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Abstract 

Chemistry is traditionally perceived as difficult to comprehend. Its mastery requires that a variety 

of concepts be linked to form an organized knowledge system. The connections need to be made 

not only between the concepts associated with the macroscopic level of the chemistry triplet but 

also between the submicroscopic and symbolic levels. Many factors influence a learner’s success 

in bridging concepts between these levels. In this study, the aim was to identify and examine the 

changes in general chemistry students’ knowledge structures by utilizing Word Association Tests. 

Although many studies have examined knowledge structures and aspects of the chemistry triplet, 

almost none has considered both at the same time. This study highlights the interconnectedness 

between the chemistry triplet and changing knowledge structures in overall student populations 

and in high- and low-achieving students. It provides insights on why students fail to understand 

chemistry and suggests ideas for future research as limiting factors were noted. 

Keywords: chemistry education research, learning theories, constructivist theory, first year 

undergraduate chemistry, knowledge structures 

 

INTRODUCTION 

Learning is influenced by the learners’ prior 
knowledge, epistemology, and ability levels (Tyson, 
Venville, Harrison, & Treagust, 1997). Knowledge and 
the abilities that students possess before instruction play 
an important role as potential source of learning 
difficulties (Hewson & Hewson, 1983). Problems in 
scientific explanations, multiple meanings and 
representations, use of models, or terminology and 
language (Abraham, Williamson, & Westbrook, 1994; De 
Jong, Blonder, & Oversby, 2013; Ebenezer & Erickson, 
1996; Haidar & Abraham, 1991; Markic, Broggy, & 
Childs, 2013) all may significantly hinder students’ 
conceptual understanding of chemistry concepts. This is 
a problem since basic comprehension of chemistry, such 
as the structure of matter or bonding theory, is crucial to 
continue learning in advanced chemistry classes 
(Ebenezer, 2001). Since many students have gaps in 
understanding basic elements of the structure of matter 
and concepts related to it, they may later fail to 
understand more advanced topics, e.g., acid-base 
chemistry, electrochemistry, or chemical equilibrium 

(Adadan & Savasci, 2012; Gilbert, de Jong, Justi, Treagust 
& van Driel, 2003; Uzuntiryaki & Geban, 2005). 

This study aimed to shed light on the development of 
students’ cognitive structures related to basic elements 
of chemistry knowledge during a set of courses in 
undergraduate general chemistry using Word 
Association Tests (WAT) (Johnson, 1967, 1969). 

THEORETICAL FRAMEWORK 

Constructivist theory suggests that learning is based 
in the interaction between the learner and the 
environment as well as the construction of concepts 
through experience in relation to a learner’s prior 
knowledge (Ausubel, Novak, & Hanesian, 1986). 
Following this theory, the results of learning are 
cognitive structures, or organized knowledge (Tsai, 
2001), that are developed by the individual. There is, 
however, no single accepted definition of the term 
‘cognitive structure’, and there is also limited 
information available on how these structures are 
formed (Taber, 2008). Nevertheless, the term is highly 
used in the literature and different interpretations are 
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available (Nakiboglu, 2008; West, Fensham, & Garrand, 
1985; White, 1985). Interpretations of the term ‘cognitive 
structure’ can be related to other terms like ‘structural 
knowledge’ (Jonassen & Marra, 1994) or ‘knowledge 
structure (Nakiboglu, 2008). The term ‘knowledge 
structure’ is subsequently used in this paper, as the 
authors believe that the term best represents the 
structures that the study aimed to visualize. Studies that 
use ‘structural knowledge’ focus on how conceptual 
understanding is structured as the interrelationships 
between concepts and related terms are made (Liu & 
Ebenezer, 2018), which is also our understanding of 
knowledge structures (Derman & Eilks, 2016). Learning 
can be interpreted in this means as the formation and 
transformation of knowledge structures by integrating 
new information and experiences, which can affect the 
knowledge structure as a whole. 

According to Nakhleh (1992), incorrect understand-
ings, in other words, misconnections hinder learning 
when the learner attempts to integrate new information 
into preexisting knowledge structures. Misinterpre-
tations and misconceptions, or alternative conceptions, 
may arise. Because of the resilience of misconceptions, 
teaching for the development of scientifically-reliable 
conceptual understanding is difficult to achieve 
(Othman, Treagust, & Chandrasegaran, 2008). Thus, 
knowledge of student misconceptions and their related 
knowledge structures are valuable components of 
teachers’ pedagogical content knowledge in designing 
and operating effective instruction (Magnusson, Krajcik, 
& Borko, 1999).  

