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Spatial panel data models have been widely studied and applied in both scientific and 
social science disciplines, especially in the analysis of spatial influence. In this paper, we 
consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, 
which takes the nonlinear factors into account base on the spatial dynamic panel data 
models (SDPDM). Above all, we propose an iterative approach to estimate the spatial 
dynamic nonparametric Durbin model with corresponding hypothesis test and we find 
that convergence occurs since the second iteration. So we use a three stage iterative 
approach to improve the iterative approach. The results indicate that the three stage 
iterative approach is more reliable when T or N is large and the accuracy of the 
nonparametric components estimation is very important. We believe that the three 
stage iterative approach can be applied to other spatial dynamic nonparametric panel 
data models as well. 

Keywords: Spatial Dynamic Panel Models, Iterative Approach, Nonparametric, Panel 
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INTRODUCTION  

Spatial panel data models have been widely used in many fields of economics to 
analyze the spatial interactions of different units. Recently, the spatial dynamic 
panel data model (SDPDM) draw more and more attention among spatial panel data 
models as it enables researchers to take into account the dynamic influences as well 
as the control of unobservable heterogeneity across units (Elhorst 2012).  

In SDPDM study, Lee, Yu and other scholars make a lot of rigorous research on 
the estimate method for different spatial dynamic panel data models (e.g. the ML 
estimator (MLE) and the QML estimator (QMLE) and their asymptotic properties 
analysis for SDPDM with 

ixed effects (Yu et al. 2008; Lee and Yu 2010), the QMLE for unit root SDPDM 
with fixed effects(Yu and Lee 2010), the QMLE of SDPDM with time varying spatial 
weights matrices (Lee and Yu 2012), the QMLE for SDPDM with random effects 
(Parent and Lesage 2012), GMME for SDPDM (Cleveland 1979). At the same time, 

Correspondence: Ridong Hu,  
College of Economics and Finance, Huaqiao University, Quanzhou City, Fujian Province, 
CHINA 
E-mail: j_rdhu@hqu.edu.cn 
doi: 10.12973/eurasia.2016.1439a 



M.-H. Qian et. al 

808 © 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 807-819   
 

  
 

due to the statistic feature and application prospect of 
SDPDM, many researchers look SDPDM as a powerful 
research tool. For example, Parent and LeSage (2010) 
apply SDPDM with random effects to analyze the 
relationship between highway capacity and travel 
demand, Yu and Lee apply SDPDM in spatial 
cointegration and convergence study (Yu et al. 2012; 
Yu and Lee 2012), Hong and  

Sun (2011) apply SDPDM to study the relationship 
between FDI and TFP in China, Zheng et al. (2013) 
apply SDPDM in central government’s infrastructure 
investment study, and Baltagi et al. (2014) find the 
important application to new economic geography by 
forecasting with SDPDM.  

However, all these studies are based on linear 
hypothesis, which means they focus on the linear 
relationships between endogenous variable and 
exogenous variables in these spatial panel data 
models. In practice, the true relationships between 
endogenous variable and exogenous variables are 
very complicated, which maybe contain not only 
simple linear relationships but also nonlinear 
relationships. Moreover, the traditional estimate 
method will fail and the estimators will be unreliable 
if we still estimate these spatial panel data models 
with nonlinear relationships under linear hypothesis. 
In order to deal with this problem, we choose an 
iterative approach which takes the spirit of the profile 
likelihood approach (Severini and Wong (1992). We 
separate the explanatory variables into two parts, 
linear components and nonparametric components, 
and then estimate them separately through an 
iterative process until convergence occurs. In this 
paper, we focus on one kind of the spatial dynamic 
panel data model, the spatial dynamic nonparametric 
Durbin model (Anselin 1988), which originally developed by Durbin (1960) in the 
context of time series analysis. The rest of the paper is organized as follows. Section 
2 provides the model specification and the suggested estimation procedures. We 
begin with the spatial dynamic nonparametric Durbin model with dynamic effects, 
endogenous interaction effects, exogenous interaction effects and fixed time effects. 
Then we introduce the iterative approach based on the integration of maximum 
likelihood estimation and the partially linear model estimation. In Section 3, we 
propose two hypothesis tests for the nonparametric function and the linear spatial 
regression parameters separately base on their asymptotic properties. Section 4 
discusses Monte Carlo experiments that we conduct and we propose a three stage 
iterative approach to reduce the computational burden of the iterative approach. 
Section 5 concludes the article with a brief discussion.  

