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ABSTRACT 
The concept of probability has a unique characteristic that causes confusion when a 
sample space is not clearly defined. This inherent nature of probability has been 
demonstrated in Bertrand’s chord problem, which is well-known as the paradox of 
probability theory. This study demonstrated that a single probability in Bertrand’s 
chord problem can be obtained by modifying it to clearly redescribe its sample space, 
and examined that how college students clarify the sample space. To this end, five 
modified questions were formed using Bertrand’s chord problem to ensure that the 
sample space of each question was clearly expressed and were used to develop a 
survey questionnaire. The participants of the survey were 68 college students studying 
mathematics or mathematics education. The results of this study demonstrated that 
many college students have difficulty to seek out the sample spaces in some probability 
problems. Thus we suggested the importance of emphasizing to clarify the sample 
space in probability education. 

Keywords: Bertrand’s chord problem, paradox, college students, five modified 
Bertrand’s questions, probability, sample space 

 

INTRODUCTION 
Probability is a relatively familiar term that is widely used in this information age. For instance, the question ‘what 
is the probability of obtaining heads when flipping a coin?’ is asked ordinarily and most people answer “1

2
”. This is 

because most people approach the question by thinking that a coin has a heads side and a tails side and the chance 
of the coin falling either heads or tails is the same. 

However, it is debatable whether the heads and tails sides of a coin are indeed obtained under the same 
condition or not. The designs on the heads and tails sides of a coin are different and it is uncertain whether the 
specific gravity in the coin is evenly distributed. One aspect that must be understood in the experiment of flipping 
a coin is that the assessment “the probability of each side is the same because they exist under the same condition” 
is not an absolute truth, but a selected assumption. In other words, the 1

2
 probability of obtaining heads is not a 

transcendental and absolute truth, but it results from the assumption that each case has the same chance of 
occurring (Batanero, Henry, & Parzysz, 2005; Kim, 2008; Rubel, 2007; Woo, 1998). 

Accordingly, the concept of transcendental and absolute probability does not exist. The classical definition of 
probability provided by Laplace in the 19th century, the so-called mathematical probability, is based on the 
fundamental premise that each element within a sample space has the same chance of occurring (Alexander & 
Kelly, 1999; Gauvrit & Morsanyi, 2014; Gillies, 2000; Woo, 1998). According to the classical interpretation, 
probability is defined as the ratio of the number of elements of a certain event to the number of the elements of the 
sample space, and geometrical probability typically fits this interpretation as well (Lee, 1997). Considering this 
classical interpretation of probability, the importance of clarifying whether each element within the sample space 
is under the same condition has been widely recognized and is highlighted in school education (Batanero & 
Borovcnik, 2016; Garfield & Ahlgren, 1988). Many studies reported important results on students’ probabilistic 
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thinking (e.g., Agus, Peró-Cebollero, Penna, & Guàrdia-Olmos, 2015; Fischbein & Gazit, 1984; Fischbein & Schnarch, 
1997; Green, 1983; Hawkins & Kapadia, 1984; Konold, 1989; Kwon & Lee, 2015; Kwon, Kim, & Lee, 2014; Rubel, 
2007; Shaughnessy, 1977). Some researchers emphasized and focused on sample space that plays an important role 
in probabilistic tasks and situations (e.g., Chernoff, 2009; Chernoff & Zazkis, 2011; Jones, Langrall, & Mooney, 2007; 
Jones, Langrall, Thornton, & Mogill, 1997, 1999; Shaughnessy, 1998).  

Despite these researchers’ emphasizing the sample space, recently, Choi, Yun, and Hwang (2014) reported that 
pre-service mathematics teachers still have the difficulty to understand the sample space. They proposed that 
students should be provided with the opportunity to think about the sample space in probability and statistics 
education. We suggest that teacher educators and teachers would use Bertrand’s chord problem as one of these 
opportunities. That’s because we saw both groups of pre-service and in-service mathematics teachers who didn’t 
understand the solutions of Bertrand’s chord problem in our classrooms. Many college students and mathematics 
teachers didn’t understand why there exist three solutions for this problem and why it is called a paradox. We 
thought that’s because they didn’t have the chance to meet its solutions exposing the term sample space although 
each solution represents chance and inherent equiprobability. Like this, the mathematical definition of probability 
can cause further confusion unless clearly defining the fundamental events that have equiprobability in probability 
space. Lee (1997) and Woo (1998) noted that this paradox is the limits to the mathematical interpretation of 
probability with its classical definition. In this article, we would represent the term Bertrand’s chord problem 
instead of Bertrand’s paradox. 

