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Abstract 

Cognitive diagnosis models (CDMs) are restricted latent class models that can be used to analyze 

response data from educational or psychological tests. The Deterministic Input Noisy Output 

“AND” gate (DINA) model and the Deterministic Input Noisy Output “OR” gate (DINO) model 

there are two popular cognitive diagnosis models (CDMs) for educational and evaluation 

assessment. They show different views on how cognitive skills are related and the likelihood of an 

item responding correctly. This study aims to comparison between these two models and 

comparison between girls and boys for cognitive diagnosis modeling. In addition, this research 

aims at determining the 8th grade students’ level of mathematics at the school level. Followed by 

the analysis of a set of data from Trends in International Mathematics and Science Study (TIMSS) 

2011 mathematics assessment is used to examine the Mathematical abilities of students in Grade 

8, which measures 13 attributes and includes 32 questions. A sample size of 274 includes 129 girls 

and 145 boys, and the students are selected based on the multistage cluster sampling method 

from Ghor province. Under the cognitive diagnosis assessment framework, the deterministic, 

inputs, noisy, “and” gate (DINA) model and the deterministic, inputs, noisy, “or” gate (DINO) model 

are used. The results demonstrated that the highest probability of mastery belonged to attribute 

4 at (0.4836). However, the lowest probability belonged to attribute 24 and 32 which is (0.12). 
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INTRODUCTION 

Cognitive Diagnostic Models (CDMs; Rupp, 
Templin, & Henson, 2010) Educational test performance 
examines an individual’s overall ability in a set of 
specific discrete skills, called attributes, each of which is 
possible Is or may not be dominated, disintegrated, 
provided this way. Detailed description or specification 
of the feature, his strengths and weaknesses in the field 
of test ability. A set of profiles of possible traits for a 
given test shows the intellectual skills classes that can be 
assigned to them. 

Cognitive diagnostic models (CDMs) are statistical 
and psychometric models developed to identify the 
ability of testers to master fine-grained skills based on a 
predefined matrix. Cognitive diagnostic tests can be 
used to identify skill combinations that the examiner 

may have, or does not have, or does not possess all (Su, 
2013). The purpose of each of these models is to classify 
the entrance exam according to the required skills. Using 
CDMs has the advantage of not being available in other 
ways. First of all, many other models including IRT 
assume the statistical one-dimensionality of the data and 
require it as a prerequisite for calibrating the data 
display and estimating the parameters. In most models, 
one-dimensionality is necessary as a prerequisite for 
locating the subjects in a hypothetical chain. One of the 
important features of CDM is that there is no need for 
the next one. One-dimensionality in educational settings 
seems to be somewhat problematic because research has 
shown that academic tools typically take on a set of 
attributes or skills that can each create a separate 
statistical dimension. (Afzali, 2016). 
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In response to these difficulties, a number of 
researchers (Ayers, Nugent, & Dean, 2008; Chiu, 2008; 
Chiu & Douglas, 2013; Chiu, Douglas, & Li, 2009; Park & 
Lee, 2011; Willse, Henson, & Templin, 2007) have 
explored the potential of nonparametric classification 
techniques as heuristic or approximate methods for 
assigning examinees to proficiency classes. (A heuristic 
uses clever computational shortcut strategies to obtain a 
solution that is very close, if not identical, to the optimal 
solution.) Software for implementing these techniques 
can be developed from efficient cluster analysis 
programs that are readily available in the major 
statistical packages.  

The Deterministic Input Noisy Output “AND” gate 
(DINA) model (Junker & Sijtsma 2001; Macready & 
Dayton 1977) and the Determin- istic Input Noisy 
Output “OR” gate (DINO) model (Templin and Henson 
2006) are two popular cognitive diagnosis models 
(CDMs). CDMs for educational assessment (DiBello, 
Roussos, & Stout 2007; Haberman & von Davier 2007; 
Leighton & Gierl 2007; Rupp, Templin, & Henson 2010) 
decompose an examinee’s ability in a domain into binary 
cognitive skills called attributes, each of which an 
examinee may or may not have mastered. Distinct 
profiles of attributes define different proficiency classes. 
From the observed item scores, maximum likelihood 
estimates of the model parameters are obtained that are 
then used to assign examinees to the different 
proficiency classes. Software for fitting the DINA model 
and the DINO model using marginal maximum 
likelihood estimation via the Expectation Maximization 
(EM) algorithm (MMLE-EM) is available through the 
pack- age CDM implemented in R (Robitzsch, Kiefer, 
George, & Uenlue 2016).  

The DINA model and the DINO model represent 
different views on how the mastery of attributes and the 
probability of a correct item response are related. The 
DINA model is a conjunctive model, meaning that only 
mastery of all attributes required for an item maximizes 
the probability of a correct response. In contrast, the 
DINO model is a disjunctive model, which means that 
mastery of a subset of the required attributes is a 
sufficient condition for maximizing the probability of a 
correct response (for a detailed discussion of these 
concepts, consult Henson, Templin, & Willse 2009).  