 
 
 
 
 

State of the literature 

• Combine the spatial dynamic panel data 
model with nonparametric econometrics and 
include non-linear factors in the spatial 
dynamic panel data model to establish a 
spatial dynamic nonparametric panel data 
model.  

• Study the estimation and test of the spatial 
dynamic nonparametric panel data model, 
expecting to acquire the conclusion with both 
theoretical meanings and application value.  

• Precede scientific evaluation and 
improvement with Monte Carlo Method for 
the estimation and test of the spatial dynamic 
nonparametric panel data model. 

Contribution of this paper to the literature 

• Theoretically, the advantages of integrating 
spatial econometrics and nonparametric 
econometrics are integrated to expand the 
separate research fields and application 
domains.  

• Non-linear relationship is included in the 
research field of the spatial dynamic panel 
data model in order to examine the non-
linear effects between different spatial units. 

• The logic sequence of traditional methods is 
changed to put non-linear effects in the first 
place when estimating and applying the 
spatial dynamic panel data model so as to 
reduce the effect of model specification 
errors. 
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THEORY AND METHODOLOGY 

The Spatial Dynamic Nonparametric Durbin Model with Fixed Effects 

In this paper, we consider a spatial dynamic nonparametric Durbin model with 
the dynamic effects, the endogenous interaction effects, the exogenous interaction 
effects and the fixed effects, which takes the form 

1 1 ( )t t n t t t t t ty Wy l ry Wy x Wx M                   (1) 

Where ty  denotes N-dimensional vector of the dependent variable for all 

individuals in period t (t = 1, 2,…, T), 1ty   denotes the endogenous variable in period 

t−1 and its scalar parameters r  and   characterizes the dynamic effects. W is an 
N×N row normalized spatial weight matrix that models the interaction scheme 

between individuals,  tx  is the N×K matrix of exogenous explanatory variables.   is 

a scalar of time effect and nl  is N-dimensional vector of ones. M(∙) is a smooth 

function and t  is an N-dimensional vector of exogenous explanatory variable. We 

assume that t  follows a multivariate normal distribution with zero mean and a 

constant scalar diagonal variance covariance matrix 2

nI . ty , 1ty   , tx , t are 

independent with t .  

Method 

To estimate the spatial dynamic nonparametric Durbin models with fixed effects, 
we introduce an iterative approach based on the integration of maximum likelihood 
estimation and the partially linear model estimation. 

Following Lesage and Pace (2009), we define:  1 1, , , ,t n t t t tZ l y Wy x Wx   and  

 , , , ,r      , (1) can be changed into this form 

( )t t t t ty Wy M Z                                                                   (2) 

 
The log likelihood function of (2), as if the disturbances were normally 

distributed, is 

   2

, 2

1
ln ( ) ln( ) ln

2 2
N T N

NT
L I W e e    


                                (3) 

Where     t t te y Wy Z M       and 1 1(min( ) ,max( ) )    .   is the 

N×1 vector of eigenvalues of the matrix W. We assume that   contains only real 
eigenvalues, because admissible values of   can become very complicated for W 

may have complex eigenvalues. Given   and  tM  , the ML estimators of   and 

2  can be solved from the first-order maximizing conditions, to get 

 1( ) [ ( ) ( )]NT TZ Z Z I I W Y M                                     (4) 

2

1

1
ˆ

T

t t

t

e e
NT




                                                                                              (5) 

Where ˆ ( )t t t t te y Wy Z M      . Base on the approach of Pace and Barry 

(1997), the concentrated log-likelihood function of   can be written as 

2

,
ˆln ( ) ln( ) ln( ) ln ln( ( ))

2 2 2
N T N

NT NT NT
L T I W S                 (6) 



M.-H. Qian et. al 

810 © 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 807-819   
 

  
 

( ) ( ) ( )S e e   ,  ˆ( ) ( )e Y WY M Z       .                            

Maximizing the concentrated log-likelihood function yields the ML estimator 

of  , given ̂ , 2̂  and ( )M  . So an iterative procedure may be used in which the set 

of parameters , 2  and   are alternately estimated until convergence occurs. 

During this iterative procedure, the key is to find out the estimator of ( )M  . So we 

introduce an iterative approach based on the integration of maximum likelihood 

estimation and the partially linear model estimation to estimate  ,  , 2 and  

( )M  . The iterative process is as follows: 

● In the first step, we can obtain the initial ML estimator of  , 2  and   by 

estimate the spatial dynamic Durbin model with fixed effects, see (7) and (8). Then 

we calculate the residuals tV  as showed in (9). 

