable value. Consequently, they 
perceive the “limit” as a boundary that should not be 
surpassed. When instructors use phrases such as 
“sufficiently close”, “arbitrarily close”, or “as close as 
desired” in the classroom, students frequently struggle 
to conceptualize the meaning of “close enough” (Keene 
et al., 2014; Swinyard, 2011; Swinyard & Larsen, 2012). 
This highlights the crucial role of understanding the 
formal definition of limits in the development of 
students’ higher-order thinking skills (Kidron, 2020; 
Parr, 2023; Thompson & Harel, 2021). Zhang (2022) 
conducted a study on applied mathematics students’ 
learning difficulties in limits and found prevalent 
misconceptions (Chang, 2021), including an inability to 
accurately describe both the intuitive meaning and the 
formal definition of limits, insufficient understanding of 
the conditions underlying operational rules and 
notation, and difficulty distinguishing between limit 
values, function values, and continuity. Furthermore, 
students encountered challenges when working with 
limits involving radicals, absolute values, and periodic 
functions, with most failing to apply the precise 
definition of limits in proofs. The study ultimately 
recommended that instruction should reinforce 
students’ conceptual understanding and reasoning 

Contribution to the literature 

• This study bridges the gap between recommendation technologies and data-driven instructional 
strategies. Also the results demonstrate the potential of Funk-SVD to enhance learning outcomes in higher 
education. 

• By identifying individual conceptual weaknesses and recommending targeted practice, the system enables 
instructors to design remedial plans, adapt teaching content, and allocate resources more efficiently. 

• Beyond demonstrating the system’s predictive accuracy, this study highlights its potential applications 
for personalized learning and instructional resource management. 
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abilities regarding limits. In mathematics education, 
conflicts between language and conceptual 
understanding are not merely cognitive issues but also 
concern the precision of instructional language. Thus, 
when teaching limits and related concepts, instructors 
must ensure that students correctly interpret these 
abstract ideas to establish a solid foundation for further 
learning. 

Within the core topics of differential calculus, 
derivatives represent a fundamental concept that 
students must comprehend (Aydin & Ubuz, 2014). The 
three sub-concepts of derivatives include rate of change, 
graphical representation, and computational methods 
(Sofronas et al., 2011). While students often manage to 
execute differentiation procedures, they struggle to 
understand the meaning of derivatives in terms of rates 
of change, quantitative reasoning, and the relationships 
between rate of change, slope, and function behavior 
(Thompson & Harel, 2021). Dilling and Witzke (2020) 
emphasized the need to link derivatives to the concept 
of slope by interpreting derivatives as the slope of the 
tangent line, aiding students in developing a more 
meaningful and coherent understanding. Studies have 
shown that students perform well when dealing with 
derivatives in kinematics contexts but face greater 
difficulties interpreting derivatives in non-kinematic 
contexts. This discrepancy may arise because instructors 
frequently frame derivative problems in terms of 
motion; thus, integrating other real-world applications, 
such as economics, may help students develop a more 
comprehensive understanding of derivatives and their 
applications across disciplines (Mkhatshwa, 2024). 
Additionally, students often struggle with conceptual 
misunderstandings and procedural deficiencies when 
learning about inverse functions. Conceptual challenges 
include failing to recognize the relationships between 
trigonometric functions and their inverses, forgetting the 
domain and range of trigonometric functions, and 
misinterpreting the concept of symmetry. Procedural 
difficulties involve proving trigonometric identities, 
graphing inverse functions, and applying inverse 
function concepts (Ancheta, 2022). 

In integral calculus, integration is defined as both the 
inverse operation of differentiation, which calculates 
instantaneous rates of change, and as the summation of 
infinitely many small quantities to determine a whole 
(Berggren, 2016). However, many students resort to rote 
memorization of theorems and formulas without 
grasping the underlying concepts or problem-solving 
strategies (Idris, 2001). As a result, they fail to 
comprehend the inverse relationship between 
integration and differentiation, leading to errors when 
reverse operations are required. For instance, in 
integration by parts, students may mistakenly 
differentiate the integral component instead of applying 
the correct formula (Angco, 2021). Common difficulties 
in integration include uncertainty about when to apply 

integration by parts, confusion in selecting u and d_v, 
miscalculations during integration or differentiation, 
misunderstanding substitution methods, and failing to 
correctly adjust limits or variables after substitution 
(Ferrer, 2016). In partial fraction decomposition, 
students may struggle with decomposing rational 
functions or making errors in the subsequent integration 
process (Angco, 2021). Research has identified 
fundamental reasoning skills necessary for constructing 
definite integrals, including  

(1) a dynamic view of limits, where a finite quantity 
is partitioned into infinitely many or uncountable 
parts,  

(2) a metric perspective on limits, understanding 
infinitesimally small distances and convergence,  

(3) the feasibility of partitioning a finite distance into 
infinitely many segments,  

(4) the existence of infinitely many real numbers 
within any numerical interval,  

(5) the interpretation of a circle as a geometric shape 
with an infinite number of edges approaching 
zero in length,  

(6) the ability to approximate a curve by partitioning 
it into rectangular segments, and  

(7) the understanding that if the sum of small area 
elements approaches infinity, the total area error 
approaches zero (López-Leyton et al., 2024).  

Moreover, students commonly make errors in setting 
integration bounds, determining the correct radius of 
rotation, computing the volume of hollow solids, and 
applying volume formulas for solids of revolution (Ting, 
2018). 

