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In teaching geometry, most instructors opt for direct demonstration with detailed 
explanations; however, under this kind of instruction students face considerable 
difficulties in the development of the reasoning skills required to deal with problems of 
a geometric nature. This study adopted a nonequivalent pretest-postest quasi-
experimental design employing Polya’s approach of four-stage problem solving using 
question prompts in conjunction with multimedia demonstration. Two classes of grade 7 
students were randomly selected as the experimental group receiving instruction based 
on Polya questioning and two others were selected as the control group receiving 
instruction based on direct presentation. Our results revealed that the posttest 
performance in geometry reasoning of students receiving instruction based on Polya 
questioning was superior to that of students receiving direct presentation. In addition, 
students receiving instruction based on Polya questioning expressed a stronger sense of 
participation in the course than did students receiving direct presentation.    

Keywords: geometry reasoning, problem solving, questioning, multimedia learning, 
course feeling  

INTRODUCTION 

Geometry instruction and multimedia learning 

More than two thousand years ago, the King of Egypt asked Euclid: “Could you 
make geometry easier to learn?” To this day, this remains a common question 
among teachers and students throughout the world. The study of geometry is among 
the most challenging subjects in the field of mathematics. In November 2003, the 
Ministry of Education in Taiwan outlined a mathematical field guide for the 
curriculum of grades 1-9, dividing the content of mathematical learning into the 
following: numbers and quantity, connections, algebra, statistics and probability, 
and geometry. Within the field of geometry, the focus is on plane geometry (Ministry 
of Education, 2003). A huge difference exists in the instruction methods used to 
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develop reasoning skills required for plane 
geometry in junior high school and the 
experimental manipulation and intuition employed 
in elementary schools. Many students find it 
difficult to progress beyond the stage of “seeing is 
believing” due to obstacles in using more formal 
reasoning skills (Duval, 2006). Helping students to 
apply reasoning skills to problems of geometry 
requires that instructors develop the means to 
enhance the effectiveness of geometry instruction. 

Numerous studies have demonstrated the 
effectiveness of visual thinking in geometry 
instruction. Fuys and Geddes (1984) found that 
most students usually begin with visual thinking 
when learning new concepts of geometry. Hoffer 
(1977) claimed that a significant interaction exists 
between the learning of geometry concepts and 
improvements in visual perception, and therefore 
enhancing visual perception can facilitate the 
learning of geometry concepts. Computer-
generated images can stimulate visualization, 
making it a beneficial tool for instruction (Bishop, 
1989). Clements and Battista (1992) also 
recommended the adoption of computer 
simulations to assist in learning geometry. Many 
studies have demonstrated that multimedia 
presentations can improve the learning 
performance of students beyond what are possible 
using traditional methods (Liao, 2007). The 
appropriate use of multimedia can create scenarios 
in which students are prompted to manipulate 
geometric figures, thereby promoting the 
development of mental imagery to function as a 
scaffold for the learning and development of 
geometry concepts (Yuan, Lee & Huang, 2007). 

Inappropriate teaching methods using 
multimedia or electronic materials can cause perceptual overload resulting in a 
failure to grasp course content. Courses should be based upon the theoretical 
principles associated with multimedia learning to maximize learning effectiveness 
(Mayer, 2009). Mayer pointed out that a good multimedia-assisted learning system 
can help learners to develop three important forms of information processing: (1) 
Selection: Learners select text or images to establish a database of text memory and 
image memory. (2) Organization: During the processing of information, learners 
organize text and images in their short-term memory into a coherent entity referred 
to as a “situational model”, either verbal or pictorial. (3) Integration: Verbal and 
pictorial situational models are then linked with prior knowledge stored in the long-
term memory. This overall process is outlined in Fig. 1.  

According to multimedia learning theory, employing two discrete information 
processing units during information reception can help to improve learning 
performance. Both types of working memory are limited in their capacity; however, 
multimedia systems can be used to leverage the working memory through the 
processes of selection, organization, and integration.  

State of the literature 

 Numerous studies have demonstrated the 
effectiveness of visual thinking in geometry 
instruction.In the process of problem solving 
when the problem solving steps which Polya 
suggested are carried out successfully and 
efficiently, the students’ problem solving skills 
and achievements improve significantly. 

 Questioning prompts have been proven an 
effective means of scaffolding the high-level 
thought processes of students in a range of 
disciplines. 