1 1t t n t t t t ty Wy l ry Wy x Wx                                           (7) 

t t t ty Wy Z                                                                                              (8) 

ˆˆ
t t t tV y Wy Z                                                                                             (9) 

● Denote t t ty y Wy  , (2) can be convert to (10), which is in essence a 

semiparametric partially linear model. 
ˆˆ

t t t tV y Wy Z                                                                                           (10) 

To estimate the nonparametric part ( )tM  , we establish a nonparametric model 

of  tV  and ( )tM  , which takes the form 

( )t t tV M                                                                                           (11) 

Then we use the local-linear estimator of  ( )tM    as the estimator of 

nonparametric component based on the results of Stone (1977) and Cleveland 
(1979). 

 

 
2 1

2
1 2 0 1

ˆ ˆ( , ) ( , )( ) ( )1ˆ ( , )
ˆ ˆ ˆ( , ) ( , ) ( , )

NT
t t i t h i t i

LL t

i t t t

s Z h s Z h Z Z K Z Z V
M Z h

NT s Z h s Z h s Z h

  



             (12) 

Where 
1

1
ˆ ( , ) (Z Z ) (Z Z )

NT
r r

r t i t h i t

i

s Z h K
NT 

   , r = 0, 1, 2. K(∙) is the kernel 

function and in this paper, we choose the Gaussian kernel 21 1
(u) exp

22
K u



 
  

 
. 

h is the optimal bandwidth and we calculate it based on the optimal smoothing 
results of Bowman and Azzalini (1997): 

Z Vh h h                                                                                                                     (13) 

Where   
1/5

4
median median( ) / 0.6745

3
Z i ih Z Z

NT

 
  
 

 

and  
1/5

4
median median( ) / 0.6745

3
V i ih V V

NT

 
  
 

. 

● Make the local-linear estimator ˆ ( , )LL tM Z h  (12) as the estimator of  M   and 

put it into (1) to recalculate the ML estimator of  , 2  and  . 

● Repeat the second step to the third step until convergence occurs. Then we can 

get the final estimation results of  , 2 ,  and  M  . 
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Hypothesis Tests 

Base on the estimation method described in the previous section, we propose 
two hypothesis tests. The first is for hypothesis testing the nonparametric function 
and the second is for hypothesis testing of linear spatial regression parameters. 

Testing the Nonparametric Component 

The nonparametric estimate of  tM   provides us with descriptive information 

for exploratory data analysis and we can apply it to formulate a spatial panel model 
that takes into account the features which emerged from the nonlinear analysis. So 
we introduce the generalized likelihood ratio test (see Fan et al., 2001) to assess the 
appropriateness of a proposed spatial dynamic nonparametric Durbin model with 
fixed effects. Without loss of generality, we consider a simple linear null hypothesis. 
Accordingly, the null and alternative hypotheses are given as follows: 

0 0 1: ( )t tH M       versus 1 0 1: ( )t tH M                                       (14) 

Where 0  and 1  are unknown constant parameters. Following the generalized 

likelihood ratio tests given by J. FAN (2001) and H. Liang (2010), let  ,  and 

 M   be the corresponding profile least-squares estimators of  ,   and  tM   

of H0, while the estimator of  tM   is 0 1( )t tM      , where 0  and 1  are 

the ordinary least-squares estimators of 0  and 1 . Meanwhile, let ̂ , ̂  and
 

 ˆ
tM   be the corresponding profile least-squares and nonparametric estimators 

of  ,   and  tM 
 
of H1. The resulting residual sums of squares under the null 

and alternative hypotheses are then 

2

0

1

RSS( ) ( ( ) )
NT

i i i i

i

H y M Z Wy 


                                                            (15) 

2

1

1

ˆˆ ˆRSS( ) ( ( ) )
NT

i i i i

i

H y M Z Wy 


                                                             (16) 

To test the null hypothesis, we consider the following generalized likelihood ratio 
test: 

0

1

RSS( )
= ln

2 RSS( )

K Hr
F NT

H
                                                                                               (17) 

Where

2(0) 0.5 ( )

[ ( ) 0.5 ( ) ( )]
K

K K u du
r

K u K u K u du




 




 and ( ) ( )K u K u  denotes the convolution 

of ( )K u .According the results of Fan et al. (2001), assume the regularity conditions 

in Fan et al. (2001) hold, then under H0 in (14), as
3/2nh  and 0h , F has an 

asymptotic 2X  distribution with ndf  degrees of freedom, that is 

2

n

a

dfF X                                                                                                                             (18) 