These claims hold true in general, and for chemistry 
education in particular, since the nature of chemistry 
knowledge is composed by a highly structured set of 
concepts that encompass each of chemistry’s 
phenomenological-macroscopic, sub-microscopic, sym-
bolic, and procedural representational levels (Dori & 
Sasson, 2008; Johnstone, 1991, 2000). The first three are 
widely referred to as the chemistry triplet (Johnstone, 
2000), while the fourth, process, is suggested to be the 

way that the other levels interrelate with one another 
and is an intermediate between one or more of the other 
representations (Dori & Hameiri, 1998; 2003; Dori & 
Sasson, 2008).  

Some of the most-often mentioned concerns in 
advanced chemistry learning are lacks in students’ 
understanding of the relations in the three 
representational levels and resulting misunderstandings 
of basic chemistry concepts. The difficulties students 
face in solving chemistry problems are often caused by 
insufficiently settled concepts, e.g., deficiencies in 
knowledge, misconceptions, or missed connections 
between terms, concepts, and representational levels 
(Gilbert, de Jong, Justi, Treagust & van Driel, 2003; 
Nakiboglu, 2008; Taber, 2008). Research suggests that 
students must develop a high degree of abstract thinking 
skills to learn chemistry well (Blake & Nordland, 1978) 
because chemistry is full of abstract and theoretical 
concepts, technical language, and models, e.g., in the 
fields of the structure of matter (Adadan, Trundle, & 
Irving, 2010; Eilks, 2013; Liu & Lesniak, 2005) or bonding 
theory (Levy Nahum, Mamlok‐Naaman, Hofstein, & 
Taber, 2010; Othman et al., 2008). 

Since the 1980s, different methods have been 
suggested to research the nature of knowledge 
structures in science (Lee, 1986, 1988) such as concept 
mapping, interviews, or Word Association Tests. Çalik 
et al. (2005) mentioned, however, several difficulties in 
finding effective research methods for examining 
students’ knowledge structures in chemistry. It even 
seems possible that knowledge structures change during 
examination, e.g. by questions and impulses during the 
research.  

Word Association Tests (WATs) were originally 
suggested by Johnson in the 1960s (Johnson, 1967, 1969) 
and recently became a common tool in science education 
research. WATs try to map concepts in student 
understanding and their interrelations to form 
knowledge structures (Bahar & Hansell, 2000; Derman & 
Eilks, 2016; Nakiboglu, 2008; Schizas, Katrana, & 

Contribution to the literature 

• The difficulty of understanding chemical concepts has been studied widely in the literature; however, a 
few researchers have investigated the relationship between students’ performance in general chemistry 
courses and their knowledge structures, which are difficult to visualize. This study is one of the very few 
studies that utilized two programs, Gephi and JPathfinder, in a way that made the structures rich and easy 
to understand. 

• Among the studies focusing on students’ knowledge structures, most rely on the structures determined 
in one semester or quarter. This study aimed to analyze the evolution of structures collected over an 
academic year for the entire general chemistry curriculum. 

• Most studies generate structures based on the data collected from a small group of students, which might 
not reflect the majority’s knowledge adequately. In this study, a total of 1914 students participated and 
completed all the surveys. In addition to getting structures representing a larger group of audience, the 
high number of participants enabled the team to determine the eccentricity values for the structures that 
help the reader quickly determine the central concepts in the students’ minds. 
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Stamou, 2013; Shavelson, 1972, 1974). WATs are a tool to 
examine aspects of the knowledge structure of an 
individual in a specific domain. The method is, however, 
suggested to be better used for the analysis of a large 
group of participants to capture a better representative 
structure for the targeted group (e.g., a cohort of general 
chemistry students). WATs are also suggested to allow 
insights into the structure and work of the human 
memory (Petrey, 1977; Thomson & Tulving, 1970). 

The WATs seem to be a robust method that can reveal 
hidden relationships among closely related concepts, no 
matter how disconnected they might appear at the 
surface (Gulacar, 2014; Isa & Maskill, 1982). Examples in 
chemistry education can be found, e.g., on chemical 
equilibrium (Maskill & Cachapuz, 1989), atomic 
structure (Nakiboglu, 2008), acids and bases (Şendur, 
Özbayrak, & Uyulgan, 2011), decomposition (Schizas et 
al., 2013), dissolution chemistry (Derman & Eilks, 2016), 
or physical and chemical change (Yildirir & Demirkol, 
2018).  