 Polya questioning instruction is a teacher-
centered method meant to prompt students to 
elucidate their problem-solving ideas as well 
as the graphical relationships observed in the 
lesson. 

Contribution of this paper to the literature 

 Conducting questioning prompts with the 
four stages of problem solving provides 
students with greater opportunity for 
reflection, which leaves them more time to 
focus on problem-solving activities. 

 Students receiving Polya questioning 
instruction had more opportunities to solve 
problems on their own and therefore 
demonstrated a stronger willingness to 
participate in the lessons. 

 This study presents a framework of Polya 
questioning instruction based on four stages 
of problem solving and the theory of 
questioning prompts, tailored specifically for 
the instruction of geometry reasoning. 
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The main stumbling block in the design of teaching materials is the limited 
capacity of working memory. Ill-conceived teaching materials, excessive complexity 
in explanations, and instruction delivered without motivation can all result in 
cognitive overload among learners (Mayer, 2009). To avoid these issues, Mayer 
proposed twelve design principles for multimedia instruction. Course design can be 
facilitated by adhering to the principles of coherence, signaling, redundancy, spatial 
contiguity, and temporal contiguity. Complexity can be dealt with by adhering to the 
principles of segmenting, pre-training, and modality. Finally, motivation can be 
enhanced by incorporating multimedia, personalizing lessons, employing voice 
control, and providing images. 

This study adopted the principles of multimedia learning (Mayer, 2009) in the 
design of instructional materials. We also employed the AMA (Activate Mind 
Attention) presentation system to facilitate the assessment of important information 
by students. The AMA presentation system is outlined in the following paragraph.  

Introduction of AMA 

AMA (Activate Mind Attention) is a well-known software program commonly 
used in mathematics instruction. It provides an environment for media design and 
demonstration developed on the PowerPoint platform (Chen 2008; Lee & Chen, in 
press). It can be downloaded for free at the following website: 
http://ama.nctu.edu.tw/index.php. The core functions of this software include 
structural cloning method (SCM) and trigger-based animation (TA). SCM was 
originally developed to overcome the problem of positioning during the design of 
teaching materials; however, it can also be used for the creation of figures, including 
landscapes, complex symmetrical compositions, and light spot series. TA uses 
objects as buttons to control a range of dynamic animations. TA can help the 
presenter to demonstrate digital content, hold the attention of the audience, guide 
cognitive processes in observers, and reduce cognitive load. A number of features 
can be demonstrated in teaching materials based on TA: (1) Triggering attention: 
triggering buttons can be used to highlight primary information and eliminate 
extraneous information. (2) Segmentation: TA allows the segmentation of teaching 
materials in accordance with information capacity and the relationship between 
previous messages and those to come. (3) Combination: Segmented messages can be 
grouped or ungrouped using a range of triggers. Messages can be included in 
different groups, which are controlled by different triggers. The main objective is to 
guide the learning experience and reduce cognitive load. (4) Flexible triggering: 
Messages can be triggered in a preset sequence, a selected sequence, or randomly. 
(5) Flow: The speed with which information is presented is controlled entirely by 
the presenter. (6) Interactivity: Instructors and students can interact through the 

Figure 1. Cognitive model of multimedia learning 
Source of data: modified from Multimedia Learning (2nd ed.) (p.61), by R. E. Mayer, 2009, New York: Cambridge University Press. 
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presentation of teaching materials. (7) Adaptive teaching: The presenter controls 
the content as well as the sequence of the information presented, in accordance with 
the progress of the lesson.   

AMA does not require coding knowledge, making it easy for anyone to use in the 
creation and presentation of sophisticated teaching materials. 

Mathematics problem solving and learning by questioning prompts 

Teaching strategies are another important factor affecting learning performance 
(Lee & Chen, 2008; Lee & Chen, 2009). Problem-solving strategies make up a large 
proportion of the studies on mathematics and science education (Crippen & Earl, 
2007; Mayer, 1992). Dufresne, Gerace and Leonard (1997) modeled problem-
solving processes according to three types of knowledge: (1) conceptual knowledge, 
(2) operational or procedural knowledge, and (3) problem-state knowledge. In this 
model, the conceptual knowledge of experts is gathered and arranged hierarchically 
to form a strong bilateral link with the other two types of knowledge. Conceptual 
knowledge is generally difficult for novice learners to grasp, as evidenced by the fact 
that learners tend to arrange it chronologically, resulting in linkages with the two 
other kinds of knowledge in a weak, misconstrued, or uni-lateral manner. 