Regarding students’ cognitive learning processes, 
research suggests that successful calculus learning 
depends on a strong foundation in prerequisite 
knowledge such as algebra, trigonometry, and analytic 
geometry. Many students underestimate the importance 
of these foundational skills, leading to difficulties in 
calculus (Angco, 2021). Students often perceive limits, 
derivatives, and integrals as isolated topics, which 
hinders their ability to establish conceptual connections 
(Martin, 2013), thereby making success in calculus more 
challenging. This highlights that learning calculus is not 
merely a technical exercise but a process of 
understanding mathematical structures and modes of 
reasoning. Consequently, instruction should guide 
students to build connections among different calculus 
topics. The abstract nature of calculus can negatively 
impact students’ attitudes toward mathematics and 
science (de Vera et al., 2022; Kunwar, 2021), affecting 
their motivation and learning outcomes. Studies suggest 
that emphasizing the relevance of calculus in real-world 
applications, providing ample practice opportunities, 
and incorporating engaging and challenging calculus 
problems can enhance students’ interest and confidence 
in learning calculus (Hammoudi & Grira, 2023). 
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Furthermore, previous studies have emphasized that 
a strong foundation in algebra, trigonometry, and 
analytic geometry is essential for success in entry-level 
calculus (Ferrini-Mundy & Gaudard, 1992; Hurdle & 
Mogilski, 2022; Pyzdrowski et al., 2013; Schraeder et al., 
2019). These prerequisite domains underpin the 
development of symbolic manipulation skills and 
functional reasoning, both of which are critical for 
calculus learning. Although these topics are formally 
covered in Taiwan’s high school mathematics 
curriculum, deficiencies in prerequisite knowledge 
remain evident in students’ actual performance (Angco, 
2021; Mahadewsing et al., 2024).  

To address this gap, the present study adopts a 
concept-tagged item framework that explicitly integrates 
both calculus concepts and prerequisite knowledge 
domains. By applying the Funk-SVD model to student 
response data, we identify not only performance 
deficiencies in core calculus areas but also persistent 
gaps in foundational mathematical understanding. This 
approach allows the system to generate diagnostic 
insights that inform targeted instructional planning and 
support personalized learning trajectories, thereby 
enhancing both teaching effectiveness and student 
learning outcomes. 

Singular Value Decomposition 

SVD is an important matrix decomposition method 
in linear algebra, widely applied in data compression, 
dimensionality reduction, signal processing, and 
machine learning. Billsus and Pazzani (1998) were the 
first to apply SVD to recommender systems, where it 
was considered one of the best-performing machine 
learning algorithms for collaborative filtering (CF) at the 
time (Zhang, 2022). The primary objective of traditional 
SVD is to decompose a rating matrix into the product of 
three matrices (A = UΣVT), thereby enabling 
dimensionality reduction and imputing missing rating 
values. 

SVD decomposes the entire matrix (e.g., a user-item 
rating matrix). Suppose there are 1 million users and 
100,000 items, forming a 1,000,000 × 100,000 rating 
matrix where most ratings are missing. When SVD 
operates on the entire matrix, it generates three matrices, 
which are often similar in size to or even larger than the 
original matrix, requiring a significant amount of 
memory for storage. The resulting matrices tend to be 
dense (even if the original matrix was sparse), making 
large-scale sparse matrix computations complex and 
memory intensive. 

To overcome these drawbacks, Funk (2006) proposed 
Funk-SVD in 2006, which employs an explicit learning 
process. The so-called “explicit learning process” means 
that the model has a well-defined objective function 
(usually a loss function such as mean squared error) and 
a concrete optimization method (e.g., gradient descent) 

during training. By continuously adjusting the model 
parameters to minimize the loss function, the predicted 
results become closer to the actual data. This method 
decomposes the rating matrix into the product of two 
low-dimensional matrices (commonly referred to as P 
and Q) and learns their parameters by minimizing the 
loss function on the training data (Zhang, 2022). 

Funk-SVD performs well in recommendation tasks 
mainly because it does not directly rely on surface-level 
similarities between users or items. Instead, it uncovers 
deeper preference correlations through latent factor 
learning. Thus, Funk-SVD is also known as the latent 
factor model (LFM) (Bi et al., 2019). 

Building upon Funk-SVD, Koren (2010) introduced 
SVD++ in the Netflix Prize competition. SVD++ extends 
the LFM model by incorporating information from 
users’ historically rated items and considering 
neighborhood effects. This improvement is an explicit 
learning enhancement of the item-to-item CF algorithm 
(Linden et al., 2003), making SVD++ an extension of 
Funk-SVD that accounts for implicit ratings. 

Factorization machines (FM) were later introduced to 
integrate the advantages of support vector machines and 
matrix factorization (MF). FM is designed to handle 
large-scale sparse data–datasets where most values are 
missing, empty, or zero–and can generalize MF and 
SVD++ (Rendle, 2010). Unlike traditional SVD-based 
approaches, FM not only utilizes first-order linear 
features but also considers second-order (pairwise 
interaction) features to analyze deeper relationships 
between variables. 

In recent years, deep factorization machines 
(DeepFM) have emerged as an evolution of the wide and 
deep model. DeepFM aims to improve click-through rate 
prediction by modeling both low-order and high-order 
feature interactions (Zhang, 2022). 

In summary, the evolution of SVD-based 
recommendation systems has progressed from 
traditional SVD to Funk-SVD (LFM) for improved 
efficiency and accuracy, then to SVD++ incorporating 
neighborhood effects, followed by FM with enhanced 
feature interaction capabilities, and finally to DeepFM, 
which integrates MF techniques into deep learning 
frameworks. This development trajectory reflects the 
ongoing pursuit of higher recommendation quality and 
the ability to handle increasingly complex data in the 
field of recommender systems. 

Mathematical Model 

Funk-SVD assumes that each user can be represented 
by a set of latent factors, such as preferences for action 
movies, romance movies, etc. Similarly, each item (e.g., 
a movie) can also be represented by a set of latent factors 
describing its characteristics. The rating a user gives to 
an item can be approximated by taking the inner product 
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of the “user’s latent factor vector” and the “item’s latent 
factor vector.” 

Model Operation 

Funk-SVD learns only from known ratings, 
significantly reducing computational resources. During 
the training process, the model initializes the latent 
factor vectors randomly. These vectors are then 
iteratively adjusted to minimize the error between the 
predicted ratings and the actual ratings. 

Error and Optimization 

The model adjusts the latent factor vectors of users 
and items by calculating the difference between the 
predicted and actual ratings, known as the “prediction 
error.” This process utilizes a method called stochastic 
gradient descent, which continuously fine-tunes the 
parameters based on the error until the overall 
prediction error is minimized. 