Studies on the development of and change in 
knowledge structures of basic chemistry concepts, e.g., 
among students while being exposed to general 
chemistry instruction, are still rare in the literature. 
There is no one relating the knowledge structures 
explicitly to the three representational levels of 
chemistry (Johnstone, 1991) and its extension by the 
process domain (Dori & Hameiri, 1998; 2003). 
Correspondingly, this study intended to answer the 
following questions: 

1. How do undergraduate chemistry students’ 
knowledge structures change over time after taking 
multiple chemistry courses in general and with reference 
to the three representational levels of chemistry in 
particular? 

2. Do high- and low-achieving students’ knowledge 
structures change differently over the course of the 
general chemistry series? 

METHODOLOGY 

Participants and Design 

After getting the approval of the Institutional Review 
Board, participants for this study were invited from 
undergraduates enrolled in general chemistry at a public 
university in northern California. The total numbers of 
students completed each of the three surveys are as 
follows: Chemistry 2A, 617 students; Chemistry 2B, 541 
students; and Chemistry 2C, 756 students. 

In order to examine the relationship between 
students’ achievement in the course and the knowledge 
structures generated, the students were categorized as 
high- and low-achievers. Due to differences in when the 
surveys had to be administered and the type of the data 
available, high- and low-achieving students were 
defined differently when analyzing the data from each 

course. In Chemistry 2A, the only data available was 
each student’s score on the chemistry placement test that 
all students were required to pass before they could 
enroll in the course. The test was scored out of 44. A score 
of 24 or above meant that a student passed the test and 
could enroll directly in the course; a student who 
obtained a lower score was required to pass a workload 
chemistry class before they could start the chemistry 
series. Of the students who participated, 58.2% passed 
the placement test and 41.8% did not. It was decided that 
this was not a large enough gap to clearly be able to see 
differences between top and bottom students. Thus, all 
the students’ scores were sorted numerically and the 200 
most extreme scores from each end were used. Gender 
was not considered when extracting this data. In 
Chemistry 2B, the high-achieving data pool was 
composed of students who had achieved an ‘A’ or a ‘B’ 
in Chemistry 2A, which was 303 survey respondents 
(50.3%). The low-achieving students included those who 
had earned a grade of a ‘C’ in Chemistry 2A, which was 
299 students (49.7%). In Chemistry 2C, the high-
achieving students were those who had obtained either 
an ‘A’ or a ‘B’ in Chemistry 2A as well as an ‘A’ in 
Chemistry 2B, which was 187 students (24.7%). The low-
achieving students were those who had earned a ‘C’ in 
both of the previous courses, which was 183 students 
(24.2%). The extremes were chosen in this case in the 
hope that they would reveal a strong difference in the 
knowledge structures as well as because the sample size 
for both was very similar. 

Instrument and Data Analysis 

Word Association Test (WAT) and relatedness 
coefficients: Qualitative to quantitative data 

Three separate Word Association Tests (WAT), one 
for each in a series of three courses, were prepared as 
surveys. Each survey was offered in the penultimate 
week of each quarter over the span of an academic year 
via an online link that students could choose to 
complete. Participation was rewarded with extra credit. 
The Institutional Review Board at the university 
approved the study before it was conducted. 

In the Chemistry 2A survey, students were asked to 
list the first 10 words they thought of when they read 
each of 9 stimulus words: atom, bonding, energy, matter, 
change, forces, stoichiometry, structure, and reaction. Each 
stimulus word was selected because of its relevance to 
the course; the group that determined them was 
comprised of two chemistry education professors and 
three graduate students. For Chemistry 2B and 2C, the 
number of stimulus words increased to 13 and 17, 
respectively. In Chemistry 2B, the new stimuli were 
acid/base, solubility, equilibrium, and spontaneity, while in 
Chemistry 2C, electrochemistry, periodic trends, 
coordination chemistry, and kinetics were added. It was 
predicted that students would not complete the surveys 



Gulacar et al. / Cluster Changes in Students’ Knowledge Structures 

 

4 / 12 

if the time asked of them was significant; thus, only 5 
responses were asked for. This was the most significant 
difference across each course. Data analysis for each 
progressed in the same fashion. 