Schoenfeld (1992) proposed a number of factors that influence the problem-
solving ability of students. The resulting framework provides four components used 
to explain the important aspects of problem solving: (1) Resources: facts, 
definitions, procedures, rules, and intuitive understanding; (2) Heuristics: problem-
solving strategies and techniques; (3) Control: the methods used to monitor one’s 
own problem-solving processes. Likewise, one may observe partial results to 
determine the next step in the problem-solving sequence, thereby making use of the 
available resources and strategies; (4) Beliefs: beliefs regarding the nature of 
mathematics and mathematics-related tasks. Garofalo and Lester (1985) confirmed 
the existence of four stages in the problem-solving process and explained the 
metacognitive behaviors involved in performing mathematical tasks, including 
orientation, organization, execution, and verification. These are quite similar to the 
four problem-solving steps introduced by Polya (1957): (1) Understanding the 
problem; (2) Developing a plan; (3) Executing the plan; (4) Examination and review.  

In the process of problem solving when the problem solving steps which Polya 
suggested are carried out successfully and efficiently, the students’ problem solving 
skills and achievements improve significantly. For example, Karatas and Baki (2013) 
created a problem solving based learning environment to enhance students’ 
problem skills according to Polya’s problem solving phases. While experimental 
group students received problem solving based learning environment, control group 
students have continued their present program. The findings illustrated that the 
experimental group students’ success in problem solving activities has increased 
while the control group students’ success has not change significantly. Chang, Sung, 
and Lin (2006) proposed a computer-assisted system named MathCAL, the design of 
which was based on the Polya’s four problem solving steps. 130 fifth-grade students 
completed a range of elementary school mathematical problems. The results 
showed that MathCAL was effective in improving the performance of students with 
lower problem solving ability.  

Huang, Liu, and Chang (2012) also developed a computer-assisted mathematical 
problem solving system in the form of an online instruction website designed 
according to Polya’s problem solving stages. This system was used to help low-
achieving second- and third-graders in mathematics with word-based addition and 
substraction questions in Taiwan. The results indicated that the computer-assisted 
mathematical problem solving system can serve effectively as a tool for teachers 
engaged in remedial education. Therefore, our study combined Polya’s four 
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problem-solving steps with questioning by the instructor to guide students through 
the process of geometric reasoning and then examined learning performance. 

Problem solving requires that students execute high-level reasoning skills in 
conjunction with intensive learning support, such as demonstration, modeling, and 
scaffolding (Johnassen, 1997, 1999). Questioning prompts have been proven an 
effective means of scaffolding the high-level thought processes of students in a range 
of disciplines (Scardamalia, Bereiter, McLean, Swallow & Woodruff, 1989; 
Scardamalia, Bereiter & Steinbach, 1984). These prompts also encourage students to 
engage in self-explanation (Chi, Lewis, Peimann & Glaser, 1989), self-questioning 
(King, 1991, 1992), and self-monitoring and self-reflection (Lin, 2001). These 
activities can help learners refine their thinking, make inferences, and most 
importantly, monitor and assess their own learning processes (Lin, Hmelo, Kinzer & 
Secules, 1999). Questioning prompts include procedural prompts, elaboration 
prompts, and reflection prompts. Different types of prompts are suitable for 
different cognitive and metacognitive purposes, such as writing (Scardamalia, 
Bereiter & Steinbach, 1984) or problem solving (King, 1991). Procedural prompts 
have been successfully used to help learners learn cognitive strategies in specific 
fields (Rosenshine, Meister & Chapman, 1996). Elaboration prompts remind 
learners to express their thoughts clearly through explanations. Reflection prompts 
encourage reflection at the level of metacognition to cover some situations that 
students often ignore (Davis & Linn, 2000). 

It is crucial that geometry teachers learn how to provide hints through 
questioning prompts, in order to guide the thought processes of students and to help 
them build knowledge-linking connections by themselves. This study combined the 
four stages of problem solving with questioning prompts as a framework from 
which to develop the reasoning required to solve geometry-related problems, as 
outlined in Appandix 1.  