With this backdrop, this study used Bertrand’s chord problem to demonstrate that the limits to the mathematical 
definition of probability in some probability problems can be overcome by clarifying the sample space, and to 
emphasize that it is important to teach students to clearly define the sample space in probability problem. To this 
end, each solution of Bertrand’s chord problem was represented using the term sample space and this problem was 
modified in five ways to ensure the existence of only one sample space. These modified problems were given to 
college students studying mathematics and mathematics education to demonstrate that how well they could clarify 
the sample spaces and obtain a single probability. 

BACKGROUND 

Discussion of Bertrand’s Chord Problem 
Bertrand’s chord problem has been discussed by many researchers (Aerts & Sassoli de Bianchi, 2014; Borovcnik, 

Bentz, & Kapadia, 1991; Drory, 2015; Gyenis & Rédei, 2014; Jaynes, 1973; Klyve, 2013; Marinoff, 1994; Porto, 
Crosignani, Ciattoni, & Liu, 2011; Rowbottom, 2013) since Bertrand introduced it in 1889. Bertrand’s chord problem 
using Bertrand’s words is as follows. 

Bertrand’s chord problem. We draw at random a chord onto a circle. What is the probability that it 
is longer than the side of the inscribed equilateral triangle? (Aerts & Sassoli de Bianchi, 2014, p. 1) 

Bertrand (1989) proposed this problem which leads to the different results P(A) = 1
2 
, P(B) = 1

3
, and P(C) = 1

4
. 

These probabilities are according to each of the three assignments for ‘equally possible situations’; (A) the linear 
line between centers of chord and circle, (B) angles of intersections of the chord on the circumference, and (C) the 
center of the chord over the interior area of the circle (Jaynes, 1973). Even though Bertrand presented three answers 
for it, Jaynes (1973) concluded that Bertrand’s chord problem is well posed and has the unique probability P(A) =
1
2 
. This conclusion was followed by his viewpoint toward probability theory that “the only valid basis for assigning 

probabilities is frequency in some random experiment (p. 2)”. Using an analogy with a cylindrical cake cutting, 
Rowbottom (2013) also insisted that Bertrand’s original problem is vague and all Bertrand’s three solutions are not 
the effective potential ways.  

Other researchers who had referenced Bertrand’s problem supported Bertrand’s three different solutions. 
Borovcnik, Bentz, and Kapadia (1991) described that each of the three solutions shows chance determined by the 
equiprobability of Laplace’s definition through its individual random generator. Marinoff (1994) showed Bertrand’s 
chord problem is equivocally brought up but the many versions of Bertrand’s original problem by clearly stated 

Contribution of this paper to the literature 

• This study provides a new perspective on Bertrand’s chord problem in that it approaches as a sample space. 
• We highlight the importance of guiding to clarify sample space in probability education. 
• This study shows some limits to the mathematical definition of probability can be overcome by clearly 

defining fundamental events with equiprobability. 
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variations lead to different solutions can be solved. Porto, Crosignani, Ciattoni, and Liu (2011) basically accepted 
that Bertrand’s results are all correct as well as many other possible ones because a chord drawing randomly cannot 
be uniquely defined. They provided a realistic physical experiment associating with it as alternative to Bertrand’s 
chord problem. Furthermore, Klyve (2013) defended Bertrand’s intention against Rowbottom (2013)’s 
interpretation of Bertrand’s chord problem. Klyve noted that Rowbottom misinterpreted what Bertrand said about 
the random chord although his conclusion is correct according to his own description. Drory (2015) discussed that 
it has inherent ambiguity and depends on explicitly defining the selection procedure for the random chords. 