To begin the process of generating each knowledge 
structure, the qualitative survey responses were 
transformed into quantitative data. The initial step in 
this process was to create lists of the 25 most popular 
response words for each stimulus. Each student’s 
response was first standardized to an agreed-upon 
metric. For example, “hydrogen,” “boron,” and any 
other element given as a response were all coded as 
“element” due to their similarity, i.e. that students were 
all thinking of the elements that are comprised of atoms. 
The purpose of this coding was to streamline the data 
while being as mindful of student intent as possible. The 
codes for each response were determined in group 
meetings composed of one professor of chemistry 
education and several undergraduate students. 

Once all the responses had been coded, the frequency 
of each response for each stimulus was determined by 
adding up the number of times students wrote it and 
multiplying this number by a frequency factor because 
students who put a word as their first response more 
closely associated it with the stimulus than a student 
who put the same word as their fifth response. Ftot is a 
response’s total frequency, F1 is the number of times a 
word appeared as the first response, F2 is the number of 
times it appeared as a second response, and so on. The 
equation used to calculate the total frequency for a single 
response word is shown below: 

 
𝐹𝑡𝑜𝑡 = 1 ∗ 𝐹1 + 0.8 ∗ 𝐹2 + 0.6 ∗ 𝐹3 + 0.4 ∗ 𝐹4

+ 0.2 ∗ 𝐹5 
(1) 

The responses with the twenty-four highest 
frequencies comprised the lists used to generate the 
relatedness coefficients, with the stimulus itself as the 
first word in each list (Gulacar, 2014). It was thought that 
if students put a stimulus word as a response word for 
another stimulus, the connection between the two must 
be significant. However, stimuli often did not appear as 
responses for themselves; thus, if each stimulus had not 
been included in its own list in some way, valuable 
connections would have been lost. The relatedness 
coefficients, which are a measure of the strength of the 
connections between stimuli, were calculated using a 
formula that was developed by Garskof and Houston 
(1963). Each place on the list was assigned a value from 
twenty-five - which is given to each stimulus - to one, 
which is given to the twenty-fourth most-common 
response. For each match between two lists, the values 
of each word were multiplied together. The products of 
these pairs were added up and divided by the sum of all 
the squares through 25 minus 1, which is the value that 
two identical lists would have. Below is an example 
calculation using a list of ten words instead of twenty-

five. The method of calculation, however, would be the 
same. 

Columns A and C in Figure 1 contain the stimuli 
followed by their responses; columns B and D contain 
the values assigned to each. Pairs of words are 
highlighted in different colors. Note the pair in yellow; 
bonding is the stimulus in one list and the response in 
another. In this list, the student associates bonding with 
structure, but if the stimuli had not been assigned a value, 
this connection would have been lost. These sample lists 
generate a relatedness coefficient as calculated below: 

 𝑅𝐶 =
10 × 8 + 5 × 5 + 4 × 3 × +3 × 1 + 2 × 7 + 1 × 4

102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12 − 1
= 0.36 

(2) 

This procedure results in the relatedness coefficient 
between the pair of stimulus words; the larger the value, 
the more similar the two lists for each stimulus word are 
to each other. These coefficients are transformed into 
visual links between stimuli. 

JPathfinder, R, and Gephi: Transforming quantitative 
data into visual data 

The relatedness coefficients were inputted into 
JPathfinder, which contains an algorithm developed by 
Schvaneveldt (1990) that converts relatedness 
coefficients from similarity values into distances. For 
each set of data, the RC values were constructed into 
upper triangular matrices that paired stimulus words, 
which are now referred to as nodes in the knowledge 
structure, into all possible sets. The conversion to 
distance values determines how far apart the nodes 
would be in the knowledge structure: the higher the 
value of the RC, the more associated a pair of stimulus 
words is, and thus the distance between them should be 
shorter than that of two seemingly unrelated nodes. 
JPathfinder also provides eccentricity values for each 
node in the network: the smaller the deviation from the 
standard orbital, the more central the concept is in the 
network. The smaller the eccentricity value for a node, 

 
Figure 1. Sample lists of data shown in calculating the 
relatedness coefficient. The nine responses were the 
nine most frequent responses that students gave in the 
overall sample set 
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the less it deviates from the true center of the knowledge 
structure.  

Distance matrices outputted from JPathfinder were 
entered as matrix objects in the R platform, a compiler 
used for statistical programming. The data was 
transformed from a matrix to a distance object that 
would generate coordinates for the placement of each 
node in the knowledge structure from a multi- 
dimensional scaling (MDS) function developed by 
Spekkink (2015). The resultant 2D coordinate system 
placed each node within proximal orientation to each 
other according to the similarity conversion from 
JPathfinder. These dimensions were indexed to each 
stimulus word as an edge table, along with the distance 
values and linkage combinations, into an open 
visualization program called Gephi.  