Polya questioning instruction is a teacher-centered method meant to prompt 
students to elucidate their problem-solving ideas as well as the graphical 
relationships observed in the lesson. The process of verbal guidance can enhance 
learning motivation and activate thinking, leading to the development of stronger 
conceptual links and deeper understanding. In this study, the process of guiding 
students included the following: (1) providing motivation, understanding the 
question, understanding the requirements to deal with this question, understanding 
the graphic relationships, discovering the correlation between figures; (2) 
segmenting the questions, carefully exploring the information, and emphasizing the 
linkage in information.  

The purpose of this paper  

Based on aforementioned motivation and background, the main questions in this 
study are as follows:  

1. Is there an interaction between teaching strategy (Polya questioning 
instruction vs. direct presentation instruction) and prior knowledge (high vs. 
low) as evidenced by performance in learning geometry concepts?  

2. Is there an interaction between teaching strategy (Polya questioning 
instruction vs. direct presentation instruction) and prior knowledge (high vs. 
low) manifested in evaluation of the geometry course by students?  

METHODOLOGY 

Procedure 

This study adopted a non-equivalent group pretest and posttest experimental 
design. Teaching materials suitable for the teaching of geometry teaching were 
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designed using presentation software in combination with AMA. A two-way factorial 
design was adopted to investigate the impact of Polya questioning instruction versus 
direct presentation instruction as well as prior knowledge (high vs. low) on the 
effectiveness, delayed effectiveness, and opinions of students regarding the course.  

Pretests were administered to all students at the beginning of the teaching 
experiment. Polya questioning instruction was used with the experimental group 
and direct presentation instruction was used with the control group. Following the 
completion of classes, both groups completed post-tests and questionnaires about 
the class. Participants in both groups filled out delayed post-tests one month later.  

Participants 

Convenience sampling was used in the selection of four grade 7 classes from a 
junior high school in Miaoli County, Taiwan. Two of the classes were randomly 
selected as the experimental group and the other two classes were designated the 
control group. An independent sample t-test was used to obtain the average score of 
three regular mathematic assessments in the first semester as well as the pretest 
scores of both groups. The results showed no significant difference in scores 
between the experimental and control groups. These two groups are therefore 
deemed to have equivalent prior knowledge of mathematics.  

To understand the impact of prior knowledge on teaching strategy, the research 
participants were categorized into a group with high prior knowledge (scores in the 
top 50%) and low prior knowledge (scores in the bottom 50%), according to the 
mean of average scores of the three regular assessments. 

Instruments 

Teaching materials 

This study developed the teaching materials used in the experiment using 
PowerPoint 2003 with AMA plug-ins. The design of the curriculum was meant to 
address misconceptions of students as well as their possible responses. This enabled 
the instructor to adjust the content dynamically according to the reaction and 
answers of students during the courses. The aspects of geometric reasoning targeted 
in this experiment included the following: (1) understanding and defining points, 
lines, and angles in geometric figures, (2) understanding the basic properties of 
angles, (3) solving problems involving the summing of interior angles, the summing 
of exterior angles, and the theorem of polygons, and (4) compiling geometric 
properties as a basic step in geometric reasoning.  

The scope of the course was the same for both groups; however, there was a 
slight difference in the teaching strategies, as shown in the Appendix 2. The teaching 
materials used in both groups were designed in accordance with the principles of 
multimedia learning. In addition, three senior mathematic teachers and two experts 
in mathematic education provided suggestions for modification. Pre-courses were 
conducted with 51 students in two grade 7 classes in the same school as the 
participants in the experiment, and reactions to the course were collected as the 
basis for modification and adjustment of teaching materials.  

Geometry reasoning pretest 

The purpose of this test was to gauge the knowledge of students prior to the 
experiment. Because the research participants were students in grade 7, the 
influences of pre-class tutoring or pre-learning was minimized. A Cronbach α of 
0.879 verified the internal consistency among question items. The test was also 
reviewed and corrected by two professors in relevant fields and three senior 
mathematic teachers in junior high schools, thereby ensuring good expert content 
validity. 
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Learning achievement test  

The purpose of this test was to gauge the knowledge of students after the 
experiment. The same achievement test was used for both the posttest and delayed 
posttest, conducted one month after the implementation of posttest. The total score 
of this test was 55, divided into two sections: 5 calculation questions worth five 
points each and five reasoning questions worth 6 points each. The reliability 
coefficient of the test was 0.916, indicating good internal reliability. In addition, four 
mathematics instructors with over 10 years of teaching experience and two 
members of the mathematics counseling group of Miaoli County attested to the 
validity of the test. The difficulty coefficients of this test fell between 0.44 and 0.55, 
and the discrimination coefficients were between 0.73 and 0.99, both therefore in 
compliance with the standard.  