To prevent overfitting (where the model becomes too 
closely fitted to the training data and loses generalization 
ability), a regularization term is added. This helps 
control the magnitude of the latent factor vectors, 
ensuring the model remains stable and maintains 
predictive accuracy. 

Assume 𝑅𝑢,𝑖 be the actual rating given by user u for 
item 𝑖, 𝑝𝑢 be the latent factor vector of user 𝑢, and 𝑞𝑖 be 
the latent factor vector of item 𝑖. The predicted rating is 
given by Eq. (1): 

 𝑅𝑢,𝑖 = 𝑝𝑢𝑞𝑖 = ∑ 𝑝𝑢,𝑓𝑥
𝑘

𝑓=1
𝑞𝑖,𝑓. (1) 

Loss Function 

The loss function minimizes the discrepancy between 
actual and predicted ratings: 

𝐿 = ∑ (𝑅𝑢,𝑖 − 𝑝𝑢
𝑇𝑞𝑖)(𝑢,𝑖)∈𝑘

+ 𝜆(‖𝑝𝑢‖2 + ‖𝑞𝑖‖
2), (2) 

where 𝑘 is the set of user-item pairs with ratings, 𝜆 is the 
regularization parameter, which prevents overfitting, 𝑝𝑢 
is the latent factor vector for user u, 𝑞𝑖 is the latent factor 
vector for item i, 𝑅𝑢,𝑖 is the actual rating given by user u 
to item i, and 𝑝𝑢

𝑇𝑞𝑖 is the predicted rating. 

The first term represents the sum of squared 
prediction errors, which measures the discrepancy 
between actual and predicted ratings. The second term 
is a regularization component that constrains the 
magnitude of the latent factor vectors, helping to prevent 
overfitting by discouraging excessively large parameter 
values. 

Training Process–Stochastic Gradient Descent  

1. Randomly initialize the latent factor vectors 𝑝𝑢 
and 𝑞𝑖 for all users and items. 

2. For each known rating (𝑢, 𝑖): 

 Compute the predicted rating: �̂�𝑢,𝑖 = 𝑝𝑢𝑞𝑖. 

 Calculate the error: 𝑒𝑢,𝑖 = 𝑅𝑢,𝑖 − �̂�𝑢,𝑖, where 𝑅𝑢,𝑖 

is the actual rating and �̂�𝑢,𝑖 is the predicted 
rating. 

3. Update rules for the latent factor vectors: 

 For user u, factor f: 𝑝𝑢,𝑓 ← 𝑝𝑢,𝑓 + 𝛾 ×

(𝑒𝑢,𝑖×𝑞𝑖,𝑓 − 𝜆𝑝𝑢,𝑓). 

 For item i, factor f: 𝑞𝑖,𝑓 ← +𝛾 × (𝑒𝑢,𝑖 × 𝑝𝑢,𝑓 −

𝜆𝑞𝑖,𝑓). 

Where γ is the learning rate, and λ is the 
regularization parameter. 

4. Repeat the process for multiple iterations until the 
loss function converges or a preset number of 
iterations is reached. 

In the business field, recommender systems are 
widely used to enhance user experience. For example, 
Netflix uses a variety of machine learning models to 
process data and generate recommendations, such as 
clustering and dimensionality reduction algorithms, 
linear regression, logistic regression, MF, and hybrid 
models. Netflix emphasizes personalized experiences, 
starting the recommendation system as soon as a user 
logs in. To meet the user’s needs, the system uses data 
from playback history, ratings, queues, searches, etc., to 
generate relevant recommendations, while also helping 
users discover content they are interested in within a 
vast online database (Amatriain & Basilico, 2015). 

MoocRec is a website that recommends courses to 
users to help them acquire the skills needed for their 
ideal jobs. Its recommendation engine combines MF 
models with CF algorithms and utilizes information 
from external resources to make the most suitable 
recommendations for users. First, the system gathers 
information from users, such as their learning 
background, ideal jobs, and required skills, to 
understand their needs and goals. Next, MoocRec 
integrates a search engine that uses web content mining 
techniques to automatically retrieve MOOC courses 
from providers like edX and Coursera, enabling the 
system to access a vast amount of course information. 
The MoocRec database then builds relationships 
between jobs and skills, as well as skills and courses, 
allowing the system to recommend courses that help 
users acquire the skills required for their ideal jobs 
(Symeonidis & Malakoudis, 2016). 

In the education field, IT108 was developed in 
response to the implementation of the 108 curriculum 
guidelines. Its goal is to create an automated web-based 
online learning platform for the information technology 
field. It uses text mining technology to analyze 
curriculum documents, automatically extracting and 
analyzing learning content and descriptions, which are 
then stored in a hierarchical structure in a database. The 
platform also uses the YouTube Data API to retrieve a 
large number of instructional videos related to these 
keywords. It ranks the videos according to the 
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corresponding curriculum content and keyword weight 
for each unit, storing the most relevant videos in the 
database. Furthermore, IT108 records each user’s 
learning progress, such as notes, video viewing, and 
added items, enabling users to track their learning 
history and motivating independent learning (Lu, 2022). 
Overall, IT108 creates automated learning content based 
on the 108 curriculums, integrates YouTube’s rich 
learning resources, and establishes an online learning 
environment. Through interactive features and a 
personalized recommendation system, it helps students 
learn information technology knowledge more 
effectively and assists teachers in lesson planning. 

In a nutshell, recommendation systems based on 
Funk-SVD are currently widely used in the business 
field. While they have been introduced in education, the 
field is still in the early stages of development. In higher 
education, calculus courses form the foundation of many 
disciplines. Learning calculus enhances students’ 
abstract thinking, logical reasoning, and mathematical 
modeling abilities. After understanding the abstract 
concepts of calculus, students also need good 
computational skills. Mathematics teachers often rely on 
experience in teaching. Via using recommender systems 
to analyze students’ learning patterns, teachers can 
systematically understand students’ learning states and 
design the most suitable teaching content for them. 