Meanwhile, Aerts and Sassoli de Bianchi (2014) showed that Bertrand’s chord problem includes an easy 
problem and a hard problem. They reported that the easy problem is solvable by clarifying Bertrand’s chord 
problem in precise terms. They presented one example for a specific physical realization of Bertrand’s chord 
problem which has the same to three different answers proposed by Bertrand, and then insisted that Bertrand’s 
three solutions should be more easily explained via three different conditional probabilities. Thus, Aerts and Sassoli 
de Bianchi concluded that Bertrand’s chord problem should not anymore be considered as a paradox. Also, they 
remade the hard problem using modified Bertrand’s chord problem in that two points instead of a straight line are 
randomized. This hard problem became solvable by calculating a uniform average, which they called a universal 
average, over all possible ways of selecting an interaction.  

Unlike above researchers who focused on Bertrand’s chord problem’s solutions and answers, Gyenis and Rédei 
(2014) suggested a new interpretation of it and investigated the relation between Bertrand’s chord problem and the 
classical interpretation of probability. They argued that this paradox is harmonized with how the science uses 
mathematical probability theory to model phenomena, without making any damage the principle of indifference 
and the classical interpretation of probability. 

Solutions to Bertrand’s Chord Problem using the Term Sample Space 

In general, many researchers and practitioners cited three typical solution methods that lead to the results 1
2 

, 1
3
, 

1
4
 (see, Aerts & Sassoli de Bianchi, 2014; Borovcnik, & Bentz, 1991, Drory, 2015; Lee, 1997; Marinoff, 1994; Porto et 

al., 2011; Woo, 1998). Kim (2008) introduced other two other solutions which lead to the results of impossibility and 
indefinite, respectively. However, they described the results and probabilities without using the term sample space 
in three different solutions for it. In this section, we tried below five solutions to help mathematics teachers and 
students understand the solutions of Bertrand’s chord problem in terms of sample space. Also, these were supposed 
to be the basis of five modified Bertrand’s chord questions given as testing tool in the next section. 

Solution 1. Suppose that a line segment passes through midpoint D of the opposite side of the vertex A of an 
equilateral triangle inscribed in a circle, as shown in Figure 1 and that the point where the line segment meets with 
the circle is B. Assume that the set of all chords that are perpendicular to line segment AB is the sample space. The 
length of such perpendicular chords in this probability space is determined by the location of point P, which is 
defined by the intersection of line segment AB with a perpendicular chord. 

Suppose that C is a point where line segment AB meets with a chord that has the same length as the triangle side 
within the sample space and that C is not located on the opposite side of vertex A. When a point Plies on line segment 
CD, the length of the chord is greater than the side of the equilateral triangle inscribed in the circle. In other words, 
the probability in this case is the same as the probability that point P is on line segment CD. Therefore, the length of 
line segment CD is 1

2
 of the length of diameter AB. Therefore, we obtain a probability of 1

2
. 

 
Figure 1. A chord vertical to diameter AB 
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Solution 2. As a chord is determined by two points on a circumference, consider the vertex A of an equilateral 
triangle inscribed in a circle as one endpoint of a chord, as shown in Figure 2. Suppose that the set of all chords that 
are drawn from vertex A is the sample space of a probability space. The chords included in this probability space 
are determined by the location of their other endpoints Ps. 

Suppose that the other two vertices of the triangle inscribed in the circle are B and C. When the endpoint P of a 
chord is on arc BC, the length of the chord is greater than the side of the triangle inscribed in the circle. In other 
words, the probability in this problem is the same as the probability that point P is on arc BC. Therefore, the length 
of arc BC is 1

3
 of the length of the circumference. Therefore, the probability is 1

3
.  

Solution 3. Suppose that the midpoint of a randomly drawn chord is M, as shown in Figure 3, and that the 
radius of a circle inscribed in an equilateral triangle is 𝑟𝑟′. A circle circumscribed about the equilateral triangle is 
denoted by 𝑂𝑂 and the circle with radius 𝑟𝑟′ by 𝑂𝑂′. The probability of the question is the same as the probability that 
the midpoint M is within the circle 𝑂𝑂′ in a probability space of which a sample space is defined as a set of midpoints 
M of randomly drawn chords. Therefore, the area of circle 𝑂𝑂′ is 1

4
 of the area of circle 𝑂𝑂. Therefore, this probability 

is 1
4
. 