Course evaluation questionaire 

Following the completion of the course, a questionaire was administered to 
gauge the impression of participants regarding the course content and learning 
process. This study modified the scale developed by Tai-Yee Zhuo et al. (2011). The 
reliability coffecient of this questionaire was 0.79, which falls within the standardly 
acceptable range. The five dimensions of this questionaire included participation 
willingness, degree of difficulty, mental effort, degree of understanding, and invested 
effort. 

Data Analysis 

Two-way factorial analysis of covariance was adopted to analyze the interaction 
between prior knowledge and teaching strategy on posttest performance, delayed 
posttest performance, and impressions of the course using the pretest score as the 
covariance, prior knowledge (high vs. low) and teaching strategy (Polya questioning 
instruction vs. direct presentation instruction) as independent variables, and 
posttest scores, delayed posttest, and course evaluation as dependent variables. One 
important assumption for the ANCOVA was checked before the analysis proceeded. 
The test for homogeneity of regression coefficients of the covariate for different 
levels of prior knowledge and types of teaching strategy was not significant. 
Therefore, it would be appropriate to conduct the two-way analysis of covariance. If 
the interaction between prior knowledge and teaching strategy is significant, then 
the simple main effects should be examined for both prior knowledge and teaching 
strategy. If not, then the main effects for each factor (prior knowledge and teaching 
strategy) would be conducted respectively. 

RESULTS  

Analysis on learning achievements 

Posttest analysis 

As shown in Table 1, the adjusted mean (31.74) of the posttest performance in 
geometric reasoning following Polya questioning instrtuction was higher than that 
of direct presentation instruction (M=21.43). The adjusted mean (35.85) posttest 
performance of the group with high prior knowledge was higher than that of the 
group with low prior knowledge (M=16.57). 
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The tests for homogeneity in the regression coefficients of the covariate for 
different teaching strategies and levels of prior knowledge were not significant 
(F=1.706, p=.194), suggesting that a common regression coefficient was appropriate 
for the covariance portion of the analysis. After excluding the impact of the pretest, 
the interaction between the posttest performances using different teaching 
strategies and prior knowledge of geometry reasoning did not reach significance 
(F=.157, p=.692). By observing the main effect of each factor, the main effect of 
teaching strategy reached significance (F=22.539, p<.001, η2=.165), indicating that 
the posttest performance following Poyla questioning instruction was superior to 
direct presentation instruction. The main effect of prior knowledge also reached 
signficance (F=4.265, p=.041, η2=.036), indicating that the posttest performance of 
students with high prior knowledge was better than that of students with low prior 
knowledge. 

Analysis of delayed posttest 

As shown in Table 2, the adjusted mean (25.14) of the delayed posttest 
performance following Polya questioning instruction was higher than that of direct 
presentation instruction (M=15.56), and the adjusted mean (30.10) of posttest 
performance of the group with high prior knowledge was higher than that of the 
group with low prior knowledge (M=9.84). 

Tests for homogeneity in the regression coefficients of the covariate for different 
teaching strategies and levels of prior knowledge were not significant (F=3.762, 

Table 1. Summary of adjusted means of posttest performance according to teaching strategies and prior 
knowledge 

         Teaching strategy 
 
Prior knowledge 

Polya questioning Direct presentation Sum 
(58) (61) (119) 

High level (61)        (M) 41.14 31.06 35.85 

                     (SD) 12.4552 16.473 15.437 

                     (N) 29 32 61 

Low level (58)        (M) 22.34 10.79 16.57 

                     (SD) 16.821 12.653 15.861 

                     (N) 29 29 58 

Sum (119)           (M) 31.74 21.43 26.45 

                     (SD) 17.464 17.863 18.341 

                     (N) 58 61 119 

 

Table 2. Summary of adjusted means of posttest performance with prior knowledge and teaching 
strategy 

       Teaching strategy 
 
Prior knowledge 

Polya questioning Direct presentation Sum 
(58) (61) (119) 