Building on the contributions of these systems, the 
present study extends the application of 
recommendation technologies to the field of university-
level calculus education. While previous research such 
as MoocRec and IT108 has focused on course retrieval 
and curriculum-based content recommendations, this 
study uniquely leverages Funk-SVD to analyze actual 
student performance data at the item level. By 

identifying conceptual weaknesses and predicting 
students’ future performance, the system moves beyond 
content matching toward a more diagnostic and 
intervention-oriented approach. This not only bridges 
the gap between data mining and classroom instruction 
but also responds to the increasing need for personalized 
learning support in foundational STEM courses such as 
calculus. 

METHODOLOGY 

Our primary objective is to develop and evaluate a 
predictive recommendation system that supports 
individualized calculus learning by identifying students’ 
conceptual weaknesses and simulating targeted 
intervention outcomes. This methodological framework 
is guided by three core objectives: 

1. To construct a reliable user-item interaction 
matrix using student response data 

2. To train and validate the Funk-SVD model for 
predicting individual performance on calculus 
problems 

3. To evaluate model effectiveness through 
comparisons with baseline approaches and 
simulations of post-intervention improvement 

As illustrated in Figure 1, the methodology begins 
with data preprocessing and matrix construction, 
followed by model training and prediction. Predictions 
are then analyzed through four evaluation paths: model 
accuracy (RQ1), impact on simulated learning gains 
(RQ2), benefit across student groups (RQ3), and 
identification of topic-level weaknesses (RQ4). These 
evaluation paths collectively frame the analytical 
structure of the study. 

 
Figure 1. Methodology framework (Source: Authors’ own elaboration) 
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Data Sets 

The data used in this research were obtained from a 
de-identified secondary database collected at a case 
study university in Taiwan, comprising student 
responses from calculus courses conducted over two 
consecutive semesters during the academic years 2022 
and 2023. The dataset included the performance records 
of over 850 first-year undergraduate students enrolled in 
compulsory calculus courses across various majors in 
science, engineering, and technology-related disciplines.  

Since the data were anonymized prior to analysis and 
no personal identifiable information was accessible, the 
study involved the analysis of pre-existing, de-identified 
data without any direct interaction with participants. As 
such, this research does not constitute human subjects 
research under the common rule (45 CFR 46.102) and 
falls within the domain of educational data mining 
(EDM), focusing on identifying performance patterns 
and diagnosing conceptual weaknesses to provide 
targeted practice recommendations. 

In EDM, sample size is often regarded as a key 
determinant of machine learning model performance. 
Addressing the feasibility of small-sample modeling, 
Zohair and Mahmoud (2019) conducted an empirical 
study demonstrating that a predictive model with 
statistically significant accuracy can be effectively 
developed using only 38 student records. Through 
visualization and clustering techniques, critical 
predictors were identified, enabling the construction of 
a reliable student performance classification model. The 
study employed leave-one-out cross validation, a 
method widely recognized for maximizing data utility 
and ensuring model robustness in small-sample contexts 
(Rao et al., 2008). 

In contrast, the present study utilizes a substantially 
larger dataset comprising 850 student records, offering 
greater data representativeness and improved model 
stability. Building upon prior findings, this study affirms 
the feasibility of applying machine learning to 

educational outcome prediction and further strengthens 
its methodological rigor through the use of a sufficiently 
large and diverse sample.  

The data set consists of responses to a total of 138 
distinct calculus problems, systematically distributed 
across six quizzes conducted throughout the two 
semesters. Each quiz costs 150 minutes and comprises 

 10 true/false questions (Figure 2) 

 8 fill-in-the-blank questions (Figure 2) 

 5 essay-type questions 

Each student’s response to each problem was 
recorded as a binary value: correct (1) or incorrect (0). 
Problems were specifically designed by experienced 
calculus instructors to assess students’ comprehension 
across various calculus topics such as differentiation, 
integration, critical points, curvature, multiple integral 
and integral volume.  

Data Preprocessing 

Dataset cleaning 

Data preprocessing began with the removal of 
attributes that were irrelevant to our predictive 
modeling objectives, such as instructor names, academic 
years, and degrees, to ensure clarity and consistency in 
the dataset. Moreover, to improve the precision and 
interpretability of predictions, essay-type questions 
were excluded from the analysis due to complexities 
associated with partial scoring. Consequently, the 
experiments utilized only the 10 true/false questions 
and 8 fill-in-the-blank questions per quiz. The essential 
attributes retained for the training and evaluation of the 
predictive model are summarized in Table 1.  

Thus, the dataset consists of approximately 850 
students × 108 questions (18 per quiz × 6 quizzes), 
yielding over 91,800 student-problem interaction 
records. These records serve as the input for the CF 
algorithm, enabling the model to learn latent factors that 

 
Figure 2. Examples of true/false questions and fill-in-the-blank questions (Source: Calculus examination items 
administered by the case university) 
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represent both student proficiency and question 
difficulty. 

User-item interaction matrix creation 

To effectively apply CF methods, the original dataset 
was transformed into a user-item interaction matrix, as 
exemplified in Figure 3. In this matrix structure, each 
student is represented as a user, each calculus problem 
is treated as an item, and the binary correctness values 
(correct or incorrect) indicate interactions between users 
and items. This format is suitable for implementing the 
Funk-SVD model, as it allows for the efficient extraction 
of latent patterns that reveal students’ problem-solving 
capabilities and conceptual weaknesses in calculus. 

Training and testing data split 

The processed data was subsequently divided into 
distinct training and testing datasets to assess the 
predictive capability of our model rigorously: 

 Training set: Includes data from 90% of students 
(approximately 765 students) and the first five 
questions answered by the remaining 10% 
(approximately 85 students). 

 Testing set: Includes the last 13 questions from 
each quiz, as answered by the remaining 10% of 
students (approximately 85 students). 

The inclusion of the first five questions in the training 
data for students in the testing subset was strategically 
determined through preliminary experimental analysis. 
These initial problems were found to provide sufficient 
data points for accurate prediction without introducing 
significant bias. 