Where /n K Kdf r c h  . |Ω| stands for the support of i , 2(0) 0.5 ( )Kc K K u du    

and h is the optimal bandwidth. 
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Testing Parametric Components 

Since the estimation of parametric components and nonparametric components 
are separated in the iterative process, the hypothesis testing of linear spatial 

regression parameters bases on the ML estimator of  , 2  and  . In this paper, we 

mainly consider the significance testing of the linear spatial regression coefficients 

0 : 0iH   versus 1 : 0iH                                                                                          (19) 

Where [ , ] [ , , , , , ]r         , i = 1, 2, . . . , 2K + 4. To provide a rigorous 

analysis of the MLE of of , 2 and  with their asymptotic properties, we assume 

that they obey the regularity assumptions of Lee and Yu (2010). 

Denote 2[ , , ]     and its true value 2

0 0 0 0[ , , ]     . The asymptotic 

distribution of the ˆ
ML  can be derived from the Taylor expansion of ,ln ( )

0
N TL 






  
at 0 , where 

,ln ( )N TL   is the concentrated log-likelihood function of   as follows: 

   2

, 2

1
ln ( ) ln( ) ln

2 2
N T N

NT
L T I W e e    


                            (20) 

Where    t t te y Wy Z M       . 

Base on the conclusion of Lee (2004), under the normal distribution assumption 
of   and the regularity assumptions of Lee and Yu (2010), the asymptotic 

distribution of  0
ˆ
MLNT     is normal,    1

0
ˆ 0,

D

MLNT N      , where the 

information matrix 
 

0

2

, 0ln1
lim

N T

N

L
E

NT




 

 
       

. 

Under H0 ( 0 0  ), we can obtain the asymptotic variance matrix of the ˆ
ML  (21) 

for inference(standard errors and z-values) by the information matrix. 

   2. . , ,AsyVar AsyVar     

1

2 2

2 2

4

1 1
0

1 1 1
lim 0

0 0
2

t

t t t
NT

Z Z Z Wy

Z Wy Wy Wy
NT

NT

 

 







  
   

  
  
  
  
  

    

  (21) 

RESULTS AND DISCUSSION 

In this section, we conduct a Monte Carlo experiment to evaluate the 
performance of the iterative approach for the spatial dynamic nonparametric 
Durbin model with fixed effects. First of all, we consider a basic SDNDM with fixed 
effects, which samples are generated from the model as follows, 

 0 0 0 1 0 1 0 0t t n t t t t t ty Wy l r y Wy x Wx M                                 (22) 

Where M (∙) = sin (∙). We use 2 2

0 0 0 0 0 0 0 0 0 0 0[ , , ] [ , , , , , , ]r            
 

 0.1,0.2,0.2,1,0.2,0.2,1  as the true value of  . tx , t  and t are generated from 

independent standard normal distribution. ty is generated based on (22) with zero 

initial value. We generated the spatial panel data with 100+T periods and then take 
the last T periods for the Monte Carlo experiment. To compare the performance of 
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the iterative approach in different N and T, we consider nine cases with N=10, 30, 50 
and T=10, 30, 50. The spatial weights matrix W is generated from Rook contiguity 
weight by the spatial distribution of different individuals as follows, which 

coordinates cx  and cy  follow standard normal distribution. 

Then we estimate the spatial dynamic nonparametric Durbin model with fixed 
effects 1000 times by the iterative approach in the case with N=50, T=50 to check 
the performance of the iterative approach. The results of first 15 iterations are in 
Table 1. For each iteration, we report the empirical bias (Bias), the empirical 
standard deviation (E-SD) and the empirical root mean square error (RMSE) of ML 
estimator of linear spatial regression parameters.  

