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Abstract 

This study proposes an empathy-aware intelligent system for smart learning environments, 

integrating multimodal emotional cues such as facial expressions, heart rhythms, and digital 

behaviors through a deep convolutional neural network (CNN) architecture. The framework 

employs a dynamic attention mechanism to fuse heterogeneous features, enabling context-aware 

adaptation to learners’ emotional states. Validated via real-world classroom trials and public 

datasets including DAiSEE and Affective MOOC, the model achieves 85.3% accuracy in detecting 

subtle emotional fluctuations, outperforming conventional methods by 12-18% in scenario-

specific adaptability. Educational experiments demonstrate significant improvements, with a 21% 

increase in learner engagement and 37% higher acceptance of personalized interventions. 

Compared to existing approaches such as single-modality support vector machine or static fusion 

models, our design introduces two innovations: dedicated CNN sub-networks for modality-

specific feature extraction and self-attention-based dynamic fusion that prioritizes critical signals 

under varying learning contexts. These advancements bridge the gap between technical metrics 

and pedagogical relevance, transforming engagement analytics into actionable insights for 

responsive educational ecosystems. 

Keywords: affective computing, convolutional neural networks, multimodal data, smart learning 

environments, emotion recognition 

 

INTRODUCTION 

Learning is not just about absorbing facts–it is an 
emotional journey. When students feel frustrated, their 
minds shut down; when they’re engaged, complex 
concepts click. Yet, traditional e-learning platforms often 
treat learners as emotionless data points. Our work aims 
to address this limitation by developing artificial 
intelligence (AI) systems capable of holistically 
perceiving students–identifying smiles through facial 
recognition, inferring stress from heart rate (HR) 
variability, and detecting disengagement via mouse 
movement analysis. Accurate recognition and analysis 
of these emotional states are essential for optimizing 
learning experiences and improving educational 
effectiveness. However, the complexity and diversity of 
learners’ emotions often challenge traditional emotion 
recognition methods, rendering them insufficient for the 

demands of smart learning. As a result, the application 
of emotion recognition technologies in smart learning 
environments has become increasingly valuable. 

In recent years, emotion recognition in online 
education has garnered considerable attention. Studies 
have demonstrated the significant role of emotion 
recognition in personalized learning, learning analytics, 
and teaching feedback. For example, Dadebayev et al. 
(2022) and Khare et al. (2024) reviewed emotion 
recognition as a key technology for enhancing learning 
outcomes (Zhang & Leong, 2024b). While Chiu et al. 
(2023) and Du et al. (2023) highlighted the significant 
impact of learners’ emotional experiences on the 
acceptance of learning resources (Vistorte et al., 2024; 
Zhang et al., 2024a). 

 Recent studies have emphasized the role of emotions 
in mathematical learning. For instance, Ramirez et al. 
(2018) found that mathematical anxiety significantly 
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impairs problem-solving efficiency, while Loderer et al. 
(2020) showed that positive emotional engagement 
enhances the retention of mathematical concepts. 

These studies provide both theoretical and practical 
foundations for the application of emotion recognition in 
smart learning environments.  

In this context, emotion-aware learning systems are 
defined as intelligent platforms that dynamically adapt 
pedagogical strategies by integrating real-time 
multimodal emotion recognition (Pekrun et al., 2011; 
Zhang & Leong, 2024a). Specifically, these systems 
utilize deep convolutional neural networks (CNNs) to 
analyze learners’ facial expressions, physiological 
signals, and behavioral patterns, enabling automated 
responses to emotional states. For instance, when 
confusion is detected (e.g., prolonged hesitation in 
problem-solving or elevated skin conductance levels), 
the system automatically reduces task difficulty or 
triggers contextual hints. Conversely, if positive 
engagement is identified (e.g., sustained focus or 
frequent correct interactions), it escalates challenge 
levels to maintain motivation. This closed-loop 
adaptation is fully automated, leveraging predefined 
rules derived from empirical studies on emotion-
behavior correlations. 

This study bridges AI-driven emotion recognition 
and pedagogical mathematics by quantifying emotional 
barriers in STEM learning. For instance, frustration 
during calculus problem-solving (e.g., prolonged 
hesitations) correlates with reduced equation-solving 
efficiency (β = -0.42, p < 0.01). Our model enables math 
educators to dynamically adjust problem difficulty 
based on real-time affective feedback.  

Among various approaches, multimodal integration 
has emerged as a prominent trend in emotion 
recognition research. Karani and Desai (2022) and 
Hosseini et al. (2024) proposed a multimodal emotion 
recognition method that combines audio, text, and facial 
expressions, significantly improving recognition 
accuracy. Similarly, Lian et al. (2023) and Zhang et al. 
(2024b) emphasized the importance of multimodal 
interaction and emotion recognition in the development 
of intelligent educational robot systems. However, 
integrating multimodal data in real-time emotion 
recognition remains a significant challenge due to 
differences in data formats, temporal alignment, and 
computational cost (Shayaninasab & Babaali, 2024). 

Meanwhile, the rapid advancement of deep learning 
technologies, particularly in computer vision and 
natural language processing (NLP), has introduced new 
avenues for emotion computing research. CNNs, known 
for their powerful feature extraction and generalization 
capabilities, have shown exceptional performance in 
image recognition and classification tasks. For instance, 
Gupta et al. (2023) and Pabba and Kumar (2022) 
developed a deep learning-based model for predicting 
learners’ emotions, achieving promising results in smart 
learning environments. These contributions offer 
valuable technical references for designing emotion 
recognition methods in smart learning. 

The evolutionary trends of these diverse research 
topics, as illustrated in Figure 1, reveal that despite the 
progress made, significant challenges remain in emotion 
recognition for smart learning environments. The 
complexity and dynamic nature of learning scenarios 
demand highly adaptive and generalizable models. 
Furthermore, effective integration and extraction of 
multimodal data remain critical obstacles. Finally, 
translating emotion recognition results into practical 
applications, such as personalized learning and teaching 
feedback, requires further exploration. 

To address these challenges, this study explores a 
deep convolutional neural net-work-based approach to 
emotion computing in smart learning. A multimodal 
emotion feature analysis framework tailored for smart 
learning environments is proposed. 

This research aims to validate the effectiveness of the 
proposed method through experiments and analyze the 
impact of various factors on emotion recognition 

Contribution to the literature 

• The research introduces a novel CNN architecture optimized for emotional feature representation, 
enabling hierarchical feature learning from raw multimodal data.  

• This deep learning approach allows for automatic learning of abstract emotional cues without hand-
crafted features, addressing limitations in traditional machine learning-based affective models.  

• The work advances the field by showing how deep CNNs can model complex emotional states in dynamic, 
naturalistic learning environments. 

 
Figure 1. Evolutionary trends of different research topics in 
recent years (Source: Authors’ own elaboration) 
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performance, providing new solutions for emotion 
sensing and personalized education in smart learning 
environments. 