The knowledge structure was analyzed using a 
combination of two layouts: Multi- Dimensional Scalar 
(MDS) and Network Splitter 3D. This first organized the 
data into their proximal orientation in space and then 
correlated the nodes into closely related topics, 
respectively. Nodes were color coded for visibility. 

The extended chemistry triplet 

The generated networks were further analyzed using 
the extended chemistry triplet. Each stimulus word was 
classified according to one or multiple levels of the 
extended chemistry triplet in the hope that this would 
reveal patterns in students’ thinking, namely the 
phenomenological, sub-microscopic and symbolic levels 
(Johnstone, 1991) and the process domain (Dori & 
Hameiri, 1998; 2003). Words were categorized by 
collecting ideas from different perspectives - 
undergraduates, graduate students, and professors - and 
making decisions based on these differing ideas as well 
as the general chemistry curriculum and how it is taught. 

The top 10 responses that the 2C student population had 
for each word were examined and it was decided based 
on what students’ thought processes were suggested to 
have been as they were completing the survey. The 2C 
responses were chosen because they encompassed all of 
the stimulus words, and the stimuli that they shared had 
the same response words as the 2A and 2B responses, 
only in a slightly different order. In cases where it was 
determined that more than one category from the 
quadruplet was applicable, the most relevant 
classification is left un-italicized in the table. 

RESULTS AND DISCUSSION 

As shown in the following sections, students’ 
knowledge structures evolved over the course of the 
series. As students learn new concepts, the structure of 
their knowledge constantly changes (Hovardas & 
Korfiatis, 2006). This evolution resulted in changes of 
proximity between the nodes in the knowledge 
structure: distances between the pre- existing concepts 
from 2A fluctuate depending on the other connections 
made with new concepts introduced in the series. This 
new knowledge then influenced the positioning of nodes 
within the students’ network. Therefore, knowledge 
structures for 2B and 2C could be compared directly 
with those from 2A and with each other. 

The Overall Knowledge Structures 

Significant translations of certain stimulus words in 
the knowledge structures occurred from one course to 
the next with the introduction of new the concepts 
stoichiometry, reaction, change, forces, and energy. In 
Chemistry 2A (Figure 2), the general student population 
associated stoichiometry more with stimuli such as atom 
and matter. In both 2B (Figure 3) and 2C (Figure 4), this 
concept was correlated with reaction and change. 

 
Figure 2. Overall knowledge structure for 2A students with each concept marked with its relation to the four 
representational levels of chemistry. The pentagon represents the macroscopic, the diamond represents the 
submicroscopic, the square represents the symbolic, and the triangle represents the process. 
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Likewise, from 2A to subsequent courses, forces was also 
transferred to the opposite side of the knowledge 
structure. Initially, forces was associated with reaction, 
whereas in 2B and 2C this node established closer 
connections with bonding and structure. 

While reaction, change, and energy did not make as 
great a change as stoichiometry and forces, their positions 
relative to each other changed within their maintained 
cluster. The distance that previously separated reaction 
and change in 2A decreased in the subsequent courses. In 
Chemistry 2B, this closely-associated pair was not 
identified with energy, which was more grouped with 
forces and thus bonding as well. This grouping was brief; 
as students learned topics such as kinetics and spontaneity 
in 2C, energy was again associated with the “reaction” 
cluster.  

Also, consistency was achieved between all three 
groups in parts of each structure. The cluster containing 
matter, atom, structure, and bonding remained relatively 
the same in each knowledge structure, except for the 
small changes in distances between concepts as students 
made more connections with knowledge gained in each 
course. 

It is interesting to note that for the most part, students 
incorporated new concepts from 2B and 2C into already-
existing clusters. The exceptions to this are acid/base and 
solubility in 2B and electrochemistry in 2C. Acid/base and 
solubility were unclustered in 2B, the class in which they 
were introduced. In 2C, they shifted closer together, 
although they continued to remain unassociated from 
any other cluster. Electrochemistry, which appears only in 

 
Figure 3. Overall knowledge structure for 2B students with each concept marked with its relation to the four 
representational levels of chemistry. The pentagon represents the macroscopic, the diamond represents the 
submicroscopic, the square represents the symbolic, and the triangle represents the process. 