 

Figure 1. The spatial distribution of different individuals 

N=1

0 

N=3

0 

N=5

0 

Table 1. The estimation of the SDNDM with fixed effects by the iterative approach (N=50,T=50) 

iteration  α r β Λ η ρ   M(Λ) 

1 Bias -0.005 0.007 -0.017 -0.004 0.007 -0.006     

 E-SD 0.000 0.000 0.000 0.000 0.000 0.000     

 RMSE 0.005 0.007 0.017 0.004 0.007 0.006     

2 Bias -0.008 0.008 -0.008 0.004 -0.033 -0.006 h 0.243 MESD 0.060 

 E-SD 0.002 0.000 0.006 0.000 0.019 0.000 ndf  8.071 F-test 244.792 

 RMSE 0.006 0.008 0.013 0.004 0.024 0.006   
2

ndf
X

 20.204 

3 Bias -0.009 0.008 -0.009 0.003 -0.036 -0.004 h 0.244 MESD 0.059 

 E-SD 0.002 0.000 0.005 0.000 0.016 0.001 ndf  8.043 F-test 244.769 

 RMSE 0.007 0.008 0.012 0.003 0.029 0.005   
2

ndf
X

 20.159 

4 Bias -0.010 0.008 -0.009 0.003 -0.036 -0.004 h 0.244 MESD 0.059 

 E-SD 0.002 0.000 0.004 0.000 0.014 0.001 ndf  8.043 F-test 244.770 

 RMSE 0.008 0.008 0.011 0.003 0.031 0.005   
2

ndf
X

 20.159 

5 Bias -0.010 0.008 -0.008 0.005 -0.029 -0.010 h 0.244 MESD 0.059 

 E-SD 0.002 0.000 0.004 0.001 0.012 0.002 ndf  8.043 F-test 244.743 

 RMSE 0.008 0.008 0.011 0.004 0.030 0.006   
2

ndf
X

 20.159 

6 Bias -0.012 0.008 -0.009 0.003 -0.035 -0.005 h 0.244 MESD 0.059 

 E-SD 0.002 0.000 0.003 0.001 0.011 0.002 ndf  8.039 F-test 244.752 

 RMSE 0.009 0.008 0.010 0.004 0.031 0.006   
2

ndf
X

 20.153 
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Moreover, we evaluate the empirical standard deviation of ( )M   (MESD), 

the optimal bandwidth h, F-test based on (17), the freedom of the chi-square 

statistics ndf  and the right 0.01 quantile chi-square statistics 2

ndfX . Fig 2 

depicts the variation of the Bias, E-SD and RMSE of ML estimators 
ˆ ˆˆ ˆ ˆˆ, , , , ,ML ML ML ML ML MLr     

 
, MESD and Likelihood function in the iterative 

process. 
From the results, convergence occurs since the second iteration except the 

estimation of constant, which diffuses by systematic error at a very small amount. 
The accuracy of estimation of each statistics including the linear spatial regression 
parameters and nonparametric function also meet the qualification since the second 
iteration and we can find it more clearly in Fig 2. The likelihood function and the 
empirical standard deviation of ( )M  (MESD) also get to stable since the second 

iteration. Similar conclusion also occur in other N and T, so we can use a three stage 
iterative approach instead of the iterative approach to reduce systematic error and 
calculated amount while maintaining the accuracy. 

The Improvement of Approach: Three Stage Iterative Approach 

As the preceding analysis, convergence occurs since the second iteration, so we 
use three stage iterative approach to improve the iterative approach as follows: 

Table 1. contiously  
7 Bias -0.013 0.008 -0.008 0.004 -0.034 -0.006 h 0.244 MESD 0.059 