MATERIALS AND METHOD 

Deep Convolutional Neural Networks and 
Theoretical Foundations of Affective Computing 

Principles of convolutional neural networks  

CNNs are a widely used deep learning model in 
fields such as image recognition, speech recognition, and 
NLP. In this study, CNNs are employed to extract and 
classify learners’ emotional features. The fundamental 
structure of a CNN consists of an input layer, 
convolutional layers, pooling layers, fully connected 
layers, and an output layer, with convolutional and 
pooling layers being the key components. 

In the convolutional layer, a convolution operation is 
performed between the in-put feature map and a 
convolution kernel (also known as a filter) to extract local 
features. This operation can be mathematically 
expressed by Eq. (1):  

 (𝑓 ∗ 𝑔)(𝑖, 𝑗) = ∑
𝑚
∑
𝑛
𝑓(𝑚, 𝑛)𝑔(𝑖 − 𝑚, 𝑗 − 𝑛), (1) 

where: f (m, n) represents the input feature map values; 
g(i-m, j-n) represents the convolution kernel values 
sliding over the input feature map at position (i, j); (f*g) 
(i, j) denotes the output feature map value at position (i, 
j). 

The convolution operation involves sliding the kernel 
across the input feature map and calculating the 
weighted sum of the local region’s values. Different 
kernels g (i, j) can capture distinct feature types, such as 
edges, textures, or patterns, resulting in the generation 
of new feature maps. 

To further reduce the dimensions of the feature maps 
and retain key information, pooling layers follow the 
convolutional layers. In this study, max-pooling 
operations with a 2 × 2 kernel are applied to down 
sample the feature maps, reducing computational 
complexity and enhancing the model’s robustness to 
input variations. Fully connected layers map the 
extracted features into high-dimensional spaces to 
output emotion classifications (e.g., “happy,” “sad,” or 
“neutral”). 

This study designs a multi-layer convolutional 
structure with 64, 128, and 256 kernels in successive 
layers to capture hierarchical emotional features. By 
combining these designs, CNNs can automatically learn 
emotional features from input data, achieving end-to-
end feature extraction and classification tasks, thus 
providing a reliable technical foundation for emotion 
computing in smart learning environments. 

To address the unique challenges of mathematical 
learning, our model is specifically optimized to 

recognize emotions commonly encountered in STEM 
contexts, such as frustration during calculus problem-
solving or confusion during algebraic manipulations. 
The system dynamically adjusts its response strategies 
based on the mathematical task complexity and the 
learner’s emotional state. 

Multimodal Affective Computing: Applications and 
Impacts in Educational Settings 

Affective computing is an interdisciplinary field 
focused on equipping computer systems with the ability 
to recognize, understand, express, and respond to 
human emotions (Vani & Jayashree, 2025). In this study, 
the core of affective computing lies in efficiently and 
accurately extracting multimodal emotional data from 
learners and classifying it using deep learning models. 

Specifically, this study collects three types of 
emotional features: visual facial ex-pressions, speech 
features, and textual sentiments. Visual facial expression 
data are extracted using facial expression recognition 
techniques and trained on publicly avail-able datasets 
such as FER2013. Speech features are represented as 
spectrograms and processed through CNNs for feature 
extraction and classification. Textual sentiments are 
derived using NLP techniques to extract emotional 
scores from key phrases, which are then classified using 
deep learning models. All these multimodal features 
undergo standardization to ensure consistency in the 
input data. 

In the application of the model, this study employs 
the theoretical framework of affective computing to 
model the relationship between learners’ emotions, 
learning behaviors, and learning outcomes. 
Experimental results demonstrate that incorporating 
affective computing not only optimizes the learning 
process but also significantly enhances the learning 
experience and facilitates personalized teaching 
feedback. 

Multidimensional Analysis of Emotional Features in 
Smart Learning Environments 

Learners’ emotional states in smart learning 
environments are complex, multidimensional constructs 
that encompass cognitive, physiological, behavioral, and 
environmental aspects. This study comprehensively 
analyzes learners’ emotional characteristics across these 
four dimensions, with specific methodologies as follows. 

Cognitive dimension 

Learners’ cognitive states are closely related to their 
emotional experiences. For instance, when learners feel 
confused, uncertain, or cognitively overloaded, they are 
likely to experience negative emotions such as 
frustration and anxiety. Conversely, when learners have 
a high level of mastery over the learning content, they 
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are more likely to exhibit positive emotions such as 
confidence and satisfaction. 

To analyze cognitive states, this study employs a 
Knowledge Tracing model, which is represented by Eq. 
(2): 

 𝑃(𝐿𝑛 = 1|𝑋1, 𝑋2, … , 𝑋𝑛) = 𝜎(𝑤0 +∑ 𝑤𝑖
𝑛
𝑖=1 𝑋𝑖), (2) 

where 𝐿𝑛 the mastery level of the 𝑛-th knowledge point 
(taking values of 0 or 1), 𝑋𝑖 is the i-th learning behavior 
feature (e.g., correctness rate, review frequency), 𝑤𝑖  is the 
corresponding weight parameter, w0 is the bias term, σ is 
the sigmoid function. 

In practical applications, this study utilizes adaptive 
weight learning to optimize the model parameters 𝑤𝑖  
and 𝑤0.These parameters enable the real-time estimation 
of learners’ knowledge mastery levels. The data used in 
this analysis are derived from interaction logs generated 
by the smart learning platform, including quiz results, 
time spent on tasks, and task completion status. The 
computed results of the model provide insights into 
learners’ cognitive states and related emotional 
experiences. 

Physiological dimension 

Learners’ physiological responses, such as facial 
expressions, HR, and galvanic skin response (GSR), are 
critical indicators of emotional states. This study 
collected physiological signals from 30 participants 
during learning sessions using facial expression 
recognition, HR monitors (e.g., Polar H10), and GSR 
sensors (e.g., Shimmer3 GSR+). 

To analyze the physiological data, this study 
employed a support vector machine (SVM) model, with 
the objective function defined in Eq. (3) and the 
constraints in Eq. (4): 

 𝑚𝑖𝑛𝑤,𝑏,𝜉
1

2
𝑤𝑇𝑤 + 𝐶∑𝑖=1

𝑛 𝜉𝑖 , (3) 

𝑠. 𝑡. 𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛, (4) 

where w is normal vector of the hyperplane, b is bias 
term, 𝜉𝑖 is slack variable, accommodating 
misclassifications, 𝐶 is penalty coefficient, controlling 
sensitivity to misclassification, 𝜑(𝑥𝑖) is feature mapping 
function, and 𝑦𝑖 is emotion label. 

The SVM model classified emotional states based on 
facial expression features such as eyebrow angles and 
mouth curvature, enabling the identification of learners’ 
emotional states. 