Recently, however, Liu, Xu, and Ying (2011) 
demonstrated that the DINO model and the DINA 

model share a “dual” relation: One model can be 
expressed in terms of the other, and which of the two 
models is fitted to a given data set is essentially 
irrelevant because, after appropriate trans- formations, 
the item parameter estimates are identical (as is shown 
in detail below) and thus, the estimates of examinees’ 
proficiency class memberships are identical too. This 
also means that the two models must share the same 
theoretical properties—what applies to one model 
automatically holds for the other model. Hence, one 
proof fits both models, and one set of simulations 
suffices to cover both models.  

General CDMs have become the new theoretical 
standard in cognitively diagnostic modeling (de la Torre 
2011; Henson, Templin, & Willse 2009; Rupp, Templin, 
& Henson 2010; von Davier 2005, 2008, 2014). In this 
article, a proof of the duality of the DINA model and the 
DINO model is presented that is tailored to the form and 
parameterization of general CDMs. The presentation is 
preceded by a brief review of some key technical 
concepts concerning CDMs. As an example of how the 
duality of the DINA model and the DINO model allows 
to condense separate proofs for the two models into a 
single proof, a compact proof of the condition of 
complete- ness of the Q-matrix is presented that covers 
both models. The Discussion summarizes the practical 
and theoretical implications of the DINA-DINO duality. 

In this study, we attempt to find the level or surface 
of the slipping and guessing of the students of Grade 8 
using the DINA and DINO models. In particular, the 

International Mathematics and Science Study ) TIMSS, a 
quadrennial assessment administered by the 
International Association for the Evaluation of 
Educational Achievement (IEA) since 1995, evaluates the 
mathematics and science abilities of fourth and eighth-
graders. The TIMMS has taken an exam every four years 
in many countries, for example, 1999, 2003, 2007, 2011, 
2015 and 2019, Afghanistan is not eligible for this 
competition. 

Thus, in Afghanistan, there is no study about the 
evaluation of students’ Mathematical abilities using 
cognitive diagnosis models. There are only a few limited 
kinds of research on undergraduate Mathematics 
Education in Afghanistan. So, this article is addressing 
the following objectives and questions. 

Contribution to the literature 

• The present study is concerned with identifying the strengths and weaknesses of Afghan students in the 
eighth-grade mathematics skills of the TIMMS 2011 database and all of its research methodology areas. 

• This study contributes to education practices by incorporating skill hierarchies with assessments. 

• The simulation analysis would provide valuable information about the potential inaccuracy of 
parameter estimates due to misspecification of the relationships between attribute and possible attribute 
profiles. 
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Research Objectives 

1. To Consistency the application of CDMs in 
identifying school students’ mathematic abilities at 
grade 8 

2. To determine the 8th grade students’ level of 
mathematics at the school level. 

Research Questions 

1. How do Afghan students perform in these cognitive 
skills or traits? In other words, the students’ knowledge 
what skills have the Iranians mastered and what skills 
have they not mastered? 

2. The Relationship between the Performance of Eighth 
Grade Male and Female Students in Mathematical 
Cognitive attribute or skills are there any differences in 
the TIMMS2011? 

In Afghanistan, most students in Department of 
Mathematics, who have basic Mathematical skills, have 
distinct disadvantages, and a significant part of students 
fail to learn higher level subjects. The academic failure in 
this course and the weak results in national and 
international tests are due to this weakness. So, this 
study pays more attention to construct the hierarchy of 
this course at the time of developing educational 
programs, and follow a cognitive diagnosis model in the 
process of learning as well as planning to ensure 
reciprocity. Prerequisite knowledge for curriculum 
concepts and planning before training high-level skills 
can have a significant impact on the quality of education 
and learning of Mathematics in Afghanistan middle 
schools. 

THE STUDY BACKGROUND 

In recent literature, several CDMs have been used to 
parameterize latent attribute space to model 
relationships between attributes and help improve 
parameter estimation performance. These approaches 
include log-linear (Xu & von Davier, 2008), unstructured 
tetra choric correlation (Hartz, 2002), and tetra-choric 
structural correlation (de la Torre & Douglas, 2004). 
There are several extensive reviews of CDMs, they have 
appeared in the literature, include cognitive diagnosis 
models (or cognitively diagnostic models) (de la Torre, 
2009; de la Torre & sun Lee, 2013; Henson & Douglas, 
2005; Huebner & Wang, 2011; Tatsuoka, 1995), 
diagnostic classification models (DCM) (Kunina et al., 
2012; Rupp & Templin, 2008a). 

Research on the impact of cognitive theory on test 
design was very limited as mentioned in (Gierl & Zhou, 
2008; Leighton et al., 2004). Most CDMs application 
examples in the literature are limited to no more than 
eight attributes (Hartz, 2002; Rupp & Templin, 2008b) 
because of the long computing time for models with 
larger numbers of attributes and items. If the number of 
latent classes can be reduced from 2𝐾, the sample size 

needed to obtain stable parameter estimates from CDMs 
calibrations will decrease. This will also result in faster 
computing time. One solution to decrease the number of 
latent classes is to impose hierarchical structures 
(Leighton et al., 2004) on skills. The resulting approach is 
able to assess and analyze more attributes by reducing 
the number of possible latent classes and the sample size 
requirement (de la Torre, 2008, 2009; de la Torre & Lee, 
2010). Two methods to estimate attributes with 
hierarchical structures could be as de la Torre (2012) 
suggested: First, keeping the EM algorithm as is, but 
without any gain in efficiency, the prior value of 
attribute patterns not possible under the hierarchy can 
be set to 0, and second, for greater efficiency, but 
requiring minor modifications of the EM algorithm, 
attribute patterns not possible under the hierarchy can 
be dropped. 