Solution 4. Suppose that a line segment passes through the midpoint of the opposite side of the vertex A of an 
equilateral triangle inscribed in a circle and that this line segment meets the circle at point B, as shown in Figure 4. 
Draw a tangent line 𝑙𝑙 that passes through point B. Suppose that an extension of chord AP having A as one endpoint 
meets with tangent line 𝑙𝑙 at the point P′. Each chord AP has a one-to-one correspondence with each point P′ on 
tangent line 𝑙𝑙. In other words, the statement “draw chord AP from vertex A” is equivalent with “select point P′ on 
tangent line 𝑙𝑙”. Therefore, suppose that the set of all points defined by the intersections of the extensions of all 
chords drawn from vertex A of the triangle with tangent line 𝑙𝑙 is the sample space of a probability space. The chords 
contained in this probability space are determined by the locations of points P′s. 

Suppose an equilateral triangle ACD inscribed in a circle and that the contact points of the extensions of the two 
chords AC and AD with tangent line 𝑙𝑙 are C′ and D′, respectively. When the contact point of the extension of a chord 
with tangent line 𝑙𝑙 lies on line segment C′D′, the length of the chord is greater than the side of the equilateral triangle. 
In this case, however, the length of the line of the sample space is infinite; thus, if its probability is defined by the 
length, this leads to a contradiction. Therefore, it is impossible to solve the problem under this condition. 

 
Figure 2. A chord fixed at point A 

 
Figure 3. A chord with a midpoint M 
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Solution 5. Suppose that a closed curve with length 𝐿𝐿 is circumscribed in a circle and touches the circle at the 
vertex A of an equilateral triangle, as shown in Figure 5. As the extension of a chord has a one-to-one 
correspondence with the contact point on the closed curve, like in Solution 4, suppose that the sample space of a 
probability space is the set of all points defined by the intersections of the extensions of all chords drawn from A 
with the closed curve. The chords included in this probability space are determined by the locations of points P′s. 

Consider an equilateral triangle ABC inscribed in a circle and that the contact points of the extensions of the two 
chords AC and ADwith the closed curve are C′ and D′, respectively. When the contact point of the extension of a 
chord with the closed curve is on curve segment C′D′, the length of the chord is greater than the side of △ ABC. 
Suppose that the length of curve segment C′D′ is 𝑙𝑙, the length of the closed curve is 𝐿𝐿, and the length of a partial 
curve is 𝑙𝑙. Therefore, the probability is 𝑙𝑙

𝐿𝐿
. However, considering that the closed curve circumscribed from point Acan 

be randomly drawn, the lengths 𝐿𝐿 and 𝑙𝑙 can vary. Therefore, the answer is indefinite. 
As shown by the five solutions above, the cause of confusion in Bertrand’s chord problem results from the 

ambiguous expression ‘a chord randomly drawn’, which does not clarify ‘in which probability space its probability 
distribution is provided’ or ‘which fundamental events occur under the same condition’. In other words, this shows 
the importance of clarifying the premise of a sample space under the same condition in Bertrand’s chord problem. 
Against this backdrop, we discussed below how well college students clarify each sample space in five modified 
Bertrand’s chord questions asking a single answer. 

METHODS 

Testing Tool 
We modified Bertrand’s chord problem to clearly show five fundamental events that have the same possibility 

to occur; in other words, to clearly find out the sample space which was intended in each question. Using the testing 
tools shown in Table 1, this study investigated how well the college students could correctly determine the sample 
space and the probability that satisfies the conditions of individual questions. We provided appropriate figure in 
each modified problem to help students find out all chords which were intended as the elements of the sample 
space.  

The sample spaces designed in five modified questions in Table are as follows. In question No. 1, the sample 
space is defined as the set of all chords perpendicular to a fixed diameter of a circle. In question No. 2, the sample 
space is defined as the set of all chords drawn from one fixed vertex of a triangle. In question No. 3, the sample 
space is defined as a set collecting all midpoints Ms of randomly drawn chords. In question No. 4, the sample space 

 
Figure 4. A point where the extension of a chord fixed at a point on a circle meets with a tangent line 

 
Figure 5. A point where an extended line of a chord fixed at a point on a circle meets with a closed curve 
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is presented as the set of all intersection points where the extensions of all chords drawn from vertex A of the 
triangle meet with tangent line l. In question No. 5, the sample space is the set of all intersection points where the 
extensions of all chords drawn from the fixed vertex A of a triangle meet with the closed curve. 