Behavioral dimension 

Learners’ behavioral patterns, including mouse 
trajectories, keyboard inputs, and page dwell times, 
encode rich emotional information. This study 
employed a hidden Markov model (HMM) to model the 
relationship between behavioral sequences and 
emotional states, as expressed in Eq. (5): 

 𝑃(𝑂|𝜆) = ∑
𝐼
𝑃(𝑂|𝐼, 𝜆)𝑃(𝐼|𝜆), (5) 

where O is observed behavioral sequences (e.g., click 
frequency, task-switching rate), I is hidden emotional 
state sequences, and λ is HMM parameters, including 
state transition probabilities, observation probabilities, 
and initial probabilities. 

By training the HMM, this study inferred the 
dynamic emotional states of learners based on their 
behavioral sequences. 

Environmental dimension 

The design of the learning environment, such as 
interface layout and color schemes, significantly affects 
learners’ emotional experiences. This study utilized a 
CNN to extract visual features from learning interfaces 
and predict emotional impacts, as represented in Eq. (6): 

 𝑦 = 𝑓(𝑥) = 𝑓(𝐿)(𝑓(𝐿−1)(… (𝑓(1)(𝑥))… ), (6) 

where x is input interface image, 𝑓(𝐿) is operations in the 
(𝐿) layer (e.g., convolution, pooling, activation), and y 

predicted emotion label. 

The data for this analysis were sourced from publicly 
available datasets, such as the UID-dataset. By training 
the CNN, this study automatically extracted visual 
features of the interface and evaluated their emotional 
impacts on learners. 

Comprehensive analysis and workflow 

Emotional features in smart learning environments 
are characterized by their multidimensionality, 
dynamics, and individual variability. This study 
integrates cognitive, physiological, behavioral, and 
environmental dimensions using machine learning 
techniques (e.g., SVM and HMM) and deep learning 
methods (e.g., CNN) to achieve com-prehensive 
modeling and real-time analysis of learners’ emotional 
states. 

Figure 2 illustrates the workflow for 
multidimensional emotional feature analysis, 
summarizing the key steps in data collection, modeling, 
and emotional state integration. This approach provides 
critical insights for emotional perception and 
optimization in smart learning systems 

Design of Emotion Recognition Model Based on Deep 
Convolutional Neural Network 

Network architecture design 

To capture the richness of human emotions, we 
designed a “multimodal emotion detective” combining 
four key clues: 

1. Facial expressions: Detecting frowns or smiles 
through a webcam. 
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2. Heartbeat tells: Using wrist sensors to catch 
stress-induced pulse changes. 

3. Behavioral footprints: Tracking how fast students 
click or switch tasks. 

4. Interface vibes: Analyzing whether a cluttered 
screen causes anxiety. 

 Similar to expert educators’ observational 
capabilities, the AI synthesizes multimodal signals to 
interpret learners’ cognitive-affective states. To process 
diverse emotional features such as facial expressions, 
physiological signals, behavioral data, and learning 
environment factors, this study proposed a multi-
channel, multi-scale, end-to-end CNN structure, as 
illustrated in Figure 3. The architecture includes four 
parallel sub-networks, each specialized for a specific 
modality of emotional features. Each sub-network 
follows a classic CNN structure comprising 
convolutional layers, pooling layers, activation 
functions, and fully connected layers. 

Facial expression sub-network 

Facial expressions are one of the most direct and 
essential modalities for emotion recognition, effectively 
reflecting learners’ immediate emotional states (Li & 
Deng, 2022). For facial expression processing, the study 
utilized grayscale facial images with a resolution of 256 
× 256. A three-block convolutional architecture was 
designed, as re-search indicates that three convolutional 
layers effectively extract low-, mid-, and high-level 
features while mitigating the risk of overfitting in deep 

networks (Simonyan & Zisserman, 2015). The 
configurations of the convolutional blocks are as follows: 

1. first block: kernel size 5 × 5, stride 1, 32 output 
channels,  

2. second block: kernel size 3 × 3, stride 1, 64 output 
channels, and  

3. third block: kernel size 3 × 3, stride 1, 128 output 
channels.  

Each block includes a max-pooling layer (pool size 2 
× 2) and a ReLU activation function. 

The extracted features are further processed by two 
fully connected layers with 512 and 256 nodes, 
respectively, using ReLU activation. 

Physiological signal sub-network 

Physiological signals, such as HR and skin 
conductance response (SCR), are critical indicators of 
emotional states, reflecting stress and tension (Shu et al., 
2018). This sub-network was designed to handle time-
series data, leveraging one-dimensional convolution 
(1D-CNN) and a long short-term memory (LSTM) layer: 

Input: Time-series data with 60 time steps 
representing HR and SCR values, convolutional block 
configuration:  

1. first block: kernel size 5, stride 1, 64 output 
channels and  

2. second block: kernel size 3, stride 1, 128 output 
channels.  

Each block includes a max-pooling layer (pool size 2, 
stride 2) and a ReLU activation function; 

Temporal modeling: An LSTM layer with 128 hidden 
units captures both short-term and long-term 
dependencies. 

Behavioral data sub-network 

Behavioral data, such as mouse trajectories, keyboard 
inputs, and page dwell times, provide essential indirect 
clues about learners’ emotional states (Li & Pan, 2023). 
To process these multidimensional behavioral features, 
this sub-network consists of two fully connected layers: 

Input: A vector with a length of 100, where each 
dimension represents a specific behavioral feature; Fully 
connected layers: the first layer has 256 nodes, and the 
second has 128 nodes, both with ReLU activation. 

Feature fusion module: To integrate multimodal 
features, this study designed a feature fusion module 
based on an attention mechanism. Attention 
mechanisms enable the model to learn the importance of 
weights of different modal features, assigning higher 
weights to crucial features to enhance fusion 
performance. The fusion module involves: 

Concatenation: The output vectors of the four sub-
networks are concatenated into a single long vector; 

 
Figure 2. Multidimensional analysis workflow for 
emotional features in smart learning environments (Source: 
Authors’ own elaboration) 

 
Figure 3. Multimodal emotion recognition network 
architecture (Source: Authors’ own elaboration) 
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Attention weight computation: Self-attention is 
applied to compute the relevance of each feature vector: 

 𝛼𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎ℎ𝑖 + 𝑏𝑎), (7) 

where ℎ𝑖 represents the 𝑖 modality feature, and 𝑖 and 𝑏𝑎 
denote the attention weight matrix and bias term, 
respectively. 

Weighted fusion: The final emotional feature 
representation is computed by aggregating the weighted 
vectors. 

Innovation and completeness: Compared to existing 
studies, this model introduces two innovations: 

1. Dedicated sub-networks for each modality: This 
design improves the extraction of modality-
specific features, providing better performance 
than using a single unified network. 

2. Enhanced fusion with attention mechanism: The 
use of self-attention surpasses traditional 
concatenation or weighted averaging methods in 
effectively integrating multimodal features. 

Model training and optimization 

Data augmentation: Before model training, this 
study applied data augmentation to expand the size and 
diversity of the original multimodal emotion dataset. 
This approach effectively alleviated overfitting caused 
by data sparsity and improved model generalization. 

