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Abstract 

This article reports on a research project that focused on exploring the early forms of relating 

quantities in situations of variation exhibited by a sixth grade student. For this exploration, a case 

study approach was used, with a task-based Interview applied to collect data, and thematic 

analysis utilized to process the data. Relating quantities refers to characterizing and representing 

the changes of variables that vary among themselves. The early forms of relating quantities that 

emerged include variable identification, general recursion, correspondence, pre-coordination, and 

gross coordination of values. The correspondence relationship was the most frequently observed, 

while pre-coordination and gross coordination were the least common, suggesting that the latter 

could be studied in greater depth among young students. 
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INTRODUCTION 

This work focuses on the early forms of relating 
quantities or elements of a system in situations of 
variation. It is common for individuals to encounter 
phenomena of change and variation that occur in the 
social or natural contexts in which they operate. To 
understand and explain these phenomena, the 
development of perceptual and reasoning skills is 
essential. These processes can be nurtured within school 
contexts, where mathematics and science provide the 
curricular space to develop this type of knowledge. In 
the field of mathematics education, this is often referred 
to as variational thinking, functional thinking, or 
covariational reasoning. Cantoral (2019) reflects on the 
forms of mathematization and their support in the social 
field regarding the variational practices that should be 
considered in classrooms and laboratories where 
scientific knowledge is fostered. 

To address change and variation, we employ forms 
of functional thinking aimed at constructing, describing, 
and reasoning about relationships between quantities 
that change together. We strive to engage students in 
processes that generalize relationships between 
quantities, encompassing their representation and the 
ability to reason about them (Stephens et al., 2017) in 
order to interpret and predict the behavior of 
phenomena characterized by change and variation. An 

example of a context from which ways of relating 
quantities can emerge is when we read in the news: “the 
sea level is rising as the oceans continue to absorb heat 
from the atmosphere” (Johnson, 2023, p. 17). To 
understand this statement, it is crucial to clarify how the 
rise in sea level, the increase in temperature, and the 
elapsed time are related as references for comparison in 
the phenomenon of change being discussed. 

In the realm of school mathematics, interpreting 
relationships between quantities or explaining how 
elements interact represents a potential foundation for 
developing reasoning such as quantitative and 
covariational reasoning (Johnson, 2023). According to 
Thompson and Carlson (2017), such reasoning positively 
impacts the understanding of mathematical concepts 
such as rate of change, ratio of change, and functions. 
This is why research on functional relationships (e.g., 
Blanton & Kaput, 2004; Johnson, 2023) has examined the 
advantages that students can gain from developing these 
forms of reasoning. 

Research investigating functional thinking in 
primary school children suggests that they should be 
given opportunities to work on interpreting the 
relationship between quantities that change together 
from an early age (Blanton et al., 2015; Stephens et al., 
2017; Tanışlı, 2011). Furthermore, it has been 
recommended that mathematics programs for this 
educational level should include functional thinking, 
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which aims to address the relationship between variable 
quantities (Blanton & Kaput, 2004). 

Attention to the simultaneity of changes among 
quantities has also been referred to as covariational 
relationships. Research investigating functional thinking 
in young learners (e.g., Blanton et al., 2015; Panorkou & 
Maloney, 2016; Stephens et al., 2017) has identified 
covariational thinking as an early way of relating 
quantities. Covariation, as a form of reasoning, has been 
defined more broadly in research with pre-college and 
college students (e.g., Carlson et al., 2002). Covariational 
reasoning has been characterized as a cognitive skill that 
may enhance students’ and teachers’ mathematical 
understanding (Thompson & Carlson, 2017). Moreover, 
covariational reasoning is argued to represent a complex 
cognitive skill, even for outstanding students in calculus 
courses (Carlson et al., 2002). 

In a literature review described in the following 
section, it was found that there are few investigations 
that have studied the relationship between quantities 
and covariation in young students over the last ten years 
(Blanton et al., 2015; Panorkou & Maloney, 2016; Pittalis 
et al., 2020; Stephens et al., 2017). This indicates that there 
are areas in this field that have not been sufficiently 
explored. For example, little is known about how to lay 
the groundwork in elementary grades to develop more 
sophisticated reasoning, such as covariation, when 
students reach middle or higher levels. These limitations 
in research may stem from the belief that studying 
functional relationships that encompass the joint 
variation of quantities requires a level of formal abstract 
thinking that is only accessible from the secondary level 
onward (Blanton et al., 2015). Although it has been 
demonstrated that preschool and primary school 
students are capable of establishing covariation 
relationships between quantities and representing these 
relationships (Panorkou & Maloney, 2016; Pittalis et al., 
2020; Stephens et al., 2017), this study raises the research 
question: what early forms of relating quantities does a 
sixth-grade student develop when working with 
covariant quantities? 