Model: Funk-SVD 

Funk-SVD, a variant of SVD tailored specifically for 
recommender systems, decomposes the user-item 
interaction matrix into lower-dimensional latent factor 

representations for both users and items. This process 
captures the underlying structures in the interaction 
data, enabling the model to estimate a “preference” score 
for unseen user-item pairs. In this study, the 
“preference” score represents the likelihood that a 
student will answer a given problem correctly, serving 
as a proxy for predicted performance. The primary 
formula employed by Funk-SVD is shown in Eq (3): 

 𝑠(𝑢, 𝑖) = 𝑏𝑢𝑖 + ∑ 𝑈𝑢𝑓𝐼𝑖𝑓
𝑘
𝑓=1 , (3) 

where 𝑠(𝑢, 𝑖) is the predicted likelihood score for user u 
on item i, 𝑏𝑢𝑖 is baseline prediction (global average 
combined with user and item biases), 𝑈𝑢𝑓 is latent factor 

vector of user u, 𝐼𝑖𝑓 is latent factor vector of item i, and k 

is number of latent factors (hyperparameter). 

In our context, this prediction score corresponds to 
the estimated probability that a student will answer a 
specific calculus problem correctly, serving as the 
foundation for our targeted recommendation system.  

Tools: The “Surprise” Library  

In this study, we implemented the Funk-SVD model 
using Python, leveraging Google Collaboratory as a 
cloud-based environment to ensure both computational 
efficiency and reproducibility. To facilitate the 
development and evaluation of our recommendation 
system, we employed the surprise library, an open-
source Python toolkit specifically designed for building 
and analyzing recommender systems based on CF 
techniques. Surprise provides a streamlined and 
modular interface that supports a wide range of 
algorithms, including Funk-SVD, and offers built-in 
functionalities for data loading, training/testing 
splitting, cross-validation, and performance evaluation. 
Its native support for parameter tuning and evaluation 
metrics such as RMSE and MAE made it particularly 
well-suited for our experimental framework. By 
integrating Surprise into our implementation, we were 
able to efficiently train and test the Funk-SVD model on 
our dataset, perform hyperparameter optimization, and 
evaluate predictive performance in a reproducible and 
scalable manner. 

Training and Prediction 

We trained the Funk-SVD model using an MF 
framework implemented via the surprise library in 
Python. The training dataset consisted of student-
problem interaction records, where a score of 1 indicated 

Table 1. Main attributes of the data set 

Attributes Data type Details 

Student names Nominal Student identifiers (e.g., student1, student2, ...) 
Student ID Nominal Unique identifiers assigned to students (e.g., ID001, ID002, ...) 
Quiz number Ordinal Quiz sequences (1-6) 
Question number Ordinal Individual problem numbers (1-23 per quiz) 
Answer correctness Nominal Performance indicator: 1 (correct), 0 (incorrect) 

 

 
Figure 3. Part of user-item interaction matrix (Source: 
Authors’ own elaboration) 
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a correct response and 0 indicated an incorrect response. 
Model hyperparameters were set as follows: the number 
of latent factors was 50, the number of training epochs 
was 40, and the learning rate was set to 0.02. These 
parameters were optimized through cross-validation to 
balance prediction accuracy and model generalizability. 

Upon completion of training, the model output was a 
prediction matrix that estimated the probability of 
correctness for each student-problem pair in the test 
dataset. Predicted scores ranged from 0 (predicted 
incorrect) to 1 (predicted correct).  

To enable binary classification, we applied a fixed 
decision threshold. If prediction is larger than threshold, 
it would be classified as “correct”; Otherwise, it would 
be classified as “incorrect”. 

 Predictions ≥ threshold were classified as 
“correct” 

 Predictions < threshold were classified as 
“incorrect” 

To determine the optimal threshold for the model’s 
predictions, multiple thresholds were systematically 
evaluated based on their predictive accuracy. The 
experimental results (Table 2) indicate that a threshold 
of 0.5 yielded the highest accuracy of 73.1%. This 
threshold was consequently selected for subsequent 
analyses to maximize the model’s predictive 
performance. 

Evaluation Metrics 

To comprehensively evaluate the model’s predictive 
performance, we utilized four established metrics 
commonly applied in classification problems: 

 Accuracy: The proportion of correctly predicted 
outcomes out of the total number of predictions. 
The value is between 0.000 and 1.000, the closer to 
1 the better. 

 Precision: The proportion of true positive 
predictions out of all positive predictions made by 
the model. The value is between 0.000 and 1.000, 
the closer to 1 the better. 

 F1-score: The harmonic means of precision and 
recall, providing a balanced assessment of the 
model’s performance. The value is between 0.000 
and 1.000, the closer to 1 the better. 

 Area under the curve (AUC) score: A measure 
derived from the receiver operating characteristic 
(ROC) curve that evaluates the model’s ability to 

distinguish between positive and negative classes. 
The value is between 0.000 and 1.000, the closer to 
1 the better. 

The combination of these metrics provides an 
extensive evaluation, allowing for robust assessment of 
the model’s suitability and predictive capability in real-
world educational settings (Han et al., 2011; Romero & 
Ventura, 2010). 

Operationalization of Conceptual Weakness 

In this study, a student’s conceptual weakness is 
operationally defined based on the set of recommended 
items generated by the Funk-SVD model–specifically, 
the N items with the lowest predicted success 
probabilities. Each item was pre-tagged by domain 
experts with one or more underlying concepts, covering 
both core calculus topics (e.g., limits, derivatives, 
integrals) and prerequisite knowledge areas (e.g., 
algebraic manipulation, trigonometric identities, and 
coordinate geometry). The inter-rater agreement on 
these concept tags reached 97%, indicating a high level 
of internal consistency. 

By aggregating the concept tags associated with each 
student’s top-N recommended items, we inferred 
personalized areas of conceptual difficulty. A student’s 
low predicted success on these items reflects not only 
deficiencies in isolated content knowledge but also 
challenges in applying mathematical concepts within 
structured problem-solving contexts. This integrated 
operationalization links students’ weaknesses not only 
to specific topical gaps but also to broader cognitive 
competencies rooted in prerequisite knowledge. Such an 
approach aligns with prior research highlighting the 
foundational importance of algebra, trigonometry, and 
analytic geometry in the learning of calculus. 