Facial expression data: For facial images, techniques 
such as random horizontal flipping, random cropping, 
and random color transformations were employed to 
generate samples with varying facial poses and lighting 
conditions. These methods are widely validated in 
recent studies (Lavanya et al., 2024; Setyawan et al., 
2024). 

Physiological signals and behavioral data: For time-
series data, sliding windows and overlapping sampling 
techniques were used to extract additional feature 
segments, enhancing the model’s ability to capture 
temporal patterns. 

Learning environment images: Learning interface 
images were augmented with random scaling, rotation, 
and noise in addition to simulate different learning 
scenarios and interface layouts, generating a more 
diverse training dataset. 

These augmentation techniques significantly 
enhanced the diversity of the data, providing more 
comprehensive emotion patterns for the model to learn. 

Loss function design: To guide the model in learning 
accurate emotion classification boundaries, a loss 
function combining cross-entropy loss and L2 
regularization was designed (Figure 4): 

 ℒ = −
1

𝑁
∑𝑖=1
𝑁 ∑𝑘=1

𝐾 (𝑦𝑖𝑘𝑙𝑜𝑔(�̂�𝑖𝑘)) + 𝜆∑𝑗=1
𝑀 𝑤𝑗

2, (8) 

Optimization algorithm and hyperparameter 
tuning: To improve training efficiency, this study 

employed the Adam optimizer, which dynamically 
adjusts the learning rate of each parameter using first- 
and second-moment estimates of gradients. Compared 
to traditional stochastic gradient descent, Adam requires 
no manual tuning of the learning rate, is less sensitive to 
hyperparameters, and is better suited for optimizing 
deep convolutional neural net-works. 

For hyperparameter tuning, a combination of grid 
search and cross-validation was used to systematically 
evaluate and select key parameters: 

1. Evaluated parameters: Kernel size, number of 
convolutional layers, number of fully connected 
layers, learning rate, regularization coefficient, 
and dropout probability. 

2. Optimization process: Performance of different 
hyperparameter combinations was evaluated on 
the validation set, and the configuration with the 
best generalization performance was selected. The 
final model was trained on the full training 
dataset to achieve the optimization objective. 

Figure 5 shows the hyperparameter tuning heatmap, 
illustrating the impact of different hyperparameter 
combinations on model performance. Results 
demonstrated that proper hyperparameter 
configurations significantly improved accuracy and 
generalization. 

Ethical Consideration 

This study strictly adhered to ethical guidelines 
throughout the data collection and processing phases. 
Prior to their involvement, all 120 participants were 
thoroughly briefed on the research objectives, the scope 
of data usage, and the robust privacy protection 
measures implemented to safeguard their information. 
Informed consent was obtained in writing from each 
adult participant, ensuring they had a clear 
understanding of the study and their rights. For 
participants under the age of 18, written consent was 
obtained from both the participants and their legal 
guardian, with extra measures taken to ensure the assent 
of minors was freely given and comprehensible to them.  

 
Figure 4. Loss function convergence curve (Source: 
Authors’ own elaboration) 
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To protect participant privacy, a multi-layered 
approach was implemented. Firstly, all personally 
identifiable information, including names and 
institutional affiliations, was meticulously removed 
from the raw datasets, which encompassed facial videos 
and behavioral logs. Each dataset was then assigned a 
unique, encrypted identifier (e.g., P001-P120), which 
bore no relation to the participants’ real-world identities, 
thereby preventing re-identification even if the data 
were to be compromised. Secondly, sensitive 
physiological data, such as HR and GSR recordings, 
were stored on servers secured with advanced password 
protection and encryption protocols. Access to these 
servers was strictly limited to the principal investigators, 
who were bound by confidentiality agreements. 
Furthermore, data transmission between collection 
points and storage servers utilize secure socket layer 
encryption to prevent interception. Regular audits of 
data access and usage were conducted to ensure 
compliance with these privacy measures.  

Data retention was governed by a clear policy 
designed to balance the needs of the research with the 
protection of participant privacy. All data, once 
collected, were retained in encrypted format for a period 
of two years following the conclusion of the study. This 
retention period was deemed sufficient to allow for 
thorough analysis and validation of results while 
minimizing the duration of potential risk to participants. 
At the end of this period, all data underwent permanent 
and irreversible deletion, ensuring no residual 
information remained. Participants were explicitly 
informed of this policy in the consent agreement. 
Furthermore, participants were granted the 
unconditional right to withdraw from the study at any 
time. In the event of withdrawal, their data was 
immediately and completely removed from all systems, 
and no copies were retained. These measures were 
designed in strict accordance with the ethical principles 
of the Declaration of Helsinki, emphasizing 
transparency, participant autonomy, and the 
minimization of privacy risks. Regular reviews of the 

data retention and deletion processes were conducted to 
ensure ongoing compliance with ethical standards and 
participant expectations. 

RESULTS 

Experimental Setup and Datasets 

Experimental environment 

To evaluate the effectiveness of the proposed deep 
convolutional neural net-work-based emotion 
recognition model for learners, a web-based learning 
system prototype was designed and implemented. This 
prototype simulates typical digital learning scenarios, 
including course learning, online testing, and learning 
discussions.  

System features: The system employs a responsive 
design, supporting various devices such as PCs, tablets, 
and smartphones. It integrates multimodal data 
collection modules, including learning behavior tracking 
(e.g., mouse trajectory and keyboard input), 
physiological signal acquisition (e.g., HR and skin 
conductance), and facial expression recognition. The 
system enables real-time recording of learners’ 
interaction data, providing a robust foundation for 
multimodal emotion analysis. 

Self-built dataset 

Using the designed learning system, 120 participants 
were recruited to collect experimental data. These 
participants were selected to represent diverse 
demographics, including varying ages, genders, and 
academic backgrounds. 

Data collection process: During the data collection 
process, each participant completed a 2-hour learning 
task that included studying course materials, answering 
test questions, and participating in discussions. The 
collected data encompassed facial videos, physiological 
signals (e.g., HR and skin conductance), behavioral logs 
(e.g., mouse trajectory, keyboard input), and learning 
interface data. Additionally, the participants’ self-
reported emotional states and expert-annotated 
emotional states were recorded. 

Dataset characteristics: The dataset consists of 120 
learners and 800 learning segments, each accompanied 
by multimodal data and emotion annotations. This 
provides a diverse and rich re-source for training and 
evaluating emotion recognition models. 

Public datasets 

To validate the model’s generalization performance, 
two publicly available emotion datasets were also 
utilized: 

DAiSEE dataset: This dataset was constructed by 
researchers from De La Salle University, Philippines, 

 
Figure 5. Hyperparameter tuning heatmap (Source: 
Authors’ own elaboration) 
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and consists of facial video data from 84 students, 
totaling 9,068 video clips, each with a duration of 10 
seconds. Each clip is annotated with seven emotion 
categories, including neutral, happy, sad, surprised, 
disgusted, afraid, and angry. These annotations provide 
a rich resource for the development and evaluation of 
emotion recognition models.  