Participants 
An offline survey using the above testing tools was planned to be conducted for the 3rd- and 4th-year students 

who major mathematics or mathematics education at the J national university. We recruited 68 volunteered 
students to participate in this survey using two department bulletin boards during one week. Table 2 shows the 
information of the survey participants, including their major subject, grade, and gender. Among the participants, 
the numbers of the 3rd- and 4th-year college students were 45 and 23, respectively. Three of the 68 participants 
responded that they had studied Bertrand’s chord problem before and the remaining 65 students that they had not 
studied it yet. 

Table 1. Testing questions 
Questions 

1. Suppose that a line segment passes through the midpoint D of the opposite side of the vertex A of an 
equilateral triangle inscribedin a circle and that the line segment meets the circle at point B, as shown in 
the figure on the right. What is the probability that the length of a chord whose extension is drawn 
perpendicularly to diameter AB is longer than the side of the triangle? 

2. Suppose a chord that defined by a random point P on the circumference of a circle and by the vertex A 
of an equilateral triangle inscribed in the circle, as shown in the figure. What is the probability that the 
length of a chord is greater than the side of the triangle inscribed in the circle? 

3. Suppose an equilateral triangle inscribed in circle 𝑂𝑂 and another circle 𝑂𝑂′ inscribed in the triangle. What 
is the probability that the midpoint M of a random chord of circle 𝑂𝑂, as shown in the figure, is located 
inside circle 𝑂𝑂′? 

4. Consider an equilateral triangle ACD inscribed in a circle, as shown in the figure, and the 
tangent line 𝑙𝑙 that is parallel to side CD. Suppose that the contact points of sides AC and AD 
with tangent line 𝑙𝑙 are C′ and D′, respectively. If a chord AP starts from vertex A and passes 
through a random point P on the circumference of the circle, what is the probability that the 
contact point P′ of line AP with tangent line 𝑙𝑙 is located on line segment C′D′? 

5. Consider an equilateral triangle ACD inscribed in a circle, as shown in the figure, and a random 
closed curve 𝐿𝐿 circumscribed in a circle that contacts the circle at vertex A. Suppose that the 
contact points of lines AC and AD with curve 𝐿𝐿 are C′ and D′, respectively. If line AP starts from 
vertex A and passes through a random point P on the circumference of the circle, what is the 
probability that the contact point P′ of line AP with the closed curve is located on curve segment 
C′D′? 
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Data Collection and Analysis 
The survey was conducted in their department lecture rooms in October 2014. The survey date depended on 

grades and major. The participants were supplied with the survey questionnaire and were instructed to solve the 
questions in the given order and not to change their solution process and answers; this method was intended to 
clarify how well they approach individual questions. The total response time for the five questions was unlimited 
to ensure that the students could provide their answers without restrictions.  

To analyze how well the students responded on the five modified Bertrand’s chord questions, we input their 
all answers in Microsoft Office Excel and calculated the frequency and the response percentage on each answer. 
We also qualitatively analyzed their incorrect answers to interpret how they approached to each question and to 
infer whether they had errors in selecting a sample space or in the concept of probability itself. We presented the 
students’ wrong solutions as real examples. 

RESULTS AND DISCUSSION 

Responses to Modified Question No. 1 
Question No. 1 was modified to define a set containing all chords perpendicular to a fixed diameter of a circle 

as the sample space. The distribution of the students’ responses was as shown in Table 3. Approximately 72% of 
the surveyed students answered that the probability was 1

2
 . In addition, two of the three students who responded 

that they had studied Bertrand’s chord problem before answered “1
2
” and the rest did not respond to Question No. 

1. This indicated that most of the surveyed students could solve the probability question without much confusion 
when the sample space was defined as the set of all chords perpendicular to a fixed diameter of the circle. 

Because all incorrect answers, except one incorrect answer of 0, were presented without any information on the 
solution process, it was difficult to determine the causes of errors. We just could infer that they would have any 
difficulty to solve some geometrical probability problems or to understand some mathematical concepts involved 
in this question. The student who answered “0” considered a right-angled triangle inscribed in the circle instead of 
an equilateral triangle, owing to a lack of understanding of the question. 