High level (61)        (M) 38.03 22.91 30.10 

                  (SD) 12.571 15.350 15.922 

                   (N) 29 32 61 

Low level (58)        (M) 12.24 7.45 9.84 

                  (SD) 13.848 12.443 13.270 

                   (N) 29 29 58 

Sum (119)            (M) 25.14 15.56 20.23 

                   (SD) 18.468 15.956 17.814 

                   (N) 58 61 119 
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p=.055), suggesting that a common regression coefficient was appropriate for the 
covariance portion of the analysis. After excluding the impact of the pretest, no 
significant interaction was observed in the delayed posttest performance between 
different teaching strategies or prior knowledge (F=6.814, p=.010, η2=.056). 
Therefore, the simple main effects were tested for each factor.  

As shown in Table 3, among students with high prior knowledge, the delayed test 
performance of students receiving Polya questioning instruction (M=38.03) was 
superior to that of students receiving direct presentation instruction (M=22.91). 
However, among students with low prior knowledge, no significant difference was 
observed in delayed test performance between students receiving Polya questioning 
instruction (M=12.24) and those receiving direct presentation instruction (M=7.45). 

Among students who received Poyla questioning instruction, those with high 
prior knowledge (M=38.03) had better delayed test performance than did those 
with low prior knowledge (M=12.24). However, among students who received direct 
presentation instruction, no significant difference was observed in the delayed test 
performances between students with high prior knowledge (M=22.91) and those 
with low prior knowledge (M=7.45). 

Analysis of course evaluation questionnaire 

The two-way factorial analysis of covariance was conducted using the pretest as 
the covariance, teaching strategy and prior knowledge as independent variables, and 
course evaluation as dependent variables. After excluding the impact of the pretest, 
the interactions between teaching strategy and prior knowledge did not reach 
significance in any of the dimensions of course evaluation (participation willingness 
F=.211, p=.647, degree of difficulty F=.021, p=.885, mental effort F=.040, p=.842, 
degree of understanding F=1.333, p=.251, and invested effort F=.120, p=.730). By 
observing the main effects of each factor, it was found that teaching strategy only 
reached significance with its main effect on participation willingness (F=10.472, 
p=.002), indicating that students who received Polya questioning instruction 
(M=5.47) were more willing to participate than those who received direct 
presentation instruction (M=4.51). Prior knowledge only reached significance with 
its main effect on degree of understanding (F=4.721, p=.032), indicating that 
students with high prior knowledge (M=5.57) had a better understanding of the 
material than did those with low prior knowledge (M=4.31). 

DISCUSSION AND CONCLUSIONS  

The purpose of this study was to evaluate the effectiveness of Polya questioning 
instruction and prior knowledge on posttests, delayed posttests, and students’ 
impressions of the course in geometry reasoning. Students who received Polya 

Table 3. Summary of two-way factorial analysis of covariance of prior knowledge and teaching strategy 
with respect to simple main effects of the delayed posttest  

Source of variance SS df MS F Sig Posterior comparison 

Prior knowledge       

with high prior knowledge 2968.290 1 2968.290 25.082 .000 Polya questioning＞Direct 
presentation 

with low prior knowledge 231.168 1 231.168 2.129 .150 Polya questioning＝Direct 
presentation 

Teaching strategy       

with Polya questioning instruction 2131.701 1 2131.701 17.175 .000 High prior knowledge > 
low prior knowledge 

with direct presentation instruction 12.109 1 12.109 .119 .732 High prior knowledge = 
low prior knowledge 
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questioning instruction outperformed those who received direct presentation 
instruction, indicating that conducting questioning prompts with the four stages of 
problem solving provides students with greater opportunity for reflection (Lee & 
Chen, 2009), which leaves them more time to focus on problem-solving activities. In 
this manner, Polya questioning instruction provides an effective learning scaffold for 
the instruction of geometry. Students with high prior knowledge outperformed 
those with low prior knowledge in the posttest, indicating that teachers should 
consider prior knowledge in the design of teaching activities in geometry courses.  