 E-SD 0.003 0.000 0.003 0.001 0.010 0.002 ndf  8.042 F-test 244.758 

 RMSE 0.010 0.008 0.010 0.004 0.032 0.006   
2

ndf
X

 20.153 

9 Bias -0.015 0.008 -0.009 0.002 -0.039 -0.002 h 0.244 MESD 0.059 

 E-SD 0.004 0.000 0.002 0.001 0.009 0.002 ndf  8.044 F-test 244.781 

 RMSE 0.011 0.008 0.010 0.003 0.033 0.006   
2

ndf
X

 20.160 

10 Bias -0.016 0.008 -0.009 0.003 -0.036 -0.004 h 0.244 MESD 0.059 

 E-SD 0.003 0.000 0.003 0.001 0.010 0.002 ndf  8.045 F-test 244.776 

 RMSE 0.012 0.008 0.010 0.003 0.033 0.005   
2

ndf
X

 20.161 

11 Bias -0.016 0.008 -0.008 0.004 -0.033 -0.007 h 0.244 MESD 0.059 

 E-SD 0.004 0.000 0.003 0.001 0.009 0.002 ndf  8.043 F-test 244.757 

 RMSE 0.012 0.008 0.010 0.003 0.033 0.006   
2

ndf
X

 20.159 

12 Bias -0.017 0.008 -0.008 0.004 -0.030 -0.009 h 0.244 MESD 0.059 

 E-SD 0.004 0.000 0.002 0.001 0.008 0.002 ndf  8.041 F-test 244.740 

 RMSE 0.013 0.008 0.009 0.004 0.033 0.006   
2

ndf
X

 20.155 

13 Bias -0.019 0.008 -0.009 0.003 -0.037 -0.003 h 0.244 MESD 0.059 

 E-SD 0.004 0.000 0.002 0.001 0.008 0.002 dfn 8.040 F-test 244.762 

 RMSE 0.013 0.008 0.009 0.003 0.033 0.006   
2

ndf
X

 20.153 

14 Bias -0.020 0.008 -0.009 0.003 -0.037 -0.003 h 0.244 MESD 0.059 

 E-SD 0.005 0.000 0.002 0.001 0.008 0.002 ndf  8.044 F-test 244.777 

 RMSE 0.014 0.008 0.009 0.003 0.034 0.006   
2

ndf
X

 20.160 

15 Bias -0.021 0.008 -0.009 0.003 -0.036 -0.004 h 0.244 MESD 0.059 

 E-SD 0.005 0.000 0.002 0.001 0.008 0.002 ndf  8.044 F-test 244.773 

 RMSE 0.014 0.008 0.009 0.003 0.034 0.006   
2

ndf
X

 20.160 
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● We estimate the spatial dynamic Durbin model with fixed effects (7) by ML 

estimation to obtain the initial estimator of , 2  and  .Then we calculate the 

residuals tV as showed in (9). 

● Repeat the second step to the third step until convergence occurs. Then we can 

get the final estimation results of  , 2 ,  and  M  . We establish the 

nonparametric model of tV and ( )tM   (11) to get the local-linear estimator of 

( )tM   (12). The definition and calculation of kernel function K(·) and the optimal 

bandwidth h are the same as the previous. 

● Make the local-linear estimator ˆ ( , )LL tM Z h  (12) as the estimator of ( )tM   

and put it into (1) to recalculate the final ML estimator of  , 2  and  . 

 

Figure 2. The Bias, E-SD, RMSE of parameters estimation, MESD and likelihood function 
of the SDNDM with fixed effects by the iterative approach under different iteration 

The Application of Three-Stage Iterative Approach 

We estimate the spatial dynamic nonparametric Durbin model with fixed effects 
by three stage iterative approach in nine cases with N=10, 30, 50 and T=10, 30, 50 to 
compare the performance of three stage iterative approach in different N and T, as 
shown in Table 2. For each case, we calculate the ML estimator of linear spatial 

regression parameters and their Z-probability, bias 0̂  .Moreover, we evaluate the 

empirical standard deviation of ( )M  , F-test based on (17) and the right 0.01 

quantile chi-square statistics of 2

ndfX . 

In order to analyze the accuracy of the estimator of ( )M  , we take the first 

individual as an example and compare the local-linear estimator ˆ ( , )LL tM Z h  and 

( )tM   in different cases, as shown in Fig 3. It clearly shows that the local-linear 

estimator ˆ ( , )LL tM Z h fits ( )tM   better when N and T get larger in parallel with the 

findings of Zheng et al. (2013). We also make a comparison between dependent 
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variable Y and its fitted values of the first individual in different cases (the estimator 

under ( )tM  nonlinear hypothesis and the estimator under ( )tM   linear 

hypothesis). Since ( )M   is very close to Λ when Λ is small, the estimator under 

( )tM   linear hypothesis fits Y quite well, as shown in Fig 4. 

 
 

Table 2. The estimation of the SDNDM with fixed effects by three stage iterative approach 

case T N  α r β Λ η ρ M(Λ)  