LITERATURE REVIEW 

Research in mathematics education that investigates 
quantities that change together has primarily been 
grounded in covariational reasoning theory (Carlson et 
al., 2002) and has focused on secondary-level students 

aged 13-15 (e.g., Jacobson, 2014; Johnson et al., 2017; 
Wilkie, 2019), pre-university students aged 16-18 (e.g., 
Ferrari-Escolá et al., 2016; Johnson, 2015; Şen Zeytun et 
al., 2010), and university students (e.g., Carlson et al., 
2002; Kertil et al., 2019; Paoletti & Moore, 2017). 

The emphasis on covariational reasoning beginning 
in seventh grade may be attributed to the school 
curriculum’s introduction of formal function concepts at 
this stage. This reasoning has been recognized as 
foundational for understanding these concepts 
(Thompson & Carlson, 2017). In this context, Confrey 
and Smith (1994, 1995) argue that the covariational 
approach to teaching functions is more productive than 
the traditional correspondence approach, which has 
dominated conventional function curricula. 

Thompson and Carlson (2017) provide a historical 
overview of the study of functions and highlight 
covariational reasoning as a theoretical construct that 
underpins this mathematical concept. They assert that 
covariational reasoning is essential for the mathematical 
development of both students and teachers, as it allows 
access to productive conceptions in the study of 
functions. Research involving young students (ages 3 to 
12) has characterized the covariation relationship as an 
early way of relating quantities. 

Studies focusing on preschool and elementary 
students’ conceptualization of relationships among 
quantities that change together utilize various terms to 
describe the coordination of simultaneous changes 
among quantities or elements of a system. Panorkou and 
Maloney (2016) refer to this mental activity as the 
functional covariation relationship, building on the work 
of Confrey and Smith (1995) to describe how changes in 
one quantity in a numerical pattern relate to changes in 
another quantity in a different pattern. 

Stephens et al. (2017) and Pittalis et al. (2020) refer to 
these cognitive processes as covariation thinking. In 
their work, Stephens et al. (2017) characterized the 
progression of students from third to fifth grade in the 
generalization and representation of functional 
relationships, proposing levels of sophistication to 
describe students’ algebraic thinking. They identify 
covariation thinking as level 3, which involves 
recognizing the coordinated relationship between two 
variables rather than treating them separately. 

Pittalis et al. (2020) propose a theoretical model 
describing the functional thinking modes of first to third-

Contribution to the literature 

• This article exemplifies the functional relationships reported in other studies conducted in the field of 
early algebra with elementary school students. 

• It provides elements that help us understand how different ways of relating quantities are interconnected 
and addresses some aspects that are often not covered in specialized literature. 

• The article highlights that our student demonstrated only limited instances of covariational relationships 
and analyzes the factors that could promote their development. 
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grade students and identifying covariational thinking as 
one of these modes. Drawing on the work of Smith (2017) 
and Thompson and Carlson (2017), they define 
covariational thinking as the ability to analyze how the 
values of two quantities vary simultaneously, leading to 
the establishment of a rule that governs their 
relationship. 

Definitions used in research with young children 
regarding functional covariation relations (Panorkou & 
Maloney, 2016) or covariation thinking (Pittalis et al., 
2020; Stephens et al., 2017) align closely with research on 
covariational reasoning conducted at higher educational 
levels. In both contexts, coordinating simultaneous 
changes between quantities is emphasized as a central 
action (Carlson et al., 2002). Notably, while research in 
elementary grades has not centered on covariational 
reasoning as a primary objective, findings have 
indicated that young students develop covariation 
relationships as they conceptualize the joint growth and 
variation of quantities (Kaput, 1994, as cited in Ellis et al., 
2023). 

The literature review indicates that covariational 
thinking among young students represents an emerging 
line of research, one from which explanations could be 
generated regarding how these relationships arise and 
how their development may impact mathematical 
learning at both elementary and higher educational 
levels. 

THEORETICAL REFERENCES 

Early Ways of Relating Quantities 

Early forms of relating covariant quantities refer to 
the ability of preschool and primary school students to 
reason, describe, and represent the behavior of two or 
more variable quantities (Blanton & Kaput, 2004; 
Stephens et al., 2017). This notion aligns with Johnson’s 
(2023) assertion of an intellectual need to establish 
relationships, as young students’ initial experiences 
often focus on explaining how these elements work 
together as a system before engaging in formal 
experiences with established quantities like rates or 
ratios of change. Thus, these early forms of relating 
quantities can support the development of young 
children’s quantitative and covariational reasoning 
(Johnson, 2023). 

The processes of reasoning, describing, and 
representing the behavior of quantities or elements that 
interact are triggered by the question: What happens to 
one quantity when the other changes? Understanding 
how multiple quantities that change in relation to each 
other behave involves representing these relationships 
using natural language, formal algebra, tables, or graphs 
(Stephens et al., 2017). For example, measuring the 
performance of a moving vehicle necessitates 

considering both the distance it travels and the amount 
of fuel consumed at all times during its motion. 

Covariation Relation 

In this work, the covariation relationship is 
understood in the same manner as described by Confrey 
and Smith (1995), who outline two types of functional 
relationships. The first, the correspondence relationship, 
focuses on relating two data sets through a rule that 
allows for finding values of y or f(x) given a specific x, as 
in the equation f(x) = 2x + 1. The second type refers to the 
covariation relationship, which is characterized as a 
relationship between quantities in two data sequences, 
where the changes in one quantity occur simultaneously 
with the changes in another. 