DINA Model 

The DINA model (Deterministic Input; Noisy “And” 
Gate, Haertel 1989; Junker and Sijtsma 2001) is a 
commonly discussed DCM (Junker and Sijtsma 2001; de 
la Torre and Douglas 2004; Templin and Henson 2006). 
The probability of a correct response defined by the 
DINA model is a function of a latent variable𝜋𝑖𝑗 :  

 𝜋𝑖𝑗 = ∏ 𝛼𝑖𝑘𝑞𝑗𝑘

𝐾

𝑘=1

 (1) 

Here, 𝛼𝑖𝑘 is the 𝑖−𝑡ℎ examinee’s real knowledge status 
(master or non-master) on the 𝑘−𝑡ℎattribute and 𝑞𝑗𝑘 is the 

element of Q-matrix that defines requirement of the 
𝑘−𝑡ℎh attribute by the 𝑗−𝑡ℎ item. If the 𝑖−𝑡ℎ examinee has 
mastered all the measured attributes in the Q-matrix, 
then 𝜋𝑖𝑗 = 1; otherwise, 𝜋𝑖𝑗 = 0. 

Given 𝜋𝑖𝑗 , the probability of a correct response 

𝑃(𝑋𝑖𝑗 = 1|𝜋𝑖𝑗) is defined by the DINA for the 𝑗−𝑡ℎ item 

as:  

 𝜋𝑖𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜋𝑖𝑗) = (1 − 𝑠𝑗)
𝜋𝑖𝑗 ∙ 𝑔𝑗

(1−𝜋𝑖𝑗) (2) 

here the slipping parameter 𝑠𝑗  is the probability of an 

incorrect response for the 𝑗−𝑡ℎ item when the 𝑖−𝑡ℎ 
individual has mastered all the attributes measured by 
the 𝑗−𝑡ℎ item. The guessing parameter 𝑔𝑗 is the 

probability of a correct response for the 𝑗−𝑡ℎ item when 
the 𝑖−𝑡ℎ individual has not mastered all of the attributes 
measured by the 𝑗−𝑡ℎ item. The DINA model is a 
conjunctive model that uses two parameters (slip and 
guessing) to define the probability of a correct response. 
A positive response is most likely when all attributes 
measured by the item has been mastered. Lacking a 
single attribute or more measured by that item will 
reduce an examinee’s probability of a correct response to 
the level of guessing.  

𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜂𝑖𝑗 = 1), 𝑗 = 1,2, … . 𝐽 
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The guessing parameter, 𝑔𝑗, is the probability of 

responding an item correctly for a  

respondent who has not mastered at least one 
required attribute: 

𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜂𝑖𝑗 = 0), 𝑗 = 1,2, … , 𝐽 

If a respondent masters all the required attributes, 
𝜋𝑖𝑗 = 1, the probability of responding the item correctly 

is equal to the probability of not slipping for the item, 
1 − 𝑠𝑗 . On the other hand, if the respondent fails to 

master at least one of the required attributes, 𝜋𝑖𝑗 = 0, the 

probability of responding the item correctly drops to the 
prob- ability of guessing for the item, 𝑔𝑗. The DINA 

model order-constrains the slipping and guessing 
parameters: 1 − 𝑠𝑗  is assumed to be greater than 𝑔𝑗; thus, 

the probability of responding an item correctly is 
guaranteed to be always higher for the respondents who 
mastered all the measured attributes than the 
respondents who lacked at least one of the measured 
attributes, regardless of the magnitudes of slipping and 
guessing parameters (Rupp et al., 2010).  

The attribute mastery indicator is formulated 𝜋𝑖𝑗 =

∏ 𝛼𝑗𝑘
𝑞𝑖𝑘𝑘

𝑘=1 , where A is the total number of attributes 

measured, and 𝑞𝑖𝑘 indicates whether attribute 𝑘 is 
measured by item i. The possible values that 𝑞𝑖𝑘 takes are 
0 or 1. The other indicator 𝛼𝑗𝑘 identifies whether the 

respondent in latent class j mastered attribute 𝑘, which 
takes values of 0 or 1 as well. Since the attribute mastery 
indicator, 𝜋𝑖𝑗 , is created through multiplication of each 

alpha for every measured attribute, lack of a single 
measured attribute would cause the value of 𝜋𝑖𝑗  to be 0. 

DINO Model 

Deterministic input, noisy-or-gate model, known as 
DINO, is a compensatory CDM (Templin, 2004; Templin 
& Henson, 2006) because it assumes that lack of one 
measured attribute can be compensated by another 
attribute. More specifically, mastery of at least one 
attribute compensates deficit of all the other measured 
attributes. Similarly, to the DINA model, the slipping 
and the guessing parameters are estimated at the item 
level. The DINO model works with a disjunctive 
condensation rule in which the presence of at least one 
measured attribute guaranties a high probability of 
endorsing an item (Rupp et al., 2010).  