Among students with high prior knowledge, those who received Polya 
questioning instruction outperformed those who received direct presentation 
instruction in the delayed posttest; however, a significant difference was not 
observed among students with low prior knowledge. One reason may be that 
students with high prior knowledge have richer links with regard to mathematical 
knowledge, which causes them to receive more questioning prompts during Polya 
questioning instruction, compared to students receiving direct presentation 
instruction. Questioning prompts help students with high prior knowledge to extract 
more problem-solving clues for integration and reasoning skills. A lack of links in the 
mathematical knowledge of students with low prior knowledge prevents the 
integration of reasoning skills, even upon receipt of questioning prompts. As a 
result, no significant difference was observed between these two teaching strategies 
with regard to the delayed effects of instruction to promote geometry reasoning. 

Among students receiving Polya questioning instruction, those with high prior 
knowledge outperformed those with low prior knowledge in the delayed posttest. 
However, among students who received direct presentation instruction, no 
significant difference was observed between students with high and low prior 
knowledge in the performances on the delayed posttest. It is possible that the hints 
provided by Polya questioning instruction helped the students with high prior 
knowledge to connect with this knowledge, thereby enhancing the delayed effects of 
instruction. Direct presentation instruction provides explanations, largely 
disregarding the process of reflection. Therefore, even students with high prior 
knowledge and more developed mathematical knowledge links; they did not have 
the chance to receive teachers’ questioning prompts.  

Students receiving Polya questioning instruction had more opportunities to solve 
problems on their own and therefore demonstrated a stronger willingness to 
participate in the lessons. This also helped those with high prior knowledge to 
develop their understanding more effectively than did those with low prior 
knowledge. Another reason may be that students with high prior knowledge are 
more confident in mathematic problem solving.  

The results of this study have two important implications with respect to 
instructional design: (1) Polya questioning instruction improved posttest 
performance and enhanced participation willingness beyond that of direct 
presentation instruction. This supports the contention that the questioning prompt 
approach should be integrated into teaching design to guide the independent 
thinking of students as well as the active processing of information from 
understanding the problem, developing and executing a strategy, to examination 
and review. (2) The similarity in the performance of students with low prior 
knowledge, regardless of the instruction method employed, may simply be due to 
the small sample size in this experiment. Students with low prior knowledge should 
be provided other teaching strategies, such as scaffolding, dynamic software, and 
cooperative learning to prepare students for the challenges of integrating new 
information and developing reasoning skills.  

This study presents a framework of Polya questioning instruction based on four 
stages of problem solving and the theory of questioning prompts, tailored 
specifically for the instruction of geometry reasoning. In future research Polya 
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questioning instruction could be applied to other topics of mathematics education 
(such as algebra and probability) or other fields (such as physics and chemistry) to 
verify its effectiveness. In addition, the impacts of the individual difference of 
students (such as learning style) or other teaching strategies (such as peer 
assessment and concept mapping) on the learning performance of Polya questioning 
instruction could also be taken into consideration.  
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Appendix 1 

Framework of Poyla Questioning Instruction 
Problem solving stage Questioning prompt 
Understanding the problem Recognizing the problem from a description and then isolating key elements.  

1. What is the unknown quantity? What are the known data?  
2. What are the conditions? Is it possible to meet all conditions? Are there 

adequate unknown quantities and conditions?  
3. Draw a diagram to introduce the proper unknown quantity.  
4. Write down all parts of conditions.  

Developing the plan Motivating students requires that problem solving ideas, hints, questioning 
prompts and suggestions be kept simple, unobtrusive, and generalizable. In this 
manner, students will feel that they have discovered the solutions by 
themselves.  
1. Have you seen it before? Have you seen this question in a slightly different 

form? 
2. Do you know any problems related to this? Do you know any theory which 

could be useful in solving this?  
3. Try to think of a familiar situation related to the problem you want to solve. 
4. You have solved another problem related to this one; can you make use of it? 

Can you make use of the result? Should you introduce auxiliary elements in 
order to make use of it?  

5. Can you re-describe this problem? Can you re-describe this problem using 
different methods?  

6. Can you think of a related question which is easier to process? Can it be a 
more general question, a more specific question, or an analog question?  

Executing the plan Implementing the problem-solving plan derived in the previous step, writing 
down every step of the plan, and carefully examining the correctness of these 
steps.  
1. Are you sure that this step is correct?  
2. Can you prove that this step is correct?  