 
Figure 4. Overall knowledge structure for 2C students with each concept marked with its relation to the four 
representational levels of chemistry. The pentagon represents the macroscopic, the diamond represents the 
submicroscopic, the square represents the symbolic, and the triangle represents the process. 
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the 2C graph, formed no close associations with any 
other topics. 

The extended chemistry triplet 

For further analysis, all of the stimulus words were 
classified as representing one of the three 
representational levels of chemistry - the macroscopic, 
submicroscopic, symbolic (Johnstone, 1991) - and the 
process domain (Dori & Hameiri, 1998; 2003). Although 
all the words can be described in any category at any 
level, the authors decided to categorize them based on 
the students’ top 10 response words in the hope of better 
understanding students’ thought processes. Johnstone 
(1991) has suggested that one of the reasons students 
might have difficulty solving chemical problems is 
because they fail to understand concepts and terms at 
more than one representational level, and sophisticated 
chemical thinking often requires thinking about 
concepts at more than one level. The analysis indicates 
that most of the time, students can relate each stimulus 
word to only one level. Table 1 shows all of the stimulus 
words with their chemistry triplet classifications. 

The level of analysis was deepened visually by 
marking each stimulus word on each knowledge 
structure using a symbol to indicate each 
representational level of chemistry. In cases where more 
than one of the chemistry triplet categories was 
determined to be relevant, the larger the symbol, the 
more directly correlated that category was determined 
to be to the stimulus word in question. 

The knowledge structure for 2A students (Figure 2) 
shows a rough pattern of clustering, but no single 
statement can be made about any of the categories of the 
representational levels of chemistry. Both poles of the 
structure contain stimuli that were identified across all 

areas of the representational levels of chemistry. The left 
portion of the structure is roughly submicroscopic, 
although forces, which is primarily submicroscopic, is on 
the opposite side of the structure. The right side of the 
network contains most of the macroscopically identified 
words, although as with matter, which exists on the 
opposite side of the graph, is also basically macroscopic. 

The sole word classified as symbolic, stoichiometry, 
exists in its own cluster. The two process-identified 
words, change and reaction, appear on the right side of the 
graph as part of a larger cluster. The structure of 2B 
students (Figure 3) shows a stronger pattern of 
clustering with the submicroscopic-classified stimuli 
compared to the 2A structure as the macroscopic stimuli 
became more spread out. Note that the placement of 
forces has shifted from the right side of the structure to 
the left, where it forms a cluster with other 
submicroscopic words. When compared to the 2A 
structure, the macroscopically-identified matter has 
shifted further away from the submicroscopic cluster on 
the left. The process words all form a part of the same 
cluster, albeit one that is not comprised solely of them. 
Stoichiometry also became associated with this cluster. 
However, when looking more closely at this cluster, a 
high degree of variation in classifications can be seen. 
Reaction, equilibrium, and change, which are all process- 
and macroscopically-identified, are clustered with one 
macroscopic word (spontaneity) and one symbolic one 
(stoichiometry). This pulling-in of stoichiometry is 
particularly noteworthy when compared to the 2A 
structure. This variation and the shifting placement of 
stoichiometry beg the question of how these stimuli are 
interacting with each other: Do students truly associate 
them with one another more strongly than they do with 
the other stimuli because of their shared classification? 
Or, are they separate sub-clusters whose proximity to 

Table 1. Stimulus Words and the Chemistry Triplet 

Course Stimulus Word Classification 

2A, 2B, 2C Atom Submicroscopic 

2A, 2B, 2C Bonding Submicroscopic 

2A, 2B, 2C Energy Macroscopic; Submicroscopic 

2A, 2B, 2C Matter Macroscopic 

2A, 2B, 2C Change Macroscopic; Process 

2A, 2B, 2C Forces Submicroscopic; Macroscopic 

2A, 2B, 2C Stoichiometry Symbolic 

2A, 2B, 2C Structure Submicroscopic 

2A, 2B, 2C Reaction Process; Macroscopic 

2B, 2C Equilibrium Process; Macroscopic 

2B, 2C Spontaneity Macroscopic 

2B, 2C Acid/Base Submicroscopic; Macroscopic 

2B, 2C Solubility Macroscopic 

2C Electrochemistry Macroscopic; Symbolic 

2C Kinetics Macroscopic; Symbolic 

2C Coordination Chemistry Symbolic; Submicroscopic 

2C Periodic Trends Symbolic; Submicroscopic 
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each other is accidental? The process category could be 
significant here because of the way the process level is 
defined as something in between other representations 
and not necessarily as its own defined category (Dori & 
Sasson, 2008). Thus, it could make sense that its cluster 
is more varied. 