DINO model estimates the probability of a correct 
response for item i in latent class c as follows:  

𝜋𝑖𝑐 = 𝑃(𝑋𝑖𝑐 =  1|𝜔𝑖𝑐) =  (1 −  𝑠𝑗)𝜔𝑖𝑐𝑔𝑗1−𝜔𝑖𝑐   

Where 
𝑠𝑗 =  𝑃(𝑋𝑖𝑗 =  0| 𝜔𝑖𝑗 =  1)  
𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜔𝑖𝑗 = 0) 

where 𝜋𝑖𝑐  is the probability of correct response, 𝑋𝑖𝑐 is 
the observed response, 𝜔𝑖𝑐 is the latent response 
variable, and 𝑠𝑖 and 𝑔𝑖 are, respectively, the slipping and 
the guessing parameters (Rupp et al., 2010). The latent 

response variable 𝜔𝑖𝑐  in the DINO model above is 
defined as follows:  

𝜔𝑖𝑐 = 1 ∏(1 − 𝑎𝑐𝑘)𝑞𝑖𝑘

𝐾

𝑘=1

 

where 𝑞𝑖𝑘 specifies whether attribute a is measured 
by item 𝑖. 𝑞𝑖𝑘whether the respondent in latent class c 
mastered attribute a, which takes values of 0 or 1 as well. 
In case that attribute a is not measured by item 𝑖, 𝑞𝑖𝑘 
would take a value of 0, and consequently the value of 
1 − 𝑎𝑐𝑘  would not matter. On the other hand, if attribute 
a is measured by item 𝑖, 𝑞𝑖𝑘 would take a value of 1, and 
accordingly 1 − 𝑎𝑐𝑘 counts for the final value that 𝜔𝑖𝑐  
takes. If the respondent in latent class c masters attribute 
a, 𝑎𝑐𝑘 takes a value of 1, and thereby 1 − 𝑎𝑐𝑘 would be 0. 
However, if the respondent in latent class 𝑐 does not 
master attribute a, 1 − 𝑎𝑐𝑘 is 1. Because the occurrence of 
𝜔𝑖𝑐  =1 depends on existence of at least one 0 in the 
multiplication term, mastering at least one attribute 
greatly increases the probability of endorsing the item. 
The DINO model is useful when only one attribute is 
required to be mastered among more than one attribute 
(Rupp et al., 2010). The slipping, 𝑠𝑖 , and the guessing, 𝑔𝑖, 
parameters of the DINO model are defined in the same 
way as in the DINA model. 

Compared with the DINA model, the major 
difference is the way the latent response variable is 
calculated. Under the DINO model, mastering any one 
of the required attributes will give correct or positive 
answers. 

The duality of the DINA model and the DINO model 

As Y. Liu et al. (2011) discovered and demonstrated, 
the DINA model and the DINO model are technically 
identical under certain transformations of (a) the 
examinees’ attribute profiles, (b) their observed item 
scores, and (c) the model parameters. This means that 
one model can be expressed in terms of the other and 
both models can be fitted by the same software. (As an 
aside, note that the characterization of the special 
relationship between the DINA model and the DINO 
model as ‘‘dual’’ deviates from the well-defined 
meaning of this term in operations research; for details, 
consult Papadimitriou & Steiglitz, 1998.) Model is two 
popular cognitive diagnosis models (CDMs) for 
educational assessment. They represent different views 
on how the mastery of cognitive skills and the 
probability of a correct item response are related. 
Recently, however, Liu, Xu, and Ying demonstrated that 
the DINO model and the DINA model share a “dual” 
relation and which of the two models is fitted to a given 
data set is essentially irrelevant because the results are 
identical. 
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Q-matrix 

The analysis of most CDMs is based on an item-
attribute incidence matrix called a Q-matrix (Tatsuoka, 
1983). The diagnostic power of CDMs relies on the 
construction of a Q-matrix with attributes that is 
theoretically appropriate and empirically supported 
(Lee & Sawaki, 2009). Studies on the Q-matrix can be 
normally categorized as exploratory approaches intend 
to discover the Q-matrix from the data when whole Q-
matrix is unknown. Confirmatory approaches aim to 
purify a certain Q-matrix in which some elements of the 
Q-matrix are assumed to be known. Although an 
entirely exploratory approach obtains no information 
about the number of attributes in advance, an approach 
given the number of attributes is still regarded as 
exploratory here as long as it estimates the whole Q-
matrix (Chung, 2014). After defining, determining and 
identify the Q-matrix for measuring the test, the next 
step is to construct the Q-matrix. 

In this study to form a Q-matrix, after translating the 
protocol or the codebook of the questions, encode a copy 
of the Mathematic questions for Grade 8 of the TIMMS 
2011 with attributes and the coding protocol and provide 
it to 3 Math teachers with bachelor degree, who had 6-
year, 8-year and 10-year training experiences, 
respectively. They are asked for constructing the Q-
matrix separately and independently. In a two-
dimensional matrix in which the columns contained 
those skills and each question measures attributes in the 
rows of the question, by specifying either 1 or 0. 
Attributes are explained in Analysis section, Table 3. 

Table 1 presents the original Q-matrix for this 
example. For the 32 items in this assessment, the vector 
of skill requirements for each item forms the Q-matrix. 
𝐴𝑁1, 𝐴𝑁2 , 𝐴𝑁3 𝑎𝑛𝑑 𝐴𝑁4, are the attributes of the Number 
domain; 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 𝑎𝑛𝑑 𝐴𝐴4 are the attributes of the 
Algebra domain; 𝐴𝐺1, 𝐴𝐺2, 𝐴𝐺3 𝑎𝑛𝑑 𝐴𝐺4 are the attributes 
of the Geometry domain; and 𝐴𝐷1 are the attributes of the 
Data and Chance domain. 