1 50 50 MLE 0.108 0.192 1.008 0.196 0.133 0.206 MESD 0.060 

   z-prob 0.000 0.000 0.000 0.000 0.000 0.000 F 244.792 

   Bias -0.008 0.008 -0.008 0.004 -0.033 -0.006 
2

ndf
X  20.204 

2 50 30 MLE 0.103 0.189 1.037 0.192 0.099 0.212 MESD 0.106 

   z-prob 0.036 0.000 0.000 0.000 0.002 0.009 F 180.929 

   Bias -0.003 0.011 -0.037 0.008 0.001 -0.012 
2

ndf
X  18.968 

3 50 10 MLE 0.125 0.174 1.071 0.142 0.230 0.067 MESD 0.154 

   z-prob 0.003 0.000 0.000 0.008 0.056 0.305 F 50.001 

   Bias -0.025 0.026 -0.071 0.058 -0.030 0.133 
2

ndf
X  17.150 

4 30 50 MLE 0.057 0.190 1.019 0.238 0.163 0.227 MESD 0.076 

   z-prob 0.212 0.000 0.000 0.000 0.000 0.003 F 97.978 

   Bias 0.043 0.010 -0.019 -0.038 -0.063 -0.027 
2

ndf
X  18.800 

5 30 30 MLE 0.091 0.187 1.024 0.233 0.227 0.232 MESD 0.112 

   z-prob 0.117 0.000 0.000 0.000 0.000 0.017 F 72.349 

   Bias 0.009 0.013 -0.024 -0.033 -0.127 -0.032 
2

ndf
X  17.956 

6 30 10 MLE 0.137 0.193 1.028 0.246 0.203 0.174 MESD 0.144 

   z-prob 0.059 0.000 0.000 0.004 0.223 0.025 F 13.605 

   Bias -0.037 0.007 -0.028 -0.046 -0.103 0.026 
2

ndf
X  15.959 

7 10 50 MLE 0.191 0.157 0.963 0.248 0.313 0.145 MESD 0.134 

   z-prob 0.000 0.000 0.000 0.000 0.000 0.005 F 47.878 

   Bias -0.091 0.043 0.036 -0.048 -0.213 0.054 
2

ndf
X  16.963 

8 10 30 MLE 0.153 0.148 1.059 0.234 0.352 0.071 MESD 0.162 

   z-prob 0.006 0.000 0.000 0.000 0.004 0.304 F 27.985 

   Bias -0.053 0.052 -0.059 -0.034 -0.252 0.129 
2

ndf
X  16.604 

9 10 10 MLE 0.128 0.171 1.190 0.253 0.419 -0.133 MESD 0.174 

   z-prob 0.168 0.001 0.000 0.003 0.048 0.293 F 3.371 

   Bias -0.028 0.029 -0.190 -0.053 -0.319 0.334 
2

ndf
X      14.343 

 



 Durbin Models 

© 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 807-819   817 
 
 
 

 

Figure 3. The comparison between the local-linear estimator ˆ ( , )LL tM Z h and ( )tM  of 

the first individual in different cases (the solid line represents ( )tM  and the dotted 

line represents ˆ ( , )LL tM Z h ) 

While the estimator under ( )tM  , nonlinear hypothesis perform even better. 

According our calculation, the residual sum of squares of the estimator under 

( )tM   nonlinear hypothesis is much smaller than the estimator under ( )tM   

linear hypothesis although they are very close in Fig 4. 

From the results, three-stage iterative approach is more reliable when T or N is 
large, which successfully alleviates the “initial conditions” problem discussed in 
Neyman and Scott (1948) and Yu et al. (2012) as well as the “incidental parameters” 
problem (see Hsiao, 1986). The bias and the error’ standard deviation of ( )M   (E-

SD) tend to be smaller when N and T are large. But it gets worse when N and T are 
small due to the accuracy of estimators decline. Moreover, as the hypothesis tests 
are based on the asymptotic properties of statistics, the test of the nonparametric 
function and linear spatial regression parameters tend to fail when N and T are very 
small (see case 9, N=10, T=10). In general, the estimation of ( )M   is very 

important for the estimation of linear spatial regression parameters.  
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Figure 4. Y and its fitted values of the first individual in different cases(Y 

ESTIMATOR1 represents the estimator under ( )tM   nonlinear hypothesis, sovled 

by three stage iterative approach and Y ESTIMATOR2 represents the estimator 

under ( )tM  linear hypothesis, solved by ML method) 

CONCLUSION 

In the spatial dynamic nonparametric Durbin model with fixed effect, we propose 
using the three stage iterative approach to shrink parameters contained in both 
parametric and nonparametric components with corresponding hypothesis test. The 
resulting estimators indicate that the three stage iterative approach is more reliable 
when T or N is large and the accuracy of estimation of ( )M   is very important for 

the estimation of parametric components. We believe that the three stage iterative 
approach is reliable and effective estimation method for the spatial dynamic 
nonparametric Durbin models with fixed effects, improving the estimation accuracy 
of nonparametric components would enhance the reliability of three stage iterative 
approach in data analysis. 

REFERENCES 

Anselin L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic 
Publishers. 