Importantly, our definition of “weakness” is data-
driven–grounded in individual prediction patterns–
rather than based solely on error counts or instructor 
judgment. It captures both localized struggles with 
particular topics and more pervasive difficulties in 
constructing the conceptual foundations essential for 
advanced mathematical reasoning. 

RESULTS 

Model Performance 

To evaluate the performance of our Funk-SVD model, 
we compared its results with two standard baseline 
approaches: random prediction and popularity 
prediction. 

 Random prediction: This approach predicts 
correctness randomly for each question, serving 
as a reference point for evaluating the model’s 
effectiveness. 

Table 2. Accuracy of different thresholds 

Threshold Accuracy 

0.40 0.728 
0.45 0.731 
0.50 0.734 
0.55 0.726 
0.60 0.717 
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 Popularity prediction: This method predicts 
correctness based on the correct answer rate of 
each question in the training data. Specifically, if a 
question’s correct answer rate exceeds 0.5, the 
model predicts that all students will answer it 
correctly; otherwise, it predicts all responses as 
incorrect. This approach is commonly used by 
instructors to identify commonly misunderstood 
topics and guide instructional focus.  

Performance on all question types  

As shown in Table 3, the Funk-SVD model 
consistently outperformed both baseline approaches 
across all evaluation metrics. Specifically, the Funk-SVD 
model achieved an accuracy of 73.4%, precision of 77.7%, 
F1-score of 0.794, and AUC of 0.701, demonstrating 
strong predictive accuracy.  

In comparison, the random baseline performed near 
chance level, as anticipated, whereas the popularity-
based approach showed moderate yet notably inferior 
performance compared to Funk-SVD. The AUC score 
further underscores the model’s superior ability to 
distinguish between correct and incorrect responses. 
Collectively, these findings support the robustness of the 
Funk-SVD model and highlight its suitability for 
practical implementation in personalized educational 
systems. Future work may explore statistical significance 
testing and evaluate prediction consistency across 
different student subgroups. Figure 4 presents the ROC 
curves for the three models: the Funk-SVD model, 
popularity prediction, and random prediction. The ROC 
curve graphically represents each model’s ability to 
differentiate correctly predicted student responses from 
incorrect ones by plotting the true positive rate against 
the false positive rate. Notably, the Funk-SVD model 
(represented by the blue line) attained the highest AUC 
(AUC = 0.701), indicating superior predictive accuracy. 
The popularity prediction model followed with a 
moderate AUC of 0.649, whereas the random prediction 
performed near chance level with an AUC of 0.504, 
equivalent to a no-skill classifier. These results further 
emphasize the robust predictive capability of the Funk-
SVD model in accurately classifying student responses. 

Performance on fill-in-the-blank questions 

To reduce the influence of random guessing, 
particularly prevalent in multiple-choice or true/false 
formats, we conducted a focused evaluation using fill-in-
the-blank questions. These question types typically 
require students to recall and construct responses based 

on their understanding, making them a more valid 
indicator of actual mastery. 

For this analysis, we selected 10 fill-in-the-blank 
questions per student as dataset. The dataset was split 
into training and testing sets, with the final three 
questions from each quiz reserved for testing. This setup 
was designed to simulate realistic learning trajectories 
while preserving temporal order. 

Compared to the full dataset evaluation (Table 3), the 
slightly lower accuracy and AUC in Table 4 reflect the 
increased difficulty and cognitive demand of fill-in-the-
blank questions. Despite this, the Funk-SVD model 
remained the top performer across all metrics, 
suggesting that its predictive strength is not limited to 
patterns in high-frequency responses or superficial 
correctness. Rather, it demonstrates adaptability in 
identifying conceptual gaps that emerge in more open-
ended or recall-based formats. 

The Funk-SVD model maintained its superior 
predictive performance even in scenarios specifically 
designed to minimize the impact of guessing, as 
indicated in Table 4. In this targeted evaluation using 
fill-in-the-blank questions, the model achieved an 
accuracy of 69.4% and an AUC of 0.694. These results 
further validate the robustness of the Funk-SVD model, 
underscoring its capability to detect genuine conceptual 
misunderstandings rather than superficial response 
patterns. Such diagnostic accuracy supports the model’s 
potential as a valuable tool for personalized learning 
interventions, particularly in contexts demanding 
higher-order cognitive processing. 

Table 3. Performance of each approach (all question types) 

 Accuracy Precision F1-score AUC score 

Funk-SVD 0.734 0.777 0.794 0.701 
Popularity 0.712 0.727 0.795 0.649 
Random 0.502 0.641 0.560 0.504 

 

 
Figure 4. ROC curve comparison (all question types) 
(Source: Authors’ own elaboration) 

Table 4. Performance of each approach (fill-in-the-blank 
questions) 

 Accuracy Precision F1-score AUC score 

Funk-SVD 0.694 0.680 0.690 0.694 
Popularity 0.666 0.638 0.678 0.667 
Random 0.491 0.476 0.478 0.491 
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The evaluation of fill-in-the-blank questions further 
supports the robustness and effectiveness of the Funk-
SVD model, especially considering that these question 
types are inherently more challenging and less 
susceptible to correct answers through guessing, as 
demonstrated in Figure 5. The ROC curve analysis 
highlights that the Funk-SVD model consistently 
achieves superior predictive performance (AUC = 0.694) 
compared to both the popularity prediction (AUC = 
0.667) and random prediction (AUC = 0.491) models. 
This superior performance indicates the model’s 
strength in distinguishing between genuine conceptual 
understanding and mere guessing behavior. 
Consequently, the Funk-SVD model shows significant 
potential for application in formative assessments, 
enabling educators to accurately identify and address 
students’ conceptual weaknesses through targeted 
instructional interventions. 