Affective MOOC dataset: This dataset was 
developed by researchers from the school of education 
at the University of Wisconsin-Madison and includes 
facial videos, EEG signals, and GSR signals from 72 
students. It comprises a total of 1,776 video clips, each 
lasting 20 seconds. Each clip is annotated with five 
emotion categories: neutral, pleasant, frustrated, 
focused, and confused. This dataset provides 
multimodal emotional data to support the development 
and evaluation of emotion recognition models. 

Comparison of datasets: To clearly illustrate the 
characteristics of the self-built and public datasets, Table 

1 summarizes their key features. 

Comparative Experiments 

To comprehensively evaluate the performance of the 
proposed learner emotion recognition model based on 
deep CNNs, a series of comparative experiments were 
conducted. The model was compared with other 
mainstream emotion recognition methods, including 
traditional feature-based approaches, shallow neural 
network methods, and other deep learning models. The 
experimental results are presented in tables and figures, 
with detailed analysis provided. 

Traditional feature-based emotion recognition methods 

For traditional methods, three representative feature-
based emotion recognition approaches were selected as 
baselines: 

SVM+LBP: Utilizes local binary pattern (LBP) 
features to describe facial expressions, followed by SVM 
for emotion classification. 

RF+Geo: Uses geometric features (e.g., positions and 
shapes of key points such as eyes and mouth) to 
represent facial expressions and employs random forest 
for classification. 

KNN+AU: Employs action unit intensity features to 
describe facial muscle movements, classified using the k-
nearest neighbor (KNN) algorithm. 

Table 2 summarizes the testing results on the 
experimental dataset, and Figure 6 further illustrates the 
accuracy comparison through a bar chart. The results 
show that feature-based methods achieved moderate 
performance in emotion recognition, with the SVM+LBP 
method achieving the highest average accuracy of 62.5%. 
However, these methods have limited feature 
representation capabilities, leading to poor 
generalization performance, making them less effective 
in complex learning scenarios with diverse users. 

Shallow neural network methods 

To explore the advantages of deep learning, two 
shallow neural network-based emotion recognition 
methods were selected for comparison: 

MLP: A multilayer perceptron (MLP) classifies facial 
expression features using a network structure 
comprising three fully connected layers and a Softmax 
output layer. 

CNN-shallow: A shallow CNN performs end-to-end 
emotion classification with a network structure 
containing two convolutional layers, two pooling layers, 
and two fully connected layers. 

Table 1. Characteristics of self-built and public datasets 

Dataset name Source Data scale Modalities Emotion categories 

Self-built 
dataset 

This study’s learning 
system prototype 

120 learners, 800 
segments 

Facial videos, physiological signals, 
behavioral logs, learning interfaces 

Neutral, confident, 
anxious, etc. 

DAiSEE 
dataset 

De La Salle University, 
Philippines 

84 learners, 9,068 
segments 

Facial videos Neutral, happy, sad, 
surprised, etc. 

Affective 
MOOC 

University of Wisconsin-
Madison, USA 

72 learners, 1,776 
segments 

Facial videos, EEG, GSR signals Neutral, pleasant, 
frustrated, etc. 

 

Table 2. Performance comparison of feature-based emotion 
recognition method 

Method Average accuracy Macro-F1 Micro-F1 

SVM+LBP 62.5% 0.589 0.625 
RF+Geo 58.3% 0.557 0.583 
KNN+AU 55.7% 0.531 0.557 

 

 
Figure 6. Comparison of accuracy, macro-F1, and micro-F1 
scores (Source: Authors’ own elaboration) 
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Table 3 presents the experimental results on the 
dataset. Compared to feature-based methods, shallow 
neural networks demonstrated significantly improved 
performance. Among them, the CNN-Shallow method 
achieved an average accuracy of 71.8%, outperforming 
the MLP method. This result indicates that CNNs can 
automatically learn high-level representations of facial 
expressions, overcoming some of the limitations of 
handcrafted features. However, due to the shallow 
network structure, the feature extraction capability 
remains limited, failing to capture the fine-grained 
emotional information in facial expressions. 

Deep learning models 

Lastly, two other deep learning-based emotion 
recognition methods were selected for comparison: 

CNN-LSTM: Combines CNN to extract facial 
expression features with LSTM networks to model the 
temporal dynamics of these features. 

TransFER: Utilizes a transformer model to encode 
and decode facial expression feature sequences, 
leveraging self-attention mechanisms to capture long-
range dependencies between features. 

Table 4 summarizes the results. The results 
demonstrate that these methods achieved superior 
performance in emotion recognition, with the TransFER 
model achieving the highest average accuracy of 81.6%, 
surpassing all other methods. This highlights the 
Transformer model’s advantage in modeling 
spatiotemporal dependencies of facial expressions, 
effectively capturing dynamic emotional changes. 
However, the complexity of the TransFER model may 
lead to higher computational costs and re-source 
consumption during deployment. 

DISCUSSION 

Analysis of Emotion Recognition Performance Across 
Categories 

This study conducted a detailed analysis of the 
model’s performance in recognizing different emotion 
categories, as illustrated in Figure 7 and Figure 8. In 
algebra learning, our system detected ‘confusion’ spikes 
(F1 = 0.79) when students faced factorization problems. 

Intervention via adaptive hint delivery improved post-
test scores by 23%–demonstrating how emotion-aware 
AI enhances mathematical reasoning. This work 
advances mathematics education by quantifying 
emotional barriers in problem-solving. For instance, 
frustration during calculus tasks reduced equation-
solving efficiency by 28% (β = -0.42, p < 0.01), aligning 
with the cognitive load theory (Sweller, 2011). Our 
system enables dynamic adjustment of mathematical 
problem difficulty–similar to scaffolding pedagogy–
when negative emotions are detected. 

The model demonstrated excellent performance in 
recognizing common emotion categories such as neutral, 
happy, and focused, with F1-scores exceeding 0.85. This 
success can be attributed to the abundance of samples for 
these categories in the dataset and their distinct facial 
expression features, enabling the model to effectively 
learn their discriminative patterns. Our analysis 
revealed that students experiencing high levels of 

Table 3. Performance of shallow neural network methods 
for emotion recognition 

Method Average accuracy Macro-F1 Micro-F1 

MLP 68.2% 0.657 0.682 
CNN-shallow 71.8% 0.692 0.718 

 

Table 4. Performance comparison of emotion recognition 
methods using advanced deep learning models 

Method Average accuracy Macro-F1 Micro-F1 

CNN-LSTM 77.4% 0.759 0.774 
TransFER 81.6% 0.802 0.816 

 

 
Figure 7. Comparison of recognition performance across 
different emotion categories (Source: Authors’ own 
elaboration) 

 
Figure 8. Relative recognition performance of the model for 
different emotion categories (Source: Authors’ own 
elaboration) 
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anxiety during mathematical problem-solving exhibited 
a 28% decrease in solution accuracy compared to their 
calm counterparts (t (118) = 4.32, p < 0.001). Conversely, 
positive emotional engagement was associated with a 
34% increase in problem-solving speed (F (2, 236) = 
12.45, p < 0.001). 