Table 1. Q-Matrix for Each Content Domain 

Item  
attribute 

𝐴𝑁1 𝐴𝑁2 𝐴𝑁3 𝐴𝑁4 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐺1 𝐴𝐺2 𝐴𝐺3 𝐴𝐺4 𝐴𝐷1 

Item 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Item 2 0 0 0 1 0 0 0 0 0 0 0 0 1 

Item 3 1 0 0 0 1 0 0 1 0 0 0 0 0 

Item 4 0 1 1 0 0 0 0 0 0 0 0 0 0 

Item 5 0 1 1 0 0 0 0 0 0 0 0 0 0 

Item 6 0 0 0 1 0 0 0 0 0 0 0 0 0 

Item 7 0 0 0 1 0 0 0 0 0 0 0 0 0 

Item 8 0 0 0 1 0 0 0 0 0 0 0 0 0 

Item 9 0 1 1 1 0 0 0 0 0 0 0 0 0 

Item 10 0 0 0 1 0 0 0 0 0 0 0 0 0 

Item 11 0 0 0 0 0 0 0 0 0 1 0 1 0 

Item 12 0 0 0 0 0 0 0 0 0 1 0 1 0 

Item 13 0 0 0 0 0 0 0 0 0 0 1 1 0 

Item 14 0 0 0 0 0 0 0 0 1 1 1 1 0 

Item 15 0 0 0 0 1 0 0 0 0 0 0 0 0 

Item 16 0 0 0 0 0 1 0 0 0 0 0 0 0 

Item 17 0 0 0 0 1 1 0 1 0 0 0 0 0 

Item 18 0 0 0 0 0 0 1 0 0 0 0 0 0 

Item 19 0 0 0 0 0 1 1 0 0 0 0 0 0 

Item 20 0 0 0 0 0 1 0 0 0 0 0 0 0 

Item 21 0 0 0 0 0 0 1 0 0 0 0 0 0 

Item 22 0 0 0 0 1 1 1 1 0 0 0 0 0 

Item 23 0 0 0 0 0 1 1 0 0 0 0 0 0 

Item 24 0 0 0 0 0 0 0 0 1 1 1 0 0 

Item 25 0 0 0 0 0 0 0 0 1 0 1 0 0 

Item 26 0 0 0 0 0 0 0 0 0 0 1 0 0 

Item 27 0 0 0 0 0 0 0 0 0 0 1 0 0 

Item 28 0 0 0 0 0 0 0 0 0 0 0 0 1 

Item 29 0 0 0 0 1 0 0 1 0 0 0 0 0 

Item 30 0 0 0 0 0 0 0 1 0 0 0 0 0 

Item 31 0 0 0 0 0 0 0 1 0 0 0 0 0 

Item 32 0 0 0 0 0 0 0 1 0 0 0 0 1 
 



Wafa et al. / Evaluation of Students Ability Cognitive Diagnosis Models 

 

6 / 11 

METHOD 

A quantitative research approach was used to collect 
data for the current research. A total of 274 Afghan 
students within 4 schools participated. In each 
classroom, 16 different classes of Afghanistan 
mathematics tests were assigned randomly to students. 

Research Participants and Research Tool 

The R package CDMs is used to fit the response data. 
A simple from in this research we study the 
mathematical experts’ opinions, contains 8 linear 
hierarchical traits, it is given annually at approximately 
4 test centers in Ghor province of Afghanistan high 
schools, it there were 275 students in different areas of 
Firouzkouh city145 boys and 129 girls. the average of 
examinees is around 11-17 years old. 

The same questionnaire was used as in Taiwan, each 
student was requested to answer only one out of eight 
booklets and only Booklets 1, 3, 5, and 7 were used for 
the current study. These booklets were selected based on 
the criterion that each attribute analyzed in the study 
had to be included in at least three items (Corter & 

Tatsuoka, 2002). For the purpose of comparisons across 
subgroups, these schools were selected into the rural and 
urban groups. Schools located in a geographically 
isolated area and in village or rural area, and there were 
also some schools located in middle of Firozkoh city. 

Research Analysis 

Mathematical response datasets of the students in 
Grade 8 in Afghanistan were analyzed in this study. 
Students responded to the multiple-choice and 
constructed response items, which assessed four content 
domains: Data and Chance, Geometry, Algebra, 
Algebra, and Number. The DINA model and DINO 
model was used to fit the response data. The test was 
composed with 32 items, including 15 multiple-choice 
and 17 constructed response items. There were 129 
female and 145 male participants in this study. 

Quantitative analyses were carried out in the process 
of test development and Q-matrix construction. the data 
was analyzed using TIMSS 2011 with eighth grade 
mathematics data-sets from the students of Afghanistan 
were compared in this study. Students responded to the 
multiple-choice and constructed response items, 
assessing four content domains: Number, Algebra, 
Geometry, and Data and Chance. analyzed together with 
the Q-matrix using the R. Improving the teaching and 
learning of Mathematics and Science through providing 
data on student progress in relation to different types of 
curricula, educational practices and educational 

Table 2. Demographic data of the participants 

Age Gender Grade Number of classes 

111-17 
Male Female 

8 16 
129 145 

 

Table 3. Marginal skill probability percentage of mastering 

attribute Title probability 

attribute1 Possesses understanding of fraction equivalence and ordering; uses equivalent 
fractions as a strategy to add and subtract fractions. 