The 2C structure (Figure 4) shows a much more 
consolidated cluster of submicroscopic stimuli, again 
located on the left side of the structure. A cluster of 
macroscopic topics continued to be present on the right 
and has as well become more defined, but, as with the 2B 
graph, more of the macroscopic-identified stimuli 
continued to be spread elsewhere on the structure. 
However, the symbolic stimuli were more widespread 
across the structure compared to that of the 2B students. 

The stimuli introduced in the 2C WAT could be part 
of the explanation for this. In contrast to the stimuli 
introduced in 2B, most of which were macroscopic, two 
of the four new words in the 2C WAT (periodic trends and 
coordination chemistry) were presented primarily 
symbolically, with a third (electrochemistry) presented as 
partially symbolic. However, these did not form a new 
symbolic cluster and instead were more associated with 
other, already-existing clusters. Students did not 
associate them at the symbolic level; instead, the most 
meaningful connections they created were with 
submicroscopic and macroscopic topics, and thus these 
new words in 2C were incorporated into pre-existing 
clusters. The most significant example of this is 
coordination chemistry, which students closely associated 
with structure and thus was tightly incorporated into the 
submicroscopic cluster. 

Also, it was noted that stoichiometry, which in contrast 
to the other symbolically identified stimuli, has pulled 

itself out of a cluster on the right and became associated 
with nothing else, as observed in CHE 2A structure. 

Eccentricity Values 

In order to enrich the interpretations of the 
knowledge structures and reveal what concepts the 
students determined to be truly central, eccentricity 
values for each knowledge structure were determined. 
When the similarity relationships were put into the MDS 
coordinate system, the nodes were thrown randomly 
into space and related to one another based on distances 
found in JPathfinder. Therefore, we cannot take the 
central concept to be in the exact center of the Gephi 
visualization, as it behaves analogously to a magnetic 
field where nodes attract and repel each other according 
to other nodes’ distances from one another (Spekkink, 
2019). Eccentricity data provides the most useful means 
to find the concept(s) that students access within their 
knowledge structure to understand their current general 
chemistry course. The higher the eccentricity value, the 
more extraneous the stimulus is to the rest of the 
structure. Thus, central concepts have the lowest 
eccentricity value among all stimuli, while concepts with 
the highest eccentricity values were what students 
deemed to be the least related to other concepts 
(JPathfinder). 

Table 2 notes the eccentricity values for each stimulus 
word follows, with the central concepts marked with an 
asterisk. 

The central concept for each knowledge structure, 
which was generated by JPathfinder, maintains a strong 
linearity throughout the general chemistry series. The 
central concepts for the overall courses are as follows: in 
2A, the centers were energy and forces; in 2B and 2C, it 
was energy.  

It is interesting to note that based on the eccentricity 
data, forces begins as a central concept in 2A. By 2C, 
however, it has become one of the least central concepts. 
This can also be explained by curriculum changes, as 
intermolecular or intramolecular forces are not highly 
emphasized in 2C. There is a greater emphasis on 
kinetics, reaction mechanisms, nuclear energy, and 
organic chemistry, and it is possible that students forget 
the underlying principles for the reactions and 
interactions happening at the particular level (Johnstone, 
1991). Another notable aspect of this data is how similar 
the centrality data for 2B and 2C are. With the exception 
of bonding and forces, all of the eccentricity values are the 
same for each stimulus. This reflects the lack of changes 
seen in the knowledge structures between 2B and 2C and 
provides more support for the idea that upon 
transitioning from 2B to 2C, students did not change 
their existing knowledge structures so much as add in 
new concepts. 