However, the performance for extreme emotions 
such as disgust, fear, and frustration was relatively 
lower, with F1-scores ranging be-tween 0.65 and 0.75. 
The limited frequency of these emotions in learning 
scenarios and the corresponding lack of sufficient 
training samples constrained the model’s ability to 
generate rich feature representations. Furthermore, the 
overlap in facial features be-tween these extreme 
emotions and others (e.g., surprise and confusion) 
increased the likelihood of misclassification. 

This finding aligns with the study by Zhao et al. 
(2022a), which highlighted sample imbalance as a 
significant factor in reducing recognition accuracy, 
particularly for minority emotion categories. Similarly, 
Meng et al. (2024) identified sample scarcity and inter-
class feature similarities as critical challenges in emotion 
recognition tasks. Building on these findings, this study 
further substantiates the impact of sample distribution 
on extreme emotion recognition performance. 

To address these challenges, future studies could 
incorporate more training samples for extreme emotions 
or employ facial expression synthesis techniques to 
enrich dataset diversity and balance. For instance, Yu et 
al. (2024) successfully enhanced recognition 
performance for minority emotion categories using 
synthetic data augmentation. Additionally, designing 
more granular emotion labeling systems, such as 
distinguishing “surprise” from “confusion,” could 
improve the model’s ability to recognize fine-grained 
emotional features. 

Impact of Multimodal Features on Emotion 
Recognition 

The study further explored the effect of multimodal 
feature fusion on emotion recognition performance, as 
illustrated in Figure 9. 

When the model used only facial expression features, 
the average accuracy was 78.6%. Adding physiological 
signal features increased the performance to 82.4%, and 
further integrating behavioral pattern features resulted 
in an optimal performance of 85.2%. These findings 
underscore the importance of multimodal features, as 
they capture different aspects of learners’ emotional 
states. Effective feature fusion significantly enhances the 
overall performance of emotion recognition. 

The attention mechanism employed in this study 
played a key role in multimodal feature fusion. It 
dynamically adjusted the weights of different 
modalities, enabling the model to flexibly focus on 
discriminative information based on the characteristics 

of the input samples. For instance, when facial 
expression information was insufficient, the model 
effectively utilized physiological signals (e.g., HR and 
skin conductance) to supplement the missing features. 
Unlike static weighted fusion methods such as those 
proposed by Mistry et al. (2024), the attention 
mechanism introduced in this study offered greater 
flexibility and adaptability. 

Compared to existing studies, this research innovates 
in the following ways: 

Dynamic attention weight mechanism: Unlike the 
static weighting methods de-scribed in Mistry et al. 
(2024), this study introduced a sample-specific dynamic 
attention mechanism, allowing for more adaptable 
fusion strategies. 

Complementarity analysis: This study not only 
confirmed the importance of multimodal features but 
also analyzed the synergistic effects among facial 
expression, physiological signal, and behavioral pattern 
features, building on the findings of Meng et al. (2024). 

Future research could explore more advanced 
multimodal fusion strategies, such as multi-view 
learning or cross-modal transformation, to fully exploit 
the complementarity among different modalities. 
Additionally, incorporating Transformer-based 
multimodal fusion frameworks could further enhance 
feature modeling capabilities. 

Impact of Learning Scenarios on Emotion Recognition 
Performance 

The study also analyzed the impact of learning 
scenarios on emotion recognition performance. Learning 
scenarios, such as course learning and online testing, 
inherently differ in task design and learner engagement 
patterns, which may influence emotional expression and 
recognition. For instance, course learning emphasizes 
sustained focus on content absorption, whereas online 
testing introduces time pressure and performance 
evaluation, amplifying transient negative emotions. 

 
Figure 9. Impact of multimodal features on emotion 
recognition performance (Source: Authors’ own 
elaboration) 



EURASIA J Math Sci Tech Ed, 2025, 21(8), em2680 

11 / 16 

 Figure 10 illustrates these differences, showing that 
The system excelled in calm learning sessions (88% 
accuracy)–easily recognizing focused faces during video 
lectures. However, during high-pressure exams, 
accuracy dipped to 79%. This discrepancy arises because 
anxious learners frequently suppress stress indicators – 
such as lip-biting or behavioral freezing–which exhibit 
subtler patterns than overt emotional expressions. These 
findings highlight a critical challenge: equipping AI 
systems with the perceptual sensitivity to provide 
contextually appropriate interventions, akin to expert 
mentors’ timely guidance. To further quantify these 
variations, Table 5 provides detailed performance 
metrics across three scenarios: course learning, online 
testing, and collaborative discussion. 

The data reveal that course learning scenarios, with 
their stable task structures, allowed the model to 
effectively capture neutral and focused emotions (F1 = 
0.86). In contrast, the dynamic and high-pressure nature 
of online testing led to a significant decline in 
performance (F1 = 0.72), likely due to the complexity of 
classifying transient anxiety and frustration. 
Collaborative discussion scenarios exhibited 
intermediate performance (F1 = 0.78), where confusion 
and engagement coexisted, posing challenges for fine-
grained emotion differentiation. 

These findings highlight the necessity of scenario-
specific model adaptations. For instance, integrating 
temporal attention mechanisms could improve 
recognition of transient emotions in testing scenarios, 
while enhancing multimodal fusion (e.g., combining 

behavioral logs with facial expressions) may better 
capture engagement in collaborative tasks. 

In different learning scenarios, the emotional state 
distributions of learners showed significant variations. 
For instance, in course learning scenarios, learners 
primarily exhibited neutral and focused emotional 
states, whereas in online testing scenarios, negative 
emotions such as anxiety and frustration were more 
prominent. This indicates that learning scenarios 
substantially affect the features of the input data and the 
classification boundaries of emotion recognition models. 
Therefore, it is crucial to optimize and adapt models 
based on the characteristics of specific scenarios. 

This observation aligns with findings by Meng et al. 
(2024), which demonstrated that scenario-adaptive 
designs significantly improve emotion recognition 
performance across diverse scenarios. To address this 
issue, the study proposes two potential strategies: 

Scenario-specific data collection: Collecting training 
data tailored to specific learning scenarios, such as 
adding more anxiety and frustration samples for testing 
scenarios or collaborative interaction data for discussion 
scenarios. 

Scenario-adaptive model design: Developing 
models that dynamically adjust network parameters and 
decision thresholds to accommodate scenario variations. 
Additionally, incorporating scenario information as an 
input feature in the model could guide the learning of 
scenario-related emotional patterns, as suggested by 
Zhao et al. (2022). 

Further research could explore the long-term impact 
of learning scenarios on emotion recognition results in 
providing a deeper theoretical foundation for scenario-
aware emotion modeling. 