Examining and reviewing Examining the argumentation of final solution, and considering the possibility 
for other arguments.  
1. Can you verify this result?  
2. Can you verify this argument? 
3. Could you derive this result by different methods? 
4. Could you figure it out immediately?  
5. Could you apply this result or method to other questions?  
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Appendix 2 
 
Overview of comparison between the teaching materials and teaching strategies for the 
experimental and control groups – taking the explanation of sum of exterior angles theory as 
an example. 

Experimental group (Polya questioning instruction) Control group (direct presentation instruction) 
 

 
Stages of understanding the problem 
Given this triangle ABC, the angle between the extended 
side AB and the other side is called∠1. What is the 
relationship between ∠1 and the two interior angles 
∠B∠C? 
We are asked to explain ∠1=∠B+∠C using this problem. 
The blue angle is on the outside, while the red angles are 
on the inside. These two sets of angles are very different; 
however, the sum of red angles is actually equal to that of 
the blue angles. Is there any bridge for establishing the 
correlation between them? What is this bridge?  
What kind of usefule relationship can be found in this 
figure?  

We are asked to explain ∠1=∠B+∠C using this problem. 
This means that the exterior blue angle is equal to the 
sum of two interior red angles. How can we solve this 
problem?  
 

  
Stages of plan development 

We just said that the bridge is∠2, and then…? 
We write down this relationship on the right side as “flat 
angle”. What’s next? 

To explain this problem, we will first look at the top half 
of this figure. We need help from this angle (the blue arc 
of ∠2 as shown in the figure). We name this angle ∠2. 

We write down this relationship on the right side with the 
reason that the sum of the interior angles of a triangle 
equals 180°. 
 
 

We just learned that, with placing ∠1 and ∠2 next to each 
other to form a straight line will add up to 180° (as shown 
in the figure), which means ∠1 plus ∠2 equals 180°. We 
write this down on the right side with the reason “flat 
angle”.  
Next, look at the red triangle. We just learned that the 
sum of these three interior angles∠2, ∠B, ∠C equals 180° 
(as shown in the figure). We also write this down on the 
right side such that ∠2 plus ∠B plus ∠C equals to 180°. 
The reason is that the sum of the interior angles of a 
triangle equals 180°. 

 
 
 
 

Please explain  Please explain  

flat angle flat angle 

sum of interior 

angles180∘ 

sum of interior 

angles180∘ 

Please explain  
Please explain  
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The stage of plan execution 

Next, we will attempt to find the relationship between 
the two equations on the right side.  
Both of the two yellow bars represent 180, such that 
they are equal to each other. 
By looking at the yellow equation and problem, how 
can we achieve the goal?  
In this way, we obtain ∠1=∠B+∠C, which we explain 
using the problem. We also eliminate ∠2 from the 
figure on the left side.  

Next, we see that the yellow bar in the first equation on the 
right side represents 180, and the yellow bar in the second 
equation also represents 180; therefore, they are equal. 
∠2 is found on left and right sides of the equal sign; 
therefore, we can eliminate it, in accordance with the axiom 
of equality in order to obtain∠1=∠B+∠C, which we explain 
using this problem.  
We also eliminate ∠2 from the figure on the left side. 

  
The stage of examination and review 

This is a triangle. We just learned that the blue angle on the 
outside equals the sum of the two interior angles farthest away 
from it, which means that it is equal to∠B+∠C. 
Is there only one angle outside the triangle?  
Can you imitate the previous problem and find another blue angle 
outside this triangle? How would you do this? What would this 
angle be equal to? 
If you were asked to explain it, what bridge would you use?  
 

This is a triangle. We just explained that the 
blue angle on the outside equals the sum of 
the two interior angles farthest away from it, 
which means that it is equal to∠B+∠C.  
However, there is more than one angle 
outside the triangle, so can imitate the 
previous problem. For example, we can 
extend the side BC toward the left to form 
this blue angle, which equals the sum of two 
interior angles farthest away from it, 
meaning that it will be equal to∠A+∠C. 
To explain how this blue angle is equal to 
∠A+∠C, you will need help from ∠B, as in the 
previous problem.  
Another example would be extending side 
BC toward the right to form this blue angle, 
which will equal to the sum of two interior 
angles farthest away from it. So what would 
this be equal to?  
If you are asked to explain why this blue 
angle is equal to ∠A+∠B, you will need the 
help from ∠C, as in the previous problem.  

 
 

flat angle flat angle 

sum of interior 

angles180∘ 

sum of interior 

angles180∘ 

Please explain  Please explain  