A functional covariation relationship is established 
when individuals conceptualize how the values of two 
quantities vary together, analyzing and identifying the 
nature of these simultaneous changes and incorporating 
that understanding into their description of the 
functional relationship (Confrey & Smith, 1995). When 
working with tables containing corresponding pairs of 
covariant quantities, this relationship involves treating 
each column as a set of variable quantities, identifying 
variations within each column, observing patterns in the 
table, and coordinating the variations in both columns 
by moving vertically up or down in the table (Pittalis et 
al., 2020; Tanışlı, 2011). 

In this study, functional covariation thinking is 
viewed as an early way of relating quantities, defined as 
the ability to identify and represent the values of two 
covariant quantities or elements, either in numerical or 
figurative sequences, as well as in value tables. With this 
approach, students can establish function rules to 
explain relationships, such as: when one quantity 
increases by 1, the other quantity increases by 2, and they 
can also use this rule to calculate successive covariant 
elements or quantities in data sequences. 

MATERIALS AND METHODS 

To investigate early forms of relating variable 
quantities, a case study approach was utilized. Data 
were collected through a task-based interview, followed 
by analysis using thematic analysis techniques. 

The Case Study 

Case studies have gained acceptance as a research 
method in the scientific community (Yin, 2006) because 
they facilitate the understanding of participants’ thought 
processes by employing various sources such as 
documents, direct interviews, and participant 
observations. These methods are focused on the 
phenomenon under study and its contextual 
development. Implementing qualitative research, the 
case study can be exploratory, aiming to bridge theories 
within the theoretical framework and the reality being 
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examined (López González, 2013). Single case studies 
are characterized by concentrating the analysis on a 
single case, with their validity rooted in the critical 
nature that allows for confirming, altering, or expanding 
knowledge about the subject matter (López González, 
2013). 

This paper studies the case of Lizeth (pseudonym), a 
high-performing sixth-grade student among a group of 
20 children. Lizeth was selected due to her demonstrated 
ability in solving tasks involving the joint variation of 
quantities or elements of a system. She expressed a 
willingness to participate in the research, and her 
parents provided consent. 

Context and Participants 

The research was conducted in an elementary school 
on the outskirts of Chilpancingo, Mexico. The student 
body comprises children from various social strata, with 
many coming from impoverished families seeking better 
opportunities in the city, alongside a significant number 
from middle-class families employed in bureaucratic 
and service sectors. The curriculum followed by the 
children corresponds to the new study plan 
implemented by the Government of Mexico in 2022, 
known as the New Mexican School (SEP, 2022), which 
aims to connect educational content with the realities of 
the students’ communities. 

This curriculum is structured around four formative 
fields: languages; knowledge and scientific thought; 
ethics, nature and societies; and human and community. 
The mathematics content falls under the knowledge and 
scientific thought field. One of its objectives is to enhance 
students’ understanding of natural processes and 
phenomena in relation to social contexts through 
interpretation, systematization, representation with 
models, and argumentation (SEP, 2022). For fifth and 
sixth grades, the curriculum emphasizes the importance 
of mathematics in knowledge construction, encouraging 
students to articulate their learning verbally and in 
writing using both words and symbols. 

For the specific purposes of this research, the 
curriculum provides opportunities for children to 
interpret phenomena in their environment, including 
phenomena of variation and change, which they are 
encouraged to interpret both quantitatively and 
qualitatively. This includes recognizing patterns of 
change, establishing rules to calculate missing values, 
and representing and explaining how quantities that 
change together are related. 

Task-Based Interview Design 

Task-based interviewing was employed to collect 
data. This method is a specialized form of clinical 
interview that allows participants to interact not only 
with the interviewer but also with a carefully designed 
task environment (Goldin, 2000). This approach enabled 

direct interaction with the subject of study while 
working on mathematical tasks in a pencil-and-paper 
context, as suggested by Maher and Sigley (2020). This 
format allowed Lizeth to represent her ideas and 
mathematical reasoning regarding how she relates 
quantities or elements of a set. The interview comprised 
mathematical tasks and semi-structured questions to 
facilitate interaction between the interviewer and the 
student, serving as a mediation mechanism (Goldin, 
2000). 

The tasks were designed based on several criteria: the 
cognitive level of the participating student, insights from 
the specialized literature on how primary school 
students conceptualize and represent functional 
relationships, and the ability of the tasks to encourage 
thinking about the joint variation of quantities or 
elements. 

Five tasks of two types were created and validated: 
figural sequences and contextual situations. In task 1, a 
sequence of six figures is presented, with observable 
patterns of change between figures. The participant was 
asked to identify the changing elements, the pattern of 
change, and to predict subsequent figures in the 
sequence based on their relationships and positions. 
Task 2 and task 3 involved geometric elements (squares 
and cubes) and required students to identify behavior 
patterns and relate the number of elements to their 
positions in the sequence. These tasks also encouraged 
students to formulate general rules to find elements 
corresponding to close and distant figures in the 
sequences. 