Comparison Between Model Prediction and Students’ 
Correctness  

To further evaluate the model’s performance, we 
compared its prediction accuracy with the correct rate of 
each question. The correct rate represents the proportion 
of students who answered a particular question 
correctly, while the prediction accuracy measures how 
closely the model’s predictions align with actual student 
outcomes for each question. 

The comparison between predicted accuracy and 
actual student correct rates across all questions indicates 
that, in most cases, the Funk-SVD model’s predictions 
closely align with or surpass the observed correct rates, 
as illustrated in Figure 6. This alignment underscores the 
model’s ability to accurately identify patterns within 
student responses and reliably predict performance 
outcomes. Particularly noteworthy is the model’s 
enhanced predictive accuracy for questions exhibiting 
very high or very low correct rates, highlighting its 
strength in effectively capturing areas where students 
commonly excel or struggle. These findings reinforce the 

potential effectiveness of the Funk-SVD model in 
targeted academic interventions. 

However, the model exhibits lower performance for 
questions with a correct rate between 0.4 and 0.6. This 
observation suggests that the model’s predictions are 
sensitive to question difficulty, particularly for 
moderately challenging questions. For items in this 
range, the model’s accuracy dropped to approximately 
0.5~0.6, indicating a decline in predictive reliability. 
Prior research in educational assessment has shown that 
questions with moderate difficulty levels often exhibit 
greater variability in student responses, potentially due 
to a mixture of partial understanding, guessing, or 
concept transfer difficulties (Mislevy et al., 2017; Wang 
& Chen, 2019). 

Improvement Simulation After System Support 

Figure 4 and Figure 5 provide evidence that the 
Funk-SVD model effectively identifies individual 
students’ weakest areas in calculus. The primary goal of 
our approach is not to modify the assessment items, but 
rather to use predictive modeling to pinpoint each 
student’s conceptual gaps and recommend targeted 
practice accordingly. By aligning remediation with the 
system’s predictions, we aim to foster meaningful 
learning and improve performance on similar problem 
types. 

To evaluate the potential impact of these 
recommendations, we conducted a simulation modeling 
post-intervention outcomes. We assumed that students, 
upon receiving personalized recommendations, would 
review the predicted weak concepts and subsequently 
answer those questions correctly. In the simulation, 
these targeted items were marked as correct (answer = 1) 
to reflect the expected benefit of personalized 
intervention. 

 
Figure 5. ROC curve comparison (fill-in-the-blank 
questions) (Source: Authors’ own elaboration) 

 
Figure 6. Comparison between prediction accuracy and 
correct rate (x-axis represents the 18 questions of each quiz 
& y-axis represents the prediction accuracy and correct rate) 
(Source: Authors’ own elaboration) 
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Improvement rate 

The improvement rate in this study quantifies the 
relative gain in student performance resulting from a 
simulated personalized intervention based on the Funk-
SVD model. Specifically, it measures the percentage 
increase in the number of correct responses after 
targeted practice on the weakest predicted concepts, 
relative to the original score. This metric serves as an 
indicator of the potential effectiveness of model-driven 
remediation and reflects how much personalized 
guidance–enabled by the Funk-SVD model–could 
enhance a student’s mastery if applied in practice. In this 
study, an improvement rate exceeding 25% is regarded 
as indicative of meaningful learning gains (Koedinger et 
al., 2015; Slavin, 2002). The improvement rate is defined 
as follows: 

 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =
𝑌𝑖−𝑋𝑖

𝑋𝑖
, (4) 

where Xi (original grade) is oiginal number of correct 
answers before intervention (maximum = 108) and Yi 

(new grade) is number of correct answers after 
simulated improvement. 

Impact of improved questions on grade enhancement 

The strong linear correlation between the number of 
improved questions and the overall improvement rate 
provides further validation of the system’s effectiveness 
in enhancing student performance. As illustrated in 
Figure 7, there is a pronounced diminishing return 
effect, where interventions at earlier stages produce 
greater relative improvements. Specifically, the marginal 
benefit per additional question corrected is notably 
higher when fewer questions have been addressed; For 
example, the slope of improvement at 30 corrected 
questions is considerably steeper than at 70 questions, 
indicating that targeted interventions are most efficient 
during the initial phase of practice. This trend is further 
substantiated by a high correlation coefficient (r = 0.90), 
demonstrating both the strength and consistency of the 
relationship across students and confirming the 

robustness of the observed pattern. These findings 
reinforce the practical value of early targeted 
interventions in personalized learning strategies.  

The results also reveal that the improvement rate 
increases with the number of corrected questions but 
begins to plateau around 80 questions. This suggests 
diminishing returns and highlights the system’s ability 
to prioritize the most critical items for improvement. 
Consequently, substantial grade enhancements can be 
achieved with minimal intervention, supporting 
efficient and personalized learning strategies. 

Improvement across different student groups 

While a moderate negative correlation was observed 
between original grades and improvement rates (r = -
0.75), further analysis revealed nuanced patterns across 
different student groups. As illustrated in Figure 8, each 
data point represents an individual student’s 
improvement following five targeted interventions with 
varying numbers of recommended questions (6, 12, 18, 
24, or 30).  

Firstly, students with lower original scores (below 40) 
demonstrated the most significant improvement rates, 
highlighting the particular effectiveness of targeted 
interventions for learners struggling with fundamental 
concepts. For instance, these students frequently 
achieved improvement rates exceeding 50% when 30 
questions were assigned, and rates surpassing 25% even 
when only 6 items were provided. 

Moreover, within this lower-performing subgroup, a 
high degree of variability in improvement rates was 
observed. Specifically, the model implemented five 
distinct intervention intensities, and students who 
received larger sets of recommended questions tended 
to show greater simulated improvement.  

Secondly, higher-performing students exhibited 
diminishing returns from similar interventions, 
reflecting their fewer conceptual weaknesses requiring 
remediation. 