Baltagi B.H., Fingleton B., & Pirotte A. (2014). Estimating and forecasting with a dynamic 
spatial panel data model. Oxford Bulletin of Economics and Statistics, 76(1), 112–138.  

Bowman A.W., & Azzalini A. (1997). Applied Smoothing Techniques for Data Analysis: the 
Kernel Approach with S-plus Illustrations. New York: Oxford. 



 Durbin Models 

© 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 807-819   819 
 
 
 

Cleveland W.S. (1979). Robust locally weighted regression and smoothing scatterplots. 
Journal of the American Statistical Association, 74(368), 829–836.  

Durbin J. (1960). Estimation of parameters in time-series regression models. Journal of the 
Royal Statistical Society: Series B (Methodological), 22(1), 139–153. 

Liang H., Liu X., Li R., & Tsai C.L. (2010). Estimation and testing for partially linear single-
index models. Annals of Statistics, 38(6), 3811–3836. 

Hong E, & Sun L.X. (2011). Foreign direct investment and total factor productivity in China: A 
spatial dynamic panel analysis. Oxford Bulletin of Economics and Statistics, 73(6), 771–
791. 

Hsiao C. 1986. Analysis of Panel Data. New York: Cambridge University Press. 
Fan J., Zhang C., & Zhang J. (2001). Generalized likelihood ratio statistics and Wilks 

phenomenon. Annals of Statistics, 29(1), 153–193. 
LeSage J., & Pace R.K. 2009. Introduction to Spatial Econometrics. New York: Wiley. 
Elhorst J.P. (2012). Dynamic spatial panels: models, methods, and inferences. Journal of 

Geographical Systems, 14(1), 5–28. 
Yu J., & Lee L. (2010). Estimation of unit root spatial dynamic panel data models. Econometric 

Theory, 26, 1332–1362.  
Yu J., & Lee L. (2012). Convergence: a spatial dynamic panel data approach. Global Journal of 

Economics, 1(1), 1–36.  
Yu J., & Jong R., Lee L. (2008). Quasi-maximum likelihood estimators for spatial dynamic 

panel data with fixed effects when both N and T are large. Journal of Econometrics, 
146(1), 118–134.  

Yu J., Jong R., Lee L. (2012). Estimation for spatial dynamic panel data with fixed effects: The 
case of spatial cointegration. Journal of Econometrics, 167(1), 16–37.  

Kelejian H.H., & Prucha I.R. (1998). A generalized spatial two-stage least squares procedure 
for estimating a spatial autoregressive model with autoregressive disturbance. Journal 
of Real Estate Finance and Economics, 17(1), 99–121.  

Kelejian H.H., & Prucha I.R. (2001). On  the  asymptotic  distribution  of  the Moran I test 
statistic with applications. Journal of Econometrics,104(2), 219–257.  

Lee L. (2004). Asymptotic Distributions of quasi-maximum likelihood estimators for spatial 
autoregressive models. Econometrica, 72(6), 1899–1925.  

Lee L., & Yu J. (2010). A spatial dynamic panel data model with both time and individual fixed 
effects. Econometric Theory, 26(2), 564–597.  

Lee L., & Yu J. (2012). QML estimation of spatial dynamic panel data models with time 
varying spatial weights matrices. Spatial Economic Analysis, 7(1), 31–74.  

Neyman J., & Scott E. (1948). Consistent estimates based on partially consistent observations. 
Econometrica, 16(1), 1–32.  

Parent O., & LeSage J.P. (2010). A spatial dynamic panel model with random effects applied 
to commuting times. Transportation Research Part B, 44(5), 633–645.  

Parent O., & LeSage J.P. (2012). Spatial dynamic panel data models with random effects. 
Regional Science and Urban Economics, 42(4), 727–738.  

Pace R.K., & Barry R.P. (1997). Quick computation of spatial autoregressive estimators. 
Geographical Analysis, 29(3), 232–246. 

Severini T.A., & Wong W.H. (1992). Profile likelihood and conditionally parametric models.  
Annals of Statistics, 20(4), 1768–1802. 

Stone C.J. 1977. Consistent nonparametric regression. Annals of Statistics, 5(4), 595–645. 
Zheng X., Li F., Song S., & Yu Y. (2013).  Estimation for spatial dynamic panel data with fixed 

effects: The case of spatial central government’s infrastructure investment across 
Chinese regions: A dynamic spatial panel data approach. China Economic Review, 27, 
264–276.  

 
 

 