Task 4 and task 5 presented contextual problems 
designed to help participants establish relationships 
between quantities that change together. Task 4 involved 
the relationship between the number of people and time, 
while task 5 addressed kilometers traveled and liters of 
fuel consumed. Participants were tasked with 
organizing data into numerical tables and explaining the 
relationships between the data in both columns. 

The validation process for the interview instrument 
included designing ten initial tasks applied to five fifth 
and sixth-grade students in separate sessions. This 
approach assessed the relevance of the tasks, allowed for 
adjustments, and led to the selection of the most 
productive tasks from the research team’s perspective. 
The tasks were designed based on four criteria: 
accessibility for sixth-grade students’ cognitive 
development; similarity to tasks typically presented in 
current textbooks; potential to encourage the use of early 
ways of relating varying quantities; and alignment with 
tasks utilized in related research. 

Data Analysis 

The interview with the student was video recorded, 
and the resulting material was transcribed, including her 
arguments and questions posed by the research team for 
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further investigation. The written responses provided 
evidence of the problem-solving procedures, which 
were digitized and incorporated into the transcribed 
interview texts. For data analysis, the thematic analysis 
approach suggested by Braun and Clarke (2012) was 
employed to identify patterns in the ways of relating 
quantities (themes). This involved using the data from 
task responses and arguments expressed during the 
interview. Several themes were identified, some of 
which are exemplified in Table 1 and will be referred to 
as ways of relating quantities in the results report. The 
analysis followed Braun and Clarke’s (2012) processes of 
familiarization, coding, and identification. 

Thematic analysis was conducted in five phases:  

(1) familiarization with the data through repeated 
readings of the transcripts,  

(2) establishing initial codes from participants’ verbal 
expressions or operational actions in their task 
responses, 

(3) searching for themes by comparing and compiling 
the initial codes into overarching themes defined 
as early ways of relating quantities, 

(4) reviewing the themes by matching data from task 
responses with interview arguments, and  

(5) defining and naming the themes, which represent 
the ways of relating quantities discussed in the 
results report. 

To enhance objectivity in the results during the first 
four phases of thematic analysis, researchers 
independently worked with the data before comparing 
and discussing their findings as part of a triangulation 

process (Flick, 2004) to mitigate potential bias from a 
single researcher. In cases of disagreement, joint sessions 
were held to analyze the data and reach consensus. 
Table 1 presents examples of theme detection that 
guided the identification of early ways of relating 
quantities. 

RESULTS 

Five early forms of relating variable quantities were 
found: variable identification, general recursion, 
correspondence, pre-coordination and gross 
coordination. Table 2 shows the forms of relating 
quantities or elements of a set that were identified, as 
well as the central actions that support these forms of 
relationship, the codes with which they are identified, 
the tasks in which they appeared and the frequency with 
which they appeared. 

Identification of Variables 

The identification of variables appeared in the 
responses to the five tasks. In tasks 1, 2, and 3, where 
Lizeth was asked to observe, explain and draw the 
figures that follow in the sequences, in her responses she 
was able to identify the variables involved in the 
sequences, for example, in her response to task 1 she 
wrote what is shown in Figure 1. 

During the interview, Lizeth’s responses indicate that 
she is able to identify the variables, as shown in the 
following extract: 

Interviewer (R): Can you explain to me what is 
changing in this sequence? 

Table 1. Data analysis process* 

Task Extract from the interview 
Response 

pattern 
Topics (form of 

relationship) 
Code 

T1 S: In the star section, one is illuminated and one is not, in the arrow section, the 
position of the one pointing changes. 
R: What is changing in this sequence? 
S: The position of the arrows and how the stars are illuminated. 

Identify 
what 

changes 

Identification of 
variables 

IV 

T2 S: The number of the position must be multiplied by itself, for example: 
position 10, multiply 10 by 10, equals 100. 
R: What figure would occupy the 20th place? 
S: It would be 400 squares. 
R: Why? 
S: Multiply 20 by 20 to get 400. 

Calculate 
missing 
values 

Correspondence C 

Note. *The phrases in italics are parts of the answers associated with a form of relationship; T1: Task 1; T2: Task 2; R: 
Researcher; & S: Student 

Table 2. Ways of relating quantities (n = 5) 

Form of relationship Core actions Code Task Frequency Total 

Identification of variables Identify variables involved in a variation situation. IV 1, 2, 3, 4, 5 1, 1, 1, 1, 2 6 
General recursion Identify how changes behave (recursive pattern) GR 1, 2, 3, 5 3, 1, 1, 1 6 
Correspondence Performs operations to calculate missing values. C 1, 2, 3, 4, 5 2, 3, 6, 2, 5 18 
Pre-coordination Identifies the variation of two variables asynchronously. PC 2, 3 1, 1 2 
Gross coordination Understand how the values of quantities vary from each 

other. 
GC 4 2 2 
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Lizeth (S): The position of the arrows and how the 
stars are illuminated. 