0.2417 

attribute 2 Understands decimal notation for fractions, and compares decimal fractions; performs 
operations with decimals. 

0.3481 

 

attribute 3 Understands ratio concepts, and uses ratio reasoning to solve problems; finds a percent 
of a quantity as a rate per 100 

0.3481 

attribute 4 Understanding the whole number, uses the equivalent expression, prime factors, 
express of as power. 

0.269 

attribute 5 Applies and extends previous understandings of arithmetic to algebraic expressions; 
solves real-life and mathematical problems using numerical and algebraic expressions 
and equations. 

0.2232 

attribute 6 Reasons about and solves one-variable equations and inequalities; uses properties of 
operations to generate equivalent expressions. 

0.1914 

attribute 7 Analyzes and solves linear equations and pairs of simultaneous linear equations. 0.1701 

attribute 8 Uses the four operations with whole numbers to solve problems; identifies and 
explains patterns in arithmetic. 

0.2349 

attribute 9 Draws, constructs, and describes geometrical figures 0.1772 

attribute10 Solves real-life and mathematical problems involving angle measure, area, surface area, 
and volume. 

0.2517 

atrribute11 Recognizes perimeter, understands concepts of area, and relates area to multiplication 
and addition. 

0.2008 

atrribute12 Describes geometrical figures, and describes the relationships between them. 0.2636 

atrribute13 Represents and interprets data; draws informal comparative inferences about two 
populations 

0.13 
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environments, or schools (Mullis & Martin 2003). Since 
the TIMSS mathematics items included multiple choice 
and constructed responses, I dichotomized (0 = wrong 
answer, 1 = correct answer) those items for the 
dichotomous DINA model in this study. 

Table 3 shows the Marginal probability of mastering 
each of the thirteen attributes. According to the results in 
the table, the highest probability of mastery in the 
attribute belong to the attribute 4 at (0.4836) and the 
lowest probability belong to attribute 24 and 32 which is 
(0.12). 

Table 4 shows the marginal probability of mastering 
of each item. According to the results in the table, the 
highest probability of mastery belongs to item four at 
(0.489) and the lowest probability belongs to attribute 21 
which is (0.0875). 

Table 5 shows the guessing and slipping parameters 
based on the DINA model. According to Table 5, the 
lowest guessing parameter of DINA models belongs to 
Item #32 and the highest guessing coefficient belongs to 
Item #4, and the lowest slipping coefficient belongs to 
Item #2 and the highest slipping coefficient belongs to 
Item #14. The coefficient of lowest indicates a possibility 
of incorrectly responding to those who possess the skills 
needed to answer the question. The smaller the guessing 
and slipping parameters, the better the fit between the 
diagnostic measurement and experimental data in the 
CDMs (Ravand, Barati, & Widhiarso. 2012). 

The average values of the guessing and slipping 
parameters in DINA model are 0.1537 and 0.3462. The 
mean guessing parameter indicates that for the students 
who have not mastered all the required skills for an item, 
there is still, on average, a 15.37 percent chance that they 
will choose the correct response and the average slipping 
parameter indicates that for the students who have 
mastered all the skills required for an item, there is still, 
on average, a 34.61 percent chance that they will choose 

the incorrect response. The most informative items on a 
test are the ones whose slipping and guessing 
probabilities are low (Rupp et al., 2010). Generally 
speaking, small guessing and slipping parameters 
indicate a good fit between the diagnostic assessment 
design, the response data, and the postulated DINA 
model. The table above shows each item guess and slip 
parameters based on the DINA model, the information 
in this table has the lowest guessing coefficients for item 
32 and 31 with 3.2E-110 and 9.10E-16 the highest 
guessing coefficients its belong to the item#4 and 12 with 
values of 0.364 and 0.3332 these coefficients are likely to 
answer the question correctly for students demonstrates 
that they do not have the skills needed to answer the 
question. Also, the lowest slip value is related to items 
#2, 24 and 32 with values all is equal to the 0 and the 
highest slip coefficient is related to items#14 and 10 with 
values of 0.7533 and 0.7315 This coefficient indicates the 
probability of students answering the question 
incorrectly have the skills needed to answer the 
question. And also, the item of guess and slip parameters 
based on the DINO model, the information in this table 
has the lowest guessing coefficients for item 32 with 
1.08E-145 and the highest guessing coefficients it belongs 
to the item#4 with values of 0.3742. Also, the lowest slip 
value is related to items #27, 30 and 31 with values all is 
equal to the 0 and the highest slip coefficient is related to 
items#22 with values of 0.7787 This coefficient indicates 
the probability of students answering the question 
incorrectly have the skills needed to answer the 
question. 