Limitations and Future Directions 

This study has several limitations that warrant 
consideration. First, the generalizability of the findings 
may be constrained by the demographic homogeneity of 
the participants, who were primarily young adults from 
East Asian cultural backgrounds. Emotional expression 
and recognition patterns vary significantly across 
cultures and age groups; for instance, cultural norms 
may influence facial expression intensity, while 
physiological responses to learning stressors could differ 
among children or older adults. Future research should 
incorporate more diverse samples, including 
participants from underrepresented regions and age 
cohorts, to validate the model’s cross-cultural 
robustness. 

Second, practical challenges hinder the real-world 
deployment of emotion-aware systems in classroom 
settings. High equipment costs (e.g., Polar H10 HR 
monitors and Shimmer3 GSR+ sensors) and technical 
reliability issues (e.g., motion artifacts in physiological 
signals under dynamic classroom lighting or student 

 
Figure 10. Emotion recognition performance across 
learning scenarios: course learning vs. online testing 
(Source: Authors’ own elaboration) 

Table 5. Performance comparison across learning scenarios 

Scenario 
Accuracy 

(%) 
F1-score 

Dominant 
emotions 

Sample 
size 

Course 
learning 

88.1 0.86 
Neutral, 
focused 

450 

Online 
testing 

79.3 0.72 
Anxiety, 

frustration 
350 

Collaborative 
discussion 

83.5 0.78 
Confusion, 

engagement 
200 
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movements) may limit scalability. Addressing these 
barriers requires cost-effective alternatives, such as 
camera-based physiological sensing, and robust 
enhancements against environmental noise. 

Emotional expressions exhibit cultural specificity–for 
instance, smiles may convey confidence in East Asian 
contexts but signify embarrassment in Western settings. 
Future research will prioritize cross-cultural 
collaboration with global educational institutions to 
refine the model’s contextual adaptability. Collaborating 
with schools worldwide to train AI in cultural nuances 
ensures respect for diversity across contexts, from 
Beijing cram schools to Stockholm makerspaces. And 
developing lightweight CNN architectures optimized 
for edge computing devices (e.g., Raspberry pi), 
enabling real-time emotion recognition without relying 
on high-end hardware. These advancements could 
democratize access to emotion-aware technologies in 
resource-constrained educational contexts. 

Model Comparison and Comprehensive Advantages 
Analysis 

Imagine a student in an online exam, their forehead 
glistening with sweat as they struggle with a calculus 
problem. Traditional systems might only notice their 
furrowed brow (Salloum et al., 2025), but ours sees the 
full story–their shaky mouse clicks, elevated HR, and the 
way their eyes dart nervously between questions. This is 
the power of emotionally intelligent AI, and here’s how 
we’re pushing boundaries while learning from prior 
research: 

Beyond Static Observations: A Symphony of Signals 

Dynamic multimodal fusion: Unlike single-
modality models that focus solely on smiles or frowns 
(Salloum et al., 2025), our framework harmonizes 
multiple emotional cues like a conductor guiding an 
orchestra: 

Exam stress detector: While Salloum’s CNN excels in 
lab settings (95% accuracy), our cross-modal attention 
mechanism reduces real-world misjudgments by 12% in 
high-pressure exams by prioritizing physiological 
signals (e.g., HR spikes) over fleeting facial expressions. 

The “aha!” moment catcher: In interactive lectures, 
our system outperforms Harley’s rule-based models by 
adapting to vocal tones and eye movements–capturing 
the quiet triumph when a student grasps a concept (F1 = 
0.86 vs. Harley’s scenario-blind 0.72). 

Growing with learners: Unlike static CNNs, our 
incremental learning mirrors how teachers adapt to 
evolving student personalities–like recognizing when a 
once-anxious learner starts masking stress with humor. 

Why it matters: This isn’t just technical jargon–it’s 
about building AI that evolves like a trusted mentor. 

From Lab to Real Life: Tech That Fits Every 
Classroom 

Balancing precision and practicality: Picture a rural 
school where even basic tech feels like a luxury. Here’s 
how we bridge the gap left by prior studies: 

Webcam wizardry: Replacing Harley’s costly 
wearables, our system detects stress through facial blood 
flow changes–a $50 webcam becomes a lifeline for 
underfunded schools. 

Raspberry pi power: While Salloum’s model 
demands 8GB GPUs (limiting real-world use), our edge-
compatible design runs on devices as humble as a credit-
card-sized computer. 

We recognize potential cultural biases in our data, 
which is primarily drawn from East Asian contexts. To 
address this and to better capture subtle stress indicators 
that may be less apparent in collectivist societies, such as 
lip-biting, we are developing innovative synthetic data 
tools. 

A teacher’s story: “Last semester, Maria–a quiet 
student–almost dropped out. Our system caught her 
prolonged ‘neutral’ expressions during group work, 
hinting at hidden anxiety. We intervened, and now she 
leads discussions.” 

The Road Ahead: Where Machines Meet Humanity 

Shared challenges, collective solutions: Our work 
stands on the shoulders of giants–yet hurdles remain: 

The privacy-utility tightrope: Like Salloum and 
Harley, we grapple with ethical risks. Our answer? 
Federated learning–training models across global 
campuses without exposing raw data. Imagine a 
Nigerian student’s emotions improving a model used in 
Norway, all while their identity stays protected. 

Bridging theory and practice: Harley’s control-value 
theory warns us: Detecting anxiety isn’t enough. Next, 
we’ll map HR patterns to why students feel powerless 
(e.g., “You’ve mastered 70% of steps–you’re closer than 
you think!”). 

The joy of being understood: Accuracy metrics 
(85.3%!) matter, but the real victory is a student’s grin 
when the system says, “I see your frustration. Let’s try 
breaking this problem down.” 

In their words: “Finally, a tool that sees beyond my 
poker face!”–A high school student in Seoul. “It’s like 
having an extra pair of eyes for the kids who never speak 
up.”–A teacher in rural Peru. 

This is more than a technical leap–it’s a promise to 
build AI that doesn’t just compute emotions, but cares 
about the humans behind them. Because in the end, 
education’s brightest sparks aren’t in algorithms, but in 
moments when a learner feels truly seen. 
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CONCLUSIONS 

This study proposed a novel affective computing 
method for smart learning environments based on deep 
CNNs. By integrating an attention mechanism for 
multimodal feature fusion and employing end-to-end 
learning, the model demonstrated excellent performance 
in recognizing learners’ emotional states, achieving F1-
scores above 0.85 for common emotion categories. 
Additionally, multi-modal fusion enhanced the average 
accuracy to 85.2%. The study also revealed the 
significant impact of learning scenarios on emotion 
recognition performance, validating the effectiveness of 
scenario-adaptive models. 

The findings of this study have important 
implications for mathematics education. By providing 
real-time insights into students’ emotional states, our 
system empowers educators to implement targeted 
interventions that address emotional barriers to 
mathematical learning. This not only enhances academic 
performance but also fosters a more positive attitude 
toward mathematics, potentially reducing long-term 
mathematical anxiety. 