For task 2, when asked to explain what she observes 
in the sequence of squares, Lizeth responded: 

R: Explain your answer. 

S: In this series of boxes that you are adding to 
know the number of boxes that correspond to it, 
you must multiply the number of the position by 
itself. 

As can be seen in her answers, Lizeth identifies that 
the variables present in the sequences are the number of 
elements in each figure and the position of the figures in 
the sequence. 

In task 4, Lizeth was asked to create a table to record 
the data for the first question. She wrote what appears in 
Figure 2. She called the first column “number of people” 
and the second column “time.” For her, the variables that 
are changing are the number of people and the time 
spent by the people cleaning the room. These 
productions indicate that Lizeth managed to identify the 
variables involved in the proposed task. 

General Recursion 

General recursion emerged in Lizeth’s responses to 
tasks 1, 2, 3, and 5. In task 1, this relationship was evident 
when Lizeth identified the recursive pattern in the 
sequence of stars and arrows. She stated, “... after 
position 4, the sequence is repeated” (see Figure 1). Her 
recognition of this recursive pattern enabled her to 
predict the next figure in the sequence. The following 
exchange illustrates this process: 

R: Regarding those changes that you observe in 
the direction of the arrows and the color of the 
stars, can you predict which figure would follow? 

S: Yes. 

R: Explain to me, which would follow? 

 S: An illuminated star and an arrow pointing 
downwards would follow. 

R: What makes you think that figure would 
follow? 

S: Because from the 4th figure onwards, the 

succession of arrows is repeated. 

When predicting the next figure in the sequence from 
task 1, Lizeth engaged in a generalization process. She 
observed that the star in the first figure is colored, while 
the next one is white, and recognized that this pattern 
would continue throughout the remaining figures in the 
sequence. Similarly, she noted the change in the 
direction of the arrows and that this pattern repeats after 
the fourth figure. Through these identification actions, 
Lizeth successfully established the recursive pattern. 

In task 2, when the interviewer asked Lizeth to 
explain her observations in the sequence of squares (see 
Figure 3), she responded: 

S: 1 square, 4 squares, 9 squares, and the next 
would be … four ... four (counting the number of 
squares in a row and a column) 16. 

By articulating her observations in the sequence, 
Lizeth attempted to identify the behavior of the 
consecutive elements. This approach demonstrated her 
commitment to explaining how changes occur, which 
assisted her in determining unknown terms in the 
sequence.  

Lizeth employed counting as a strategy to arrive at 
general recursion, which was evident in her responses to 
task 3 (see Figure 4). For each element in the sequence, 
she made numerical records to keep track of the number 
of cubes contained in each figure. Once she identified 
how the number of cubes increased from one term to 
another, Lizeth was able to ascertain the number of cubes 
that other figures in the sequence would contain. 

As shown in Lizeth’s answers, this way of relating 
quantities that we have called general recursion allowed 

 
Figure 1. Identification of variables in the succession 
(Source: Authors’ own elaboration) 

 
Figure 2. Location of variables in a record table (Source: 
Authors’ own elaboration) 

 
Figure 3. Response to task 2 (Source: Authors’ own 
elaboration) 
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her to follow a process of evolution to establish other 
ways of relating quantities or elements of a system. 

 Correspondence 

Correspondence as a way of relating quantities or 
elements of a sequence appeared in Lizeth’s answers 
across all five tasks posed in the interview. In task 1, 
when asked what figures 16 and 18 in the sequence 
would look like, Lizeth responded as follows: 

R: What would figure 16 look like? 

S: Like 4. 

R: Would figure 16 be like 4? Why? 

S: Because 4 times 4 is 16. 

R: And figure 18, what would it look like? 

S: It could be like this one (points to figure 2). 

R: It would be like 2, but what does that make you 
think? 

S: … Yes, because 4 and 4 (referring to repeating 
the first four figures 4 times or multiplying 4 by 4) 
are 16 and 2 is 18. 

To establish a correspondence relationship, Lizeth 
relied on numerical calculations, as seen when she 
multiplied 4 by 4. She focused on an additive operation 
of repeating the first four figures in the sequence, 
concluding that figure 4 would also occupy position 16. 
This same reasoning enabled her to deduce that position 
18 corresponds to a figure similar to that of figure 2, 
again using multiplication. 

Correspondence as a form of functional relationship 
is expressed through an algebraic rule (Confrey & Smith, 
1995). This rule allows for calculating unknown values 
in data sets, where a value in one set corresponds to a 
unique value in another (Panorkou & Maloney, 2016). In 
task 1, Lizeth related the data sets of the sequence, 
employing correspondence to determine what a figure in 
the sequence would be for a given position. When asked 
to identify figures at positions 16 and 18, her reasoning 
involved multiplying by 4 (the number of varied 
elements) to reach the requested position. It should say: 

In the case of figure 16, the student solved x= 4 X 4; in 
the case of figure 18, the student solved x= (4 X 4) + 2. 