Modified Question No. 2 
Question No. 2 was modified to define the sample space as a set of all chords drawn from one vertex of a 

triangle. The participants’ response distribution was as shown in Table 4. Approximately 72% of the surveyed 
students answered that the probability was 1

3
. In addition, all three students who had studied Bertrand’s chord 

problem before answered “1
3
”. Among the 49 students who answered correctly to Question No. 1, 40 students 

answered correctly again. In other words, approximately 59% of the total surveyed students answered correctly 
both to Questions Nos. 1 and 2. This indicated that the surveyed students could solve the probability question 
without much confusion when its sample space was defined as the set of all chords drawn from one vertex of the 
triangle. 

Table 2. Participants 

Major 
Year Gender 

Total 3rd 4th Male Female 
Mathematics 28 23 28 23 51 
Mathematics Education 17 0 7 10 17 
Total 45 23 35 33 68 

 

Table 3. Distribution of responses to modified Question No. 1 

Answers 𝟏𝟏/𝟐𝟐 𝟏𝟏/𝟑𝟑 𝟏𝟏/𝟒𝟒 Other incorrect 
answers 

Non 
Response Total 

Frequency 49 4 4 7 4 68 
Percentage 72 6 6 10 6 100 
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To determine the causes of the incorrect answers to Question No. 2 of those who answered correctly to Question 
No. 1, their processes of solving the two questions were reviewed. Table 5 shows the answers of one student who 
answered correctly to Question No. 1 but incorrectly to Question No. 2. This shows that some students made an 
error in calculating the length of the partial curve that meets the conditions, not in selecting a sample space or one 
related to the concept of probability. 

Modified Question No. 3 
Question No. 3 was modified to define a set containing the midpoints of all random chords as the sample space; 

the response distribution is shown in Table 6. The number of students who correctly answered “1
4
” to Question No. 

3 was a mere 19% of the total sample. In addition, only one of the three students who had studied Bertrand’s chord 
problem before answered “1

4
” and the other two answered “1

2
” and “1

3
”. In particular, only seven of the 13 

participants who answered correctly to Question No. 3 also answered correctly both to Questions No. 1 and No. 2. 
This indicates that more than 80% of the surveyed students calculated the probability in Question No. 3 incorrectly. 

Unlike the two previous questions, Question No. 3 showed a relatively high incorrect answer rate. To determine 
the cause of this observation, some notable incorrect cases were reviewed, as shown in Table 7. 

The cases (A) and (B) were the most common as participants’ answers of this question. It was possible to assume 
that most of the students who incorrectly answered had a difficulty in finding the sample space of this question. 
These students revealed the error of recognizing only a part of the sample space intended in this question because 
they did not consider all random chords and limited it to the set of some chords. In other words, these students 
could understand the concept of probability but had difficulty to clarify the sample space satisfying the condition. 
From this result, we could reconfirm the reason why many pre-service and in-service mathematics teachers had 
difficulty to focus on the position of midpoint M which uniquely determines the chord among original three 
solutions of Bertrand’s chord problem. It can be inferred that they had difficulty to seek out the set to all midpoints 
because of not considering all random chords. 

In the cases (C) and (D), only one student answered incorrectly, as shown in the Table 7; the student succeeded 
in defining the sample space but made errors in calculating probability and in determining the figure of the event. 

Table 4. Distribution of responses to modified Question No. 2 

Answers 𝟏𝟏/𝟐𝟐 𝟏𝟏/𝟑𝟑 𝟏𝟏/𝟒𝟒 Other incorrect 
answers 

Non 
Response Total 

Frequency 3 49 2 9 5 68 
Percentage 5 72 3 13 7 100 

 

Table 5. The case of a student who answered correctly to Question No. 1 and incorrectly to Question No. 2 
Correct answer to No.1 Incorrect answer to No.2 

 

AB���� = 1 

CD���� =
1
2

 
When P moves on CD����, 
* is satisfied. 
Therefore, the correct answer 
is 1

2
 

 

When P is moving on  arc BC, 
* is satisfied. 
Put radius: 𝑟𝑟, 
the circumference: 2𝜋𝜋𝑟𝑟. 
Arc BC: 2𝜋𝜋𝑟𝑟 × 1

6
= 𝜋𝜋𝜋𝜋

3
 

πr
3
2πr 

=
1
6

 

 

Table 6. Distribution of responses to modified Question No. 3 

Answers 𝟏𝟏/𝟐𝟐 𝟏𝟏/𝟑𝟑 𝟏𝟏/𝟒𝟒 Other incorrect 
answers 

Non 
Response Total 

Frequency 30 7 13 13 5 68 
Percentage 44 10 19 19 7 100 
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Considering these results, we conclude that most of the students who answered incorrectly had difficulties in 
defining the sample space and event in this question, which is essential to calculate geometrical probability. 