DISCUSSION 

This research aimed at evaluating the application of 
two popular core Cognitive Diagnosis Models, the 
Deterministic Input Noisy “And” gate (DINA) and 
Deterministic Input Noisy “Or” gate (DINO) by 

Table 4. Marginal skill probability percentage of mastering each Item 

Item Probability Item probability 

Item1 0.2153 Item17 0.2846 

Item2 0.208 Item18 0.2956 

Item3 0.2226 Item19 0.1569 

Item4 0.489 Item20 0.1167 

Item5 0.4014 Item21 0.0875 

Item6 0.2372 Item22 0.197 

Item7 0.3321 Item23 0.1204 

Item8 0.3686 Item24 0.1496 

Item9 0.2956 Item25 0.2481 

Item10 0.2043 Item26 0.2627 

Item11 0.3357 Item27 0.2846 

Item12 0.3357 Item28 0.1934 

Item13 0.2007 Item29 0.2554 

Item14 0.2007 Item30 0.3686 

Item15 0.1605 Item31 0.2116 

Item16 0.2919 Item32 0.1204 
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identifying school students’ mathematic abilities at 
grade 8. The analysis was done to show the level of 
probability in every attribute in the questionnaire. The 
results demonstrated that the highest probability of 
mastery belonged to the attribute 4 at (0.4836). However, 
the lowest probability belonged to attribute 24 and 32 
which is (0.12). Then, another descriptive analysis was 
done to show the level of probability in every item in the 
questionnaire. The results showed that the highest 
probability of mastery belonged to the item four at 
(0.489). However, the lowest probability belonged to 
item 21, which is (0.0875). The same analysis was 
calculated on DINO model to demonstrate each item 
guess and slip parameters. Results show that the lowest 
guessing coefficients for item 32 with 1.08E-145 and the 
highest guessing coefficients belonged to the item#4 
with values of 0.3742. in addition, the lowest slip value 
related to items #27, 30 and 31 with values all equals to 
the 0 and the highest slip coefficient is related to 
items#22 with values of 0.7787. This coefficient indicates 
the probability of students answering the question 

incorrectly have the skills needed to answer the 
question. 

This result is in line with Afzaly. et al. (2016) they 
found that eight basic attributes explain the 
mathematical performance of first grade high school 
students. Rahimi, et al. (2018) also found that most of the 
attribute were not mastered in each skill, but the status 
of the individuals in the SUM skill. In addition, de la 
Torre and Sun Lee (2010) focused on one CDM, the 
deterministic in- puts, noisy “and” gate (DINA) model, 
and the invariance property of its parameters. Using 
simulated data involving different attribute 
distributions, they found that the DINA model 
parameters are absolutely invariant when the model 
perfectly fits the data. Another related study was 
conducted by Ravand (2016) which demonstrated the 
application of the G-DINA to the reading 
comprehension data of a high-stakes test. The study 
showed Syntax was the easiest and Inference was the 
most difficult attribute. The second most difficult 
attribute was Main Idea, followed by Detail and Vocab. 
The same results were also found by (Grabe & Stoller, 