In task 2, Lizeth established a correspondence 
relationship by constructing a two-column table (see 
Figure 4) representing the position in the sequence and 
the number of squares corresponding to each figure. She 
referred to the squares of each figure as “tiles” (floor 
tiles). 

In this response, Lizeth proposed a general rule or 
formula for determining the number of squares for 
different figures in this sequence, as illustrated in the 
following exchange: 

S: In this series of boxes that you are adding to 
know the number of boxes that correspond to it, 
you must multiply the position number by itself. 
For example: position 10, you multiply 10 by 10, 
which equals 100. 

R: And what figure is next? 

S: From this, figure 4 would follow. 

R: How many boxes would figure 4 have? 

S: 16. 

R: What figure would occupy place 20? 

S: It would be 400 boxes. 

R: Why? 

S: Because you multiply 20 by 20 to get 400. 

The rule Lizeth established and expressed first 
verbally and later in numerical form is of the type (f [x] 
= x2), demonstrating her understanding that to find the 
number of squares corresponding to a given position, 
one must square the position number. Additionally, 
Lizeth was able to articulate how many squares the rows 
and columns of each figure would contain, evident when 
she discussed the number of squares in figure 20. 

It is noteworthy that the correspondence relationship 
Lizeth established in task 2 served as a mechanism that 
extended to construct arguments and structure her 
response to task 3, given that both tasks share a similar 
nature. As seen in the following interview excerpt, the 
correspondence rule established in task 2 remained 
applicable and reinforced her approach to relating the 
elements of the sequences presented in task 3: 

S: This is a sequence of cubes that multiplies the 
position by itself. For example: position 5, 5 times 
5 equals 25. 

R: And in this case? (points to figure 3). 

 
Figure 4. Counting as the basis of general recursion (Source: 
Authors’ own elaboration) 
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S: In position 3, there are 2 here, 3, 5, 6, 7, 8, 9, there 
are 9. So, 3 times 3 equals 9. 

The correspondence relationship Lizeth established 
in task 2 and task 3 was integral to her reasoning process, 
enabling her to determine the number of elements 
corresponding to figures based on their positions in the 
sequence. 

For task 4, Lizeth created a table of values and using 
the data from the first column determined the 
corresponding values for the second column by 
employing numerical calculations to divide 120 minutes 
among different values for the number of people (see 
Figure 5).  

In task 5, when Lizeth was asked to explain her 
answers, she relied on the graph to match the kilometer 
values with the fuel liter values (see Figure 6), so she 
drew lines with her pencil to mark the vertical 
displacements (kilometers) and their corresponding 
horizontal displacements (liters). Figure 6 shows the 
corresponding values in the graph. 

During the interview, Lizeth explains that for values 
less than 3 kilometers, values less than 1 liter of fuel 
correspond. In addition, she explains that for values 3, 6 
and 9 kilometers, 1, 2, and 3 liters correspond, 
respectively, as shown in the interview extract: 

S: For example, here it is less than 1 liter of fuel 
(points to notes made on the task chart), and at 3 
it starts with 1 liter of fuel; at 6 the same; at 9 
another. 

S: For every 3 kilometers travelled it is 1 liter of 
fuel. Here it is 1 liter, 6 it is another liter, and so 
on. 

When Lizeth uses numerical correspondence to relate 
the values of the two variables, in this case, kilometers 
and liters, where each amount of liters consumed by the 
truck corresponds to a number of kilometers traveled. By 
engaging in this form of relationship, Lizeth was able to 
establish the general rule to calculate the values for 
kilometers by multiplying the amount of liters by 3 (see 
part a and part b in Figure 7), that is, the student is 
thinking of a formula of the type f (x) = 3x. 

Pre-Coordination of Values  

In task 2 and task 3, sequences of figures were 
presented (see Figure 3 and Figure 4), and Lizeth was 
asked to explain whether there was any regularity or 
pattern. Her responses provide insights into her way of 
relating the variables through pre-coordination of 
values. For example, when asked about the pattern or 
regularity in the sequence, she stated: “when the 
position changes, the number of squares also changes” 
(task 2) and “when the position changes, the number of 
cubes changes” (task 3). 

Lizeth’s responses in these statements from task 2 
and task 3 indicate that she conceives of the variables 
changing asynchronously. That is, Lizeth understands 
that the position of the figures in the sequence changes 
first, and then the number of elements in each figure 
changes. 

Gross Coordination of Values  

In Lizeth’s responses for task 4, evidence was found 
that she managed to relate the quantities through gross 
coordination of values. When asked to explain her 
solution process, she stated: 

“I found that, for example, I don’t know, 2 is 
multiplied by 2 ... no, it is added, 2 plus 2 by itself 
gives 4. So, it is half, for example: if the time for 2 
people is 60 minutes, that of 4 is 30.” 

In this response, Lizeth sought to explain how the 
two variables are related. She understood that as the 
number of people increases, the time decreases: “it is 
multiplied, it is added” and “it is half.” 

This same way of relating the variables appeared 
again in Lizeth’s written response to part (b) of the task, 
which asked “How are these data related?” (see Figure 

8). 