Modified Question No. 4 
Regarding modified Question No. 4, it is impossible to define the probability owing to the infinite length of a 

line of the sample space. The response distribution of the surveyed students was as shown in Table 8. 
Approximately 74% of the participants answered “1

3
” incorrectly. No student answered that it was impossible to 

Table 7. Cases of incorrect answers to Question No. 3 
 Cases Error analysis 

(A) 
 

Consider chords that are parallel with the chord shown in the figure. The 
probability that the midpoints of these chords are located within circle 𝑂𝑂′:  

diameter of the small circle
diameter of the large circle 

=  
1
2

 

It shows error in determining the 
sample space and event. The 
participant failed to consider random 
chords and defined a set of the 
midpoints of chords that are parallel 
with the chord shown in the figure as 
the sample space.  

(B) 

 
When defining chords that pass through point A,  
chords should be located between AB���� and AC���� 
to have their midpoints located within circle 𝑂𝑂′.   
Therefore, 60°

180°
= 1

3
 

It shows error in determining the 
sample space and events like the case 
(A). The participant failed to consider 
random chords and defined the 
sample space as a set of the midpoints 
of the chords that had one endpoint 
fixed at one vertex of the triangle.  

(C) 

 
M is located within circle 𝑂𝑂′.  
The area of a circle with radius 𝑎𝑎is 𝑎𝑎𝜋𝜋2.  
The area of circle 𝑂𝑂′ is 1

16
𝑎𝑎2𝜋𝜋. 

∴ Probability: 1
16

 

Participant successfully determined 
the sample space and event but made 
an error in the process of calculating 
the area of the circle inscribed in the 
triangle.  

(D)  
The midpoints of the chords correspond one-to-one with the chords.  
If the radius of circles 𝑂𝑂 and 𝑂𝑂′ are 𝑟𝑟, 𝑟𝑟′, respectively, then 𝑟𝑟: 𝑟𝑟′ = 2: 1 
Thus, the areas of the circles are 𝑆𝑆(𝑂𝑂):𝑆𝑆(𝑂𝑂′) = 4: 1. 
The probability that the midpoints of the chords are located within the 𝑂𝑂 −
𝑂𝑂′ range is 3

4
 

The participant succeeded in defining 
the sample space but made an error in 
the process of calculating the figure of 
the event.  
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define a sample space satisfying the axiom of probability in this question. This result seems to be attributable to the 
fact that cases with infinite length and the area of a sample space had not been addressed in the process of teaching 
the concept of probability. 

The case shown in Figure 6 indicates the reason why most of the surveyed students answered “1
3
” to this 

question. This case shows that most of participants failed to recognize the set of the contact points P′ between lines 
AP and tangent lines 𝑙𝑙 as the sample space of this problem. In other words, they made an error in recognizing the 
set of the endpoints of all the chords drawn from the vertex A of the triangle as the sample space, like in modified 
Question No. 2. 

However, one student determined the sample space and event correctly, as shown in Figure 7. The student 
understood that the sample space in this question was the line segment C′D′ on the tangent line but failed to 
calculate the probability because the length of the line starting from vertex A was ∞ and the length of the line 
segment was finite. 

Modified Question No.5 
In terms of modified Question No. 5, the probability is indefinite because the closed curve, the sample space in 

this case, is circumscribed at point A and it can be randomly drawn. The response distribution of the surveyed 
students was as shown in Table 9. Approximately 66% of the participants answered “1

3
” incorrectly and most of 

them failed to correctly determine the sample space and event, like in modified Question No. 4. Unlike in Question 
No. 4, some students correctly described the probability as a generalized ratio of the length of the figure of the 
sample space to the figure of the event. 