 
Figure 7. Students’ grade improvement vs. number of 
improved questions (Source: Authors’ own elaboration) 

 
Figure 8. Original grade vs. improve rate (x-axis represents 
the original grades that the students got on the quiz & y-
axis represents the improvement rate after using the 
system) (Source: Authors’ own elaboration) 
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Collectively, these findings emphasize the system’s 
capability to deliver substantial benefits to students most 
in need while also retaining applicability to higher-
performing learners. Thus, the results underscore the 
practical value of the Funk-SVD model in facilitating 
differentiated instruction, enabling educators to 
efficiently provide targeted and impactful interventions 
across a diverse range of student abilities. 

Identification of Weaknesses Among Lower-
Performing Students 

To generate actionable instructional predictions, we 
used the Funk-SVD model to identify the N = 10 
problems with the lowest predicted success probabilities 
for each student. These items reflect the most probable 
areas of conceptual weakness and were pre-tagged by 
domain experts with their corresponding calculus 
concepts. This enabled concept-level diagnostic 
inference and allowed the system to generate 
personalized recommendation sets aligned with each 
student’s most urgent learning needs. 

Given limitations on instructional time and teaching 
resources, we conducted a focused analysis on the 
lowest-performing 30% of students (n ≈ 255). For each 
student, the ten lowest-ranked problems were extracted 
and analyzed. Figure 9 presents the five most frequently 
recommended problems and their associated conceptual 
tags across this subgroup.  

The statistical analysis of these aggregated 
recommendations revealed a multi-level structure of 
conceptual difficulty among lower-performing students 
(Figure 9): At the initial learning stage, a substantial 
proportion of students had difficulty mastering 
foundational calculus topics such as Riemann integral, 
fundamental integral, fundamental differential, and 
chain rule. These persistent difficulties suggest a lack of 
success in establishing basic skills in differentiation and 
integration. As students move into the intermediate 
stage, additional challenges emerged in tasks requiring 
geometric reasoning and coordinate transformations. 
Problems involving arc length, volume of revolution, 
and curvature appeared frequently in the 
recommendation sets, indicating that many students 

lacked the spatial intuition and flexibility needed to 
solve geometry-intensive calculus problems. At the 
advanced stage, students struggled with items involving 
the mixed derivative theorem, often due to an 
insufficient understanding of the continuity conditions 
required for interchanging the order of partial 
differentiation–as formalized in Schwarz’s theorem. 
Such misunderstandings pose significant barriers to 
engaging with multivariable calculus rigorously.  

Notably, many of the most frequently recommended 
items were also associated with prerequisite knowledge 
domains, such as algebraic manipulation, function 
transformation, and coordinate geometry. This 
observation is consistent with findings from related 
work on the teaching and learning of calculus, which 
emphasize that deficiencies in foundational 
mathematics–rather than purely calculus-specific 
misunderstandings–often account for students’ 
persistent struggles. Such gaps in fluency fundamentally 
hinder students’ ability to engage with abstract and 
integrative problem-solving tasks in calculus.  

Taken together, these findings highlight the 
diagnostic value of the Funk-SVD model–not only in 
identifying surface-level topic weaknesses, but also in 
uncovering deeper learning obstacles often overlooked 
by conventional assessments. The model’s predictive 
output offers a robust, data-informed foundation for 
strategic instructional planning, empowering educators 
to prioritize high-impact concepts, allocate limited 
resources more effectively, and provide targeted support 
to those students most in need.  

CONCLUSION 

This study presents a novel approach to identifying 
and addressing student weaknesses in calculus through 
a data-driven recommendation system. By leveraging 
the Funk-SVD model, a widely used CF technique, we 
successfully predicted student performance on 
individual calculus problems and provided targeted 
recommendations for improvement. 

The Funk-SVD model demonstrated superior 
performance compared to baseline approaches, 

 
Figure 9. Top-5 recommended topics for lower-performing students (Source: Authors’ own elaboration) 
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including random prediction and popularity prediction, 
across various metrics such as accuracy, precision, F1-
score, and AUC. Furthermore, focused analyses on fill-
in-the-blank questions highlighted the model’s 
robustness in minimizing the impact of guessing and 
accurately identifying student weaknesses. 

Through simulation experiments, we demonstrated 
the system’s practical utility in supporting student 
learning. By recommending weak topics and simulating 
improvement on low-performing questions, the system 
showed significant potential for enhancing students’ 
grades, especially for underperforming students. The 
analysis revealed that addressing fewer than 80 critical 
questions led to substantial improvements, with the 
greatest benefits observed among students with lower 
initial grades. 

Additionally, the analysis of the most frequently 
recommended problems revealed consistent conceptual 
challenges among lower-performing students–
particularly in topics such as volume integration, 
curvature, and Riemann sums. These results provide 
instructors with clear directions on which topics to 
prioritize for targeted remediation, enabling a more 
focused and efficient allocation of instructional time and 
resources. 

These findings also carry broader implications for 
educational planning. By improving foundational 
understanding early in students’ academic journey, such 
data-informed interventions may not only improve 
course-level outcomes but also reduce failure rates and 
support long-term academic continuity. In particular, 
this approach may help address issues of academic 
disengagement or attrition among first-year students, 
thereby enhancing their progression into the second year 
of university and beyond. 

For instructors, the system provides valuable insights 
into commonly misunderstood topics, enabling data-
driven adjustments to teaching strategies. For students, 
the system delivers personalized learning pathways, 
empowering them to focus on areas requiring the most 
attention.  

However, this study did not involve a follow-up 
teaching experiment to directly assess how students 
respond to and benefit from the recommended practice 
in real classroom settings. As such, the system’s effects 
on actual learning outcomes remain to be empirically 
validated. Future implementations could involve 
embedding the system into learning management 
systems or instructor dashboards to facilitate real-time 
monitoring and instructional decision-making. 

In future work, we aim to refine the system further by 
incorporating additional contextual data, such as 
problem difficulty levels, learning styles, and 
engagement metrics, to improve prediction accuracy 
and expand its adaptive capabilities. Additionally, 
applying this framework to other subject areas could 

provide a scalable solution for personalized learning 
across diverse academic disciplines. By bridging 
advanced recommendation algorithms with educational 
practice, this study demonstrates the potential of 
technology to transform traditional learning 
environments and foster academic success. 
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