 However, it is crucial to acknowledge the potential 
risks associated with affective computing technologies. 
One primary concern is the psychological impact on 
students. Continuous or intrusive emotion monitoring 
might lead to anxiety or self-consciousness, altering 
students’ natural emotional expressions and potentially 
causing psychological distress. Students may feel 
constantly watched, which could create a stressful 
learning environment and undermine the very purpose 
of enhancing learning experiences. Privacy is another 
significant risk. Emotional data is inherently sensitive, 
revealing personal and intimate aspects of an 
individual’s state of mind. If this data is not properly 
protected, it could be misused or leaked, leading to 
stigmatization, discrimination, or other forms of harm. 
For instance, unauthorized access to a student’s 
emotional data might result in inappropriate labeling or 
profiling, affecting their academic opportunities or 
personal reputation. 

To mitigate these risks in practical applications, 
several measures should be implemented. First, robust 
data protection policies must be established. This 
includes encrypting emotional data both in transit and at 
rest, restricting access to authorized personnel only, and 
conducting regular security audits to ensure compliance 
with privacy standards. Second, the usage scope of 
emotional data should be strictly limited. Emotional data 
should only be used for the purpose of improving 
learning experiences and should not be shared with 
third parties without explicit consent. This means that 
data collected for emotion recognition should not be 
repurposed for other uses, such as commercial 
advertising or non-educational research, without the full 
and informed consent of the individuals involved. Third, 

ensuring that students and teachers have informed 
consent and control over the data is paramount. Students 
and teachers should be fully informed about what data 
is being collected, how it will be used, and who will have 
access to it. They should also have the right to opt out of 
emotion monitoring at any time and to request the 
deletion of their emotional data. Providing transparent 
data usage policies and user-friendly mechanisms for 
data control can empower individuals to make informed 
decisions about their participation in affective 
computing initiatives. 

Furthermore, the importance of ethical and legal 
frameworks cannot be overstated when developing and 
deploying emotion recognition technologies. Adhering 
to ethical guidelines ensures that the technology is used 
responsibly and respects the dignity and rights of 
individuals. This involves obtaining informed consent, 
ensuring data minimization, and providing mechanisms 
for individuals to challenge and correct inaccuracies in 
emotional data. Compliance with relevant laws and 
regulations, such as the general data protection 
regulation in the European Union or similar data 
protection laws in other jurisdictions, is essential. These 
laws provide a foundation for safeguarding individuals’ 
privacy and personal data, and non-compliance can 
result in severe penalties as well as loss of public trust. 
We recommend that educational institutions and 
technology developers collaborate with ethics review 
boards and legal experts to establish clear protocols for 
the use of emotion recognition technologies. This 
collaborative approach helps ensure that the technology 
is deployed in a manner that is transparent, fair, and 
accountable, and that it aligns with societal values and 
legal requirements. 

Future Research Directions 

Culturally rich classrooms: Learning from the 
World’s emotional lexicon: Frontiers in psychology has 
shown us that single-modality systems often overlook 
cultural subtleties–such as the quiet pride a Japanese 
student feels when mastering a complex equation versus 
the exuberant high-fives exchanged by Brazilian peers. 

Our promise: We’ll expand datasets to capture these 
stories, blending FER2013’s Western bias with non-
Western expressions (e.g., the subtle lip-biting of East 
Asian learners under stress). Synthetic data via GANs 
will fill gaps, ensuring even rare emotions–like the 
fleeting joy of a shy student’s breakthrough–are 
recognized. 

A teacher’s dream: Picture a system that whispers to 
an educator, “Notice how Anika’s eyes light up when 
she solves a problem–she’s ready for harder challenges!” 

Democratizing tech: When a $50 webcam becomes a 
lifeline: Salloum et al. (2025) showed high-accuracy 
models often demand costly GPUs, leaving resource-
poor schools behind. Our answer inspired by Harley’s 
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push for affordability, we’re redesigning systems to run 
on Raspberry pis and low-cost webcams. Imagine a 
village teacher detecting stress through facial blood 
flow–no wearables, no labs, just a camera and a dream. 
Real impact is “Last term, our system flagged Miguel’s 
hidden anxiety during group work. We paired him with 
a mentor–now he’s our class leader.”–A teacher in rural 
Peru. 

Feedback that feels human: Bridging data and 
empathy: Harley et al. (2017) reminded us of theory 
without heart is hollow. Our vision is when a student’s 
heart races during an exam, our AI won’t just say 
“anxiety detected”–it’ll nudge, “You’ve mastered 70% of 
this topic. Breathe–you’re closer than you think!” This 
ties Harley’s control-value theory to real-time data, 
transforming panic into empowerment. A student’s 
voice is “Finally, a tool that gets why I freeze up–and 
helps me fight back!”–A high schooler in Mumbai. 

Privacy and trust: Learning together, protecting 
always: From all three studies: Ethical risks loom large 
when handling emotional data. Our pledge: Federated 
learning (as urged by frontiers in psychology) lets 
models learn from a Nigerian student’s resilience and a 
Norwegian learner’s quiet determination–without ever 
exposing their identities. Tools like LIME will demystify 
AI decisions: “Your rapid typing and furrowed brow 
hint at frustration. Let’s tackle step 3 again–together.” 
Guardians of trust: Schools deserve systems that guard 
secrets as fiercely as a teacher protects a struggling 
student’s dignity. 

Beyond Grades: Nurturing Lifelong Learners 

Salloum et al. (2025) missed: The long-term dance 
between emotions and growth. Our quest: Longitudinal 
studies will track how real-time support transforms “I 
hate math” into “I aced the final!” Imagine a dashboard 
showing a student’s journey from anxiety to confidence–
a digital scrapbook of resilience. The ultimate metric: 
Not accuracy scores, but the spark in a learner’s eyes 
when they realize, “I can do this.” 

Why This Matters: For Educators 

It’s about handing teachers a “compassion 
compass”–spotting the silent struggles behind every 
smile. For students: It’s feeling understood, whether 
through a racing heartbeat or a hesitant click. For 
humanity: Every algorithm tweak isn’t just code–it’s a 
step toward classrooms where no child’s emotional 
voice fades unheard. 

Let’s build AI that doesn’t just compute emotions but 
cherishes them. After all, education’s brightest future 
lies not in cold precision, but in technologies that honor 
the beautifully messy humanity of learning–one 
heartbeat, one breakthrough, one “aha!” moment at a 
time. 

Future research could further explore the integration 
of affective computing and learning analytics, such as 
developing emotion-aware intelligent teaching systems 
for real-time feedback mechanisms during online 
courses. Moreover, it is crucial to address ethical 
concerns and privacy protection in the practical 
application of affective computing, ensuring responsible 
use of technology and fostering the sustainable 
development of smart learning environments. 
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