 
Figure 5. Correspondence relationship in tables of values 
(Source: Authors’ own elaboration) 

 
Figure 6. Plot of corresponding values in the graph (Source: 
Authors’ own elaboration) 

 
Figure 7. Rule for calculating corresponding values (Source: 
Authors’ own elaboration) 
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In this answer, Lizeth reaffirms that as the number of 
people increases (first column), the time decreases 
(second column). The ideas expressed by Lizeth indicate 
that she was able to conceive of the inverse relationship 
between these variables - as the number of people 
increases, the amount of time decreases. In her example, 
she states that as the number of people increases from 3 
to 6, the time decreases from 40 to 20 minutes. This 
demonstrates that Lizeth understands how the two 
variables are related and that they vary inversely with 
respect to one another. 

DISCUSSION 

The results indicate the use of five ways of relating 
quantities: variable identification, general recursion, 
correspondence, pre-coordination of values, and gross 
coordination of values. 

Lizeth’s identification of variables was possible in all 
the proposed tasks. This is a fundamental skill in which 
it is possible to develop reasoning related to functional 
thinking. While the nature of variables in tasks has 
sometimes been taken for granted (Leinhardt et al., 
1990), this work suggests that it can be stimulated by 
presenting students with iconographic sequences 
(sequences of figures) that give them the opportunity to 
focus on the attributes of the figures, as suggested by 
Johnson (2023). In Lizeth’s case, the identification of 
variables in task 1 was possible when she compared the 
attributes of the figures: the coloring of the stars and the 
orientation of the arrows. 

Task 2 and task 3, consisting of sequences of squares 
and cubes, lent themselves to quantifying the elements 
and forming numerical sequences: 1, 4, 9, ...; 1, 4, 9, 16, ..., 
which could then be associated with the order or place 
they occupy in the sequence. Lizeth used a table of 
values in task 3 and labeled the figures in task 4. Here, 
the idea of variables associated with numbers (order and 
quantity) was evident, and Lizeth was able to analyze 
the sequence of figures and compare the antecedent 
elements with the subsequent ones. When Lizeth 
identified the variables in the situations, her attention 
was directed to establishing a relationship between these 
variables, which is associated with the idea of function 
as correspondence, considered the basis of functional 

thinking (Smith, 2017). In these tasks, the identification 
of the variables was necessarily linked to the 
correspondence relationship between them. 

Unlike the others, task 4 presented a contextual 
situation in written form and asked Lizeth to make a 
table and analyze how the data are related. When 
building the table, Lizeth had no difficulty using the 
variable “number of people” and assigning a 
progressive natural number (1, 2, 3, ..., 5). However, 
when determining the corresponding value in the other 
column (the time to complete the task), she found it 
necessary to resort to a pattern (dividing 120 minutes by 
the number of people) because the task required it. Task 
5 presented a Cartesian graph, and the evidence 
indicates that the extraction of the variables did not 
require much effort for Lizeth; she was able to identify 
and transfer them when organizing the table, placing the 
quantity in liters in one column and the corresponding 
number of kilometers in the other column. 

Three main characteristics are noted in the 
productions for task 4 and task 5. First, the use of 
sequences to denote changing elements or quantities, 
such as the number of people and time in task 4, and the 
number of liters and kilometers in task 5. Second, the 
need to relate the elements or quantities through 
correspondence. And third, the need to resort to a 
pattern to determine the values of the dependent 
variable. These results are similar to those reported by 
some researchers (e.g., Blanton et al., 2015; Brizuela et al., 
2015; Moss & McNab, 2011; Pittalis et al., 2020; Sfard, 
2012), suggesting that students in the last grades of 
primary school (3rd to 5th grade) can understand and 
take advantage of variables in the generalization 
process, as evidenced by Lizeth’s discovery and use of 
patterns to determine the value of the dependent 
variable. 

General recursion appeared in tasks 1, 2, 3, and 5. 
When Lizeth discovered the recursive pattern, her 
attention focused on identifying “what is repeated,” 
which enabled her to draw missing figures in the 
following positions of the sequences, as in the case of 
task 3 where she counted the elements and kept records 
to understand the behavior of the known terms. In task 
5, her attention was directed to the behavior of the graph, 
and she identified that each time the fuel increased by 
three liters, this pattern would continue for the rest of the 
points. These results are similar to those reported in 
other research (e.g., Blanton et al., 2015; Pittalis et al., 
2020; Stephens et al., 2017), which found that elementary 
school students exhibited recursive thinking when using 
contextual and pre-symbolic strategies that led them to 
establish generalization processes. 

Pittalis et al. (2020) suggest that recursion could help 
develop correspondence and covariational thinking, as 
students become aware of the structure in the patterns 
and generalize about it. The evidence in this research is 

 
Figure 8. Arguments supporting the gross coordination of 
values (Source: Authors’ own elaboration) 
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consistent with this statement regarding the 
correspondence relationship. In the results of tasks 1, 2, 
and 3, where sequences were presented, Lizeth 
identified the number of elements of the figures and their 
respective positions. This was not the case with the 
covariation relationships that appeared in task 4 and task 
5, as Lizeth did not focus on identifying the behavior of 
figural elements in relation to their position in the 
sequences. As other research has suggested (e.g., Blanton 
et al., 2015; Blanton & Kaput, 2004), the early 
development of covariation may depend on the 
opportunities provided to students to interact with 
contextual tasks and verbal statements, which can help 
them transcend figural and numerical sequences and 
favor the identification of behavioral patterns and, 
consequently, the general recursion relationship. 