Table 2. Eccentricity Values for Each Stimulus 

Stimulus Words 2A 2B 2C 

Atom 6 9 9 

Bonding 5 7 9 

Energy 4* 5* 5* 

Matter 7 10 10 

Change 5 8 8 

Forces 4* 6 10 

Stoichiometry 7 9 9 

Structure 6 8 8 

Reaction 6 7 7 

Equilibrium - 8 8 

Spontaneity - 6 6 

Acid/base - 10 10 

Solubility - 9 9 

Electrochemistry - - 6 

Kinetics - - 7 

Coordination Chemistry - - 7 

Periodic trends - - 10 
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High- and Low- Achieving Students 

A new set of knowledge structures were generated 
for the high- and low-achieving students, which were 
identified based on their scores on Chemistry Placement 
Test and grades in CHE 2A, 2B, and 2C. These structures 
were compared to determine the characteristics of high- 
and low-achieving students’ knowledge structures. 
However, on the contrary of the findings reported in 
different studies (McGowen, 2013; von der Heidt, 2014) 
utilizing concept maps, the analysis of clusters on these 
structures indicated that there is no significant difference 
between these knowledge structures. One explanation 
might be that knowledge structures develop similarly 
but are used more effectively by higher achieving 
students. Another reason could be that the WAT 
assessment on its own is not able to reveal how students 
utilize their knowledge and does not account for the 
presence of a gap in student ability. It may be useful to 
compare students’ knowledge structures to data 
retrieved from student performances in computing 
algorithmic and conceptual problems. One final reason 
behind this lack of difference between high- and low-
achieving students’ structures could be related to how 
Gephi determines the clusters with its limitations. Gephi 
uses the nodes’ (stimuli words’) relative distances with 
each other to create clusters (Spekkink, 2019). While 
doing this, it is possible that the program ignores certain 
variations in the distances and still groups the words of 
the low-achieving students in the same way as it groups 
those of the high-achieving students. 

LIMITATIONS 

As the Gephi-generated concept maps are not 
physical representations of students’ minds but the 
visually represented mathematical networks used for 
analytical purposes, the number of students participated 
in the study had a direct effect on the structures.  

The subset of students who participated in the WAT 
was one limitation. This is significant because of the way 
the WAT is analyzed. As the number of students who 
participate in the survey decreases, the frequencies of 
each word become smaller and more words with the 
same frequency occur. 

Another limitation presented itself across all surveys, 
but it was especially apparent in the 2C survey because 
of its length. More students started the survey than 
completed it, and the way each WAT was structured, 2A 
words were listed first, then 2B, then 2C. If a student 
chose to stop participating halfway through, or wrote in 
answers that were not meaningful, the later stimuli were 
affected negatively. 

CONCLUSIONS 

This study revealed the evolution of the knowledge 
structures of undergraduate students enrolled in general 

chemistry. Change and progress in the development of 
students’ knowledge structures were identified through 
Word Association Tests (Johnson, 1967, 1969). By time of 
general chemistry learning, networks become richer in 
connections as students are exposed to more concepts 
and because more stimulus words can be provided in 
each WAT.  

Evolution of a general chemistry student’s 
knowledge structure is evident in the changes of 
organization and placement of key concepts within their 
structure over the course of their education. Comparison 
of the location of each node and their proximity to other 
closely associated nodes between Chemistry 2A, 2B, and 
2C knowledge structures reveals aspects of students’ 
comprehension of learned topics and their relation 
towards one another after completion of the series. The 
knowledge structures in Figure 2 to 4 indicate that 
students’ knowledge becomes more networked by time, 
but also that certain concepts are re-interpreted and 
differently connected one to another after certain phases 
of instruction. 

The interpretation of knowledge structures paired 
with the different representational levels of chemistry - 
namely the macroscopic, sub-microscopic, symbolic 
levels (Johnstone, 1991) and the process domain (Dori & 
Hameiri, 1998; 2003) - adds a new thought to the 
literature. It, however, became clear that students do not 
simply form separate clusters for the different 
representational levels. It is also clear that students 
connected certain stimuli to one representational level, 
whereas they found other stimuli to be simultaneously 
represented at multiple levels. Nevertheless, it seems 
they do not conceptualize that all the given stimuli have 
to be considered and interpreted on all relevant 
representational levels, as suggested by Johnstone (1991) 
for forming an expert view on chemical knowledge. 

Further applications or WATs might better take this 
association of stimuli to representational levels into 
consideration when studies and corresponding tests are 
designed. Different stimuli can be given which are more 
clearly identifiable to represent one of the 
representational levels of chemistry or the process 
domain. Teaching may do the same when concepts are 
introduced in class.  

The study did not identify any significant differences 
in high- and low-achieving students’ knowledge 
structures. It is not fully clear whether there are specific 
reasons for the similarities observed in the structures or 
a limitation of the study prevented the authors 
determining the differences. Further research should 
examine this point, either with a different and 
purposefully selected sample, with a revised WAT, or 
with techniques such as interviews, WATs combined 
with concept maps, or WATs and think aloud 
approaches. 
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