Table 5. Guessing and Slipping parameters in the DINA and DINA 

iteme 
DINA DINO 

Guess est. Guess SE Slip est. Slip SE Guess est. Guess SE Slip est. Slip SE 

Item 1 0.1623 0.0222 0.4182 0.1265 0.1184 0.0208 0.574 0.0662 
Item 2 0.0909 0.0144 0 0 0.0117 0.0028 0.3264 0.0543 
Item 3 0.1701 0.0242 0.2703 0.0808 0.0868 0.0206 0.579 0.0563 
Item 4 0.364 0.0323 0.1761 0.0706 0.3742 0.0338 4.2E-16 1.2E-16 
Item 5 0.1903 0.0219 0.0274 0.0104 0.2917 0.0305 0.1088 0.0265 
Item 6 0.0846 0.0189 0.2713 0.0455 0.1238 0.0196 0.1724 0.0727 
Item 7 0.203 0.0327 0.2541 0.044 0.2324 0.0272 0.1514 0.0671 
Item 8 0.2634 0.0395 0.2959 0.0532 0.2843 0.0296 0.197 0.0868 
Item 9 0.2738 0.0287 0.5875 0.1265 0.2639 0.0336 0.6108 0.0653 
Item10 0.1836 0.0347 0.7315 0.0623 0.1782 0.0249 0.6628 0.1171 
Item11 0.002 0.0002 5.1E-11 1.6E-11 0.2116 0.0268 0.2765 0.0555 
Item12 0.3332 0.0341 0.6628 0.0895 0.2638 0.0309 0.4415 0.0745 
Item13 0.1749 0.0227 0.4759 0.1374 0.1484 0.0272 0.7211 0.0567 
Item14 0.1979 0.0249 0.7533 0.1189 0.0362 0.0131 0.5494 0.0559 
Item15 5.5E-12 1.73E-12 0.5017 0.0655 0.0135 0.0025 0.3016 0.0764 
Item16 0.2217 0.0372 0.3551 0.0572 0.2308 0.0282 0.3949 0.1027 
Item17 0.2412 0.027 0.2611 0.0979 0.2464 0.0361 0.6491 0.0512 
Item18 0.1881 0.0326 0.2547 0.0432 0.2716 0.0318 0.4105 0.0864 
Item19 0.0815 0.0163 0.0561 0.0186 0.0813 0.0214 0.4923 0.0658 
Item20 0.0289 0.013 0.4362 0.063 0.0308 0.0089 0.4365 0.1066 
Item21 0.027 0.0118 0.6576 0.0699 0.0164 0.0054 0.001 0.0002 
Item22 0.1857 0.0236 0.6375 0.1544 0.1822 0.0319 0.7787 0.0445 
Item23 0.0718 0.017 0.373 0.0955 0.0289 0.0112 0.4535 0.0633 
Item24 0.0744 0.0137 0 0 0.0751 0.0179 0.624 0.0677 
Item25 0.2035 0.0266 0.5505 0.1138 0.2188 0.0294 0.6652 0.0808 
Item26 0.2483 0.0412 0.7135 0.0583 0.2298 0.028 0.5368 0.1212 
Item27 1.8E-08 4.02E-09 0.197 0.0344 0.17 0.0227 0 0 
Item28 0.1694 0.0253 0.6363 0.1109 0.1401 0.0247 0.5903 0.0709 
Item29 0.1424 0.0213 0.274 0.0754 0.1329 0.0246 0.4998 0.0646 
Item30 0.1865 0.0305 0.0908 0.0178 0.2215 0.027 0 0 
Item31 9.10E-16 2.58E-16 0.1567 0.0276 0.0291 0.0059 0 0 
Item32 3.2E-110 9.5E-111 0 0 1.08E-145 4.7E-146 0.385 0.0573 
Mean 0.1537  0.3462  0.1185  0.3462  
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2002; Lumley, 1993). Moreover, the findings of this study 
are in line with those of Baghaei and Ravand (2015) who 
applied the linear logistic test model to these data. 
Further, Yi Chiu and Ko ̈ hn (2015) prove that the 
ACTCD also found that an extension to the statistical 
framework of the ACTCD, originally developed for test 
data con- forming to the Reduced Reparameterized 
Unified Model or the General Diagnostic Model is valid 
also for both the DINA model and the DINO. 
Additionally, Kaya and Leite (2017) present longitudinal 
models for CDM. They indicate that the proposed 
models provide adequate convergence and correct 
classification rates. Finally, Yamaguchi and Okada 
(2018) examined which CDMs better fit the actual data 
by comparatively fitting representative CDMs to 
(TIMSS, 2007) assessment data across seven countries. 
First, CDMs was shown to have a better fit than did the 
item response theory models. Second, main effects 
models generally had a better fit than other 
parsimonious or the saturated models. Related to the 
second finding, the fit of the traditional parsimonious 
models such as the DINA and DINO models were not 
optimal.  

Thus, related studies show that CDM has been 
applied in different contexts such as mathematics and 
language contexts. However, studies also show that 
there are no enough studies conducted in mathematic 
context. 

CONCLUSION 

This research aimed at evaluating the application of 
two popular core Cognitive Diagnosis Models, the 
Deterministic Input Noisy “And” gate (DINA) and 
Deterministic Input Noisy “Or” gate (DINO) by 
identifying school students’ mathematic abilities at 
grade 8. This research also tried to determine the 8th 
grade students’ level of mathematics at school level. The 
research applied Trends in International Mathematics 
and Science Study (TIMSS) 2011 mathematics 
assessment in order to evaluate DINA and DINO models 
through examining Mathematical abilities of students in 
Grade 8. It measured 13 attributes which included 32 
questions. 

First a descriptive analysis was done on DINA model 
to show the level of probability in every attribute in the 
questionnaire. The results demonstrated that the highest 
probability of mastery belonged to the attribute 4 at 
(0.4836). However, the lowest probability belonged to 
attribute 24 and 32 which is (0.12). Then, another 
descriptive analysis was done to show the level of 
probability in every item in the questionnaire. The 
results showed that the highest probability of mastery 
belonged to the item four at (0.489). However, the lowest 
probability belonged to item 21, which is (0.0875). 
Secondly, the same analysis was calculated on DINO 
model to demonstrate each item guess and slip 

parameters. Results show that the lowest guessing 
coefficients for item 32 with 1.08E-145 and the highest 
guessing coefficients belonged to the item#4 with values 
of 0.3742. in addition, the lowest slip value related to 
items #27, 30 and 31 with values all equals to the 0 and 
the highest slip coefficient is related to items#22 with 
values of 0.7787. This coefficient indicates the probability 
of students answering the question incorrectly have the 
skills needed to answer the question. 

On the other hand, the R software analyses were done 
to show the levels of Guess and Slip in the DINA and 
DINO models. The results on average values of the 
guessing and slipping parameters are 0.1537 and 0.3461. 
The mean guessing parameter shows that the 
participants who did not master all the required skills for 
an item chose the correct response. However, the 
participants who mastered all the required skills for an 
item chose the incorrect response. 

In addition, a calculation was done to show values 
related to each item in Guess and Slip parameters based 
on the DINA model. Findings on Guess showed that the 
lowest guessing coefficients belonged to item #32 with 
3.19E-110 respectively. However, the highest guessing 
coefficients belonged to the item 4 with values of 0.364 
respectively. So, these coefficients might answer the 
question correctly for students who tended not to have 
the skills needed to answer the question. 

Findings on Slip on the other hand showed that the 
lowest slip value was related to items #2, 24 and 32 with 
values all equals to the 0 while the highest slip coefficient 
is related to items#14 with values of 0.7533. So, this 
coefficient specifies the probability of students 
answering the question incorrectly, who had the skills 
needed to answer the question. 
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