Regarding correspondence, it appeared in all five 
tasks. In task 1, when Lizeth was asked about the 
appearance of some figures in the sequence, she 
performed numerical calculations (multiplication and 
addition) to construct her answers. In task 2 and task 3, 
her main action was to construct a rule that allowed her 
to correspond values, expressing that to know the 
number of elements in each figure, she had to multiply 
the position number by itself. For task 4 and task 5, she 
presented her rules for calculating and corresponding 
values (multiplying or dividing) in numerical form, thus 
relating to the variables involved and recording values 
in the second column of the tables she constructed. 
Similar to the study by Pinto et al. (2016), our results 
provide evidence that Lizeth used correspondence more 
frequently, although unlike the cited study, this 
relationship was not limited to working with figural 
sequences but was also extended to task 4 and task 5, 
which involved contextual approaches. 

When Lizeth expressed rules to calculate values of 
the variables, her answers seem to align with Confrey 
and Smith’s (1994) description of the correspondence 
relationship. According to these authors, the function 
correspondence approach is characterized by 
constructing a rule to relate the values of one variable 
with the values of the other variable, similar to what 
Lizeth expressed when working with quadratic growth 
sequences (task 2 and task 3). This contrasts with the 
findings of Stephens et al. (2017), who reported that third 
to fifth-grade students expressed correspondence rules 
symbolically first (using variables) and in words later. In 
Lizeth’s case, she first wrote her correspondence rule in 
words in her answers to task 2 and task 3, perhaps 
influenced by the task statements that explicitly required 
it. 

Regarding the covariation relationships, pre-
coordination of values and gross coordination of values 
(Thompson & Carlson, 2017), they were less frequently 
observed. Pre-coordination of values was present in task 
2 and task 3, where Lizeth expressed that when the 
position in the sequence changes, the number of 

elements in the figures also changes. In the case of gross 
coordination of values, it was observed in task 4, where 
Lizeth seemed to understand that as the number of 
people increases, the amount of time decreases. 

Unlike the findings of Panorkou and Maloney (2016), 
who reported that fifth-grade students developed skills 
to recognize and establish pairwise covariation 
relationships in numerical patterns, these forms of 
covariation relationships occurred less frequently in 
Lizeth’s case. The difficulties Lizeth showed in 
covariational reasoning may be explained by the 
proposal of Blanton et al. (2015) that this type of 
functional relationship represents more sophisticated 
forms of thinking. Additionally, as Pittalis et al. (2020) 
suggest, the development of the covariation relationship 
can be a multifaceted process. Before reaching gross 
coordination of values, Lizeth was engaged in the 
identification of variables, general recursion, and even 
establishing correspondence between the variables 
when organizing her value table in task 4. 

Pre-coordination of values and gross coordination of 
values appear as the most elementary levels in the 
covariational reasoning framework suggested by 
Thompson and Carlson (2017). In this research, these 
levels of reasoning helped characterize two early ways 
of relating quantities. Based on the observations of 
Lizeth’s responses in task 4, it seems that gross 
coordination of values can be favored through 
contextual problem-solving tasks. Although task 4 was 
posed in the discrete domain and may have limitations 
for transitioning from coarse images of change to smooth 
images of change (Castillo-Garsow, 2012), we consider 
that for elementary students, contextual tasks (Panorkou 
& Maloney, 2016) may be more relatable to their 
classroom experiences and can be useful for 
conceptualizing functional thinking in young students 
(Pittalis et al., 2020). 

CONCLUSIONS 

As reported in the literature, tasks that ask students 
to deduce patterns are traditionally used at the preschool 
and primary school levels, mainly contributing to the 
development of general recursion as a way of relating 
quantities (Pittalis et al., 2020). Although recursive 
patterns favor generalization processes and could help 
develop correspondence and covariation relationships, 
we consider the need to work with tasks specifically 
designed to promote covariation relationships and 
support students in conceptualizing jointly varying 
variables, which, according to Johnson (2023), represents 
a fundamental mathematical idea that should not be 
reduced to formal definitions. 

The objective of reporting the five ways of relating to 
quantities exhibited by Lizeth has both practical and 
theoretical implications. Practically, it provides insights 
into the characteristics of tasks that helped Lizeth 
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develop each form of relationship. Theoretically, it 
contributes to characterizing the five early ways of 
relating quantities, which can serve as a basis for further 
investigations on the functional thinking of elementary 
school students. Based on the experience gained in this 
research, we join Johnson’s (2023) call that before 
addressing the formal study of different types of 
functions, it is necessary to focus the work with students 
on the relationships between attributes or quantities that 
change simultaneously. 
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