The reason why most of the surveyed students answered “1
3
” to this question can be assumed from the case 

shown in Figure 8. This case shows that most of the participants failed to recognize the set of the contact points P′s 
between lines AP and the closed curve as the sample space in this case, like in Question No. 4. In other words, they 

Table 8. Distribution of responses to modified Question No. 4 

Answers 𝟏𝟏/𝟐𝟐 𝟏𝟏/𝟑𝟑 𝟏𝟏/𝟒𝟒 Other incorrect 
answers 

Non 
Response Total 

Frequency 1 50 3 7 7 68 
Percentage 2 74 4 10 10 100 

 

 
Figure 6. Case of incorrect answer Question No. 4 

 
Figure 7. Case of correctly finding the sample space Question No. 4 

Table 9. Distribution of responses to modified Question No. 5 

Answers 𝟏𝟏/𝟑𝟑 Similar answers Other incorrect 
answers 

Non 
Response Total 

Frequency 45 1 10 12 68 
Percentage 66 2 14 18 100 
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made the same error as in Question No. 4. However, some students determined the sample space and event 
correctly and generalized the probability, as shown in Figure 9. 

In Figure 9, the student correctly understood that the sample space was a random closed curve and that the 
event was the union of partial curves of this closed curve. This particular student also correctly determined the 
sample space in Question No. 4 and had not studied Bertrand’s chord problem before. These results show that most 
of the students had difficulties in seeking out the sample space which was intended in the question, which is 
essential for defining the probability in some cases. 

CONCLUSION AND IMPLICATIONS 
The concept of probability has a unique characteristic that causes confusion when no clear definition is 

provided for the sample space, which is a universal set of elements with the same chance to occur. We can identify 
this inherent nature of probability via Bertrand’s chord problem, which is known as a probability paradox. This 
problem has three solutions because it doesn’t clarify sample space which is intended. So, we modified Bertrand's 
chord problem to have the single probability, and we examined how college students studying mathematics and 
mathematics education seek out the sample spaces represented in five modified Bertrand’s chord questions. 
Additionally the study highlighted the importance of clarifying the sample space in defining the probability space. 
From the results of the survey, the following implications for probability education were obtained.  

First, in some modified Bertrand’s chord questions (No. 1 & No. 2) in which the sample space is clearly defined, 
approximately 70% of the surveyed college students correctly determined the sample space and event and 
calculated its probability. These results imply that many students can get a single probability by clarifying the 
sample spaces in some questions without any confusion. We suggest that it is necessary to clearly expose the sample 
space in probability questions unless we does not use Bertrand’s chord problem as an open-ended question that 
can generate multiple answers with various approaches.  

Second, in questions with clearly defined sample spaces (No. 3, No. 4, & No. 5), approximately 80% of the 
surveyed students failed to determine the sample spaces and events correctly. This means that many students still 
have difficulty in determining all possible outcomes that could occur in some probabilistic tasks even though they 
understand the concept of probability. It is in agreement with previous studies which suggested that many students 
have difficulty in seeking out the sample space (e.g., Borovcnik & Bentz, 1991; Borovcnik, & Kapadia, 2009; Konold, 
1989; Speiser & Walter, 1998). Probability causes many controversies every moment when students accept it 
(Freudenthal, 1973) and students' probabilistic thinking improves by education (Fischbein, 1975; Fischbein & 
Schnarch, 1997; Kwon, Kim, & Lee, 2014; Rubel, 2007). With these reports, the result of this study indicates that the 
importance of the sample space should be highlighted in probability education and that the process of clearly 
recognizing sample spaces should be introduced.  Under the current secondary school curriculum, probability 
questions are limited only to sample spaces with finite numbers of elements; however, it is necessary to highlight 
the importance of clearly recognizing sample spaces when teaching the concept of probability. At this stage, it is 

 
Figure 8. Case of incorrect answer Question No. 5 

 
Figure 9. Case of correctly finding the sample space Question No. 5 
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recommended to use Simpson’s paradox (Borovcnik et al., 1991) when considering sample spaces with finite 
numbers of elements.  

Finally, we are looking forward that this study helps mathematics teachers and students to understand 
Bertrand’s chord problem and its solutions in terms of sample space. In particular, we suggest that the modified 
question No. 4 and No. 5 may be used to help a deeper understanding of the probability and its sample space 
because most of students had difficulties to clarify the sample spaces and to calculate probability in these questions. 
Also we agreed with the conclusion of Aerts and Sassoli de Bianchi (2004) that Bertrand’s chord problem is not 
anymore a paradox. 
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