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Abstract 

This paper presents a learning trajectory of geometry proof (LTGP) for Indonesian prospective 

mathematics teachers (PMTs) during their first year of studies at an Indonesian university. The 

trajectory aims at PMTs’ progression of their understanding of the structure of proof and their 

proof construction abilities. We designed and implemented teaching materials with geometry 

problems based on the use of the flow-chart proof format and the model of understanding of 

proof structure from Miyazaki et al. (2017). We present an analysis of data from pre- and post-

tests of proof construction problems, written answers to proof problems during intervention with 

60 PMTs, and individual interviews with eight PMTs. We found that the intervention supports 

PMTs’ understanding of the structure of proof and their proof construction abilities. Our findings 

contribute to knowledge about teaching strategies to support students in their understanding 

and construction of a proof. From our findings, we suggest the use of the flow-chart proof format 

together with other more formal proof formats in creating, reading, and rewriting proof of 

geometric propositions and the use of open problems to encourage students to think forward 

and backwards interactively to help students plan for proof construction. 

Keywords: flow-chart proof, Euclidean geometry proof, proof construction, pre-service teachers, 

junior high school 

 

INTRODUCTION 

The ability to construct and comprehend proofs is a 
main learning goal of mathematics education at different 
levels and an important aspect for assessing students’ 
performance (Selden, 2012; Weber, 2001). Constructing a 
proof is nevertheless more demanding than 
comprehending a “ready-made” proof, because one 
needs to know, select and use definitions and theorems 
in an appropriate way (Selden & Selden, 2017). Several 
difficulties students encounter in constructing proofs 
have been identified in mathematics education research 
(Antonini & Mariotti, 2010; Miyazaki et al., 2017; 
Stavrou, 2014; Weber, 2001, 2004).  

 

  This study is a part of PhD research of the first author entitled “Fostering Indonesian prospective mathematics teachers’ geometry 
proof competence” whose promotor and co-promotor were the second and the third authors, respectively. 

In order to construct proofs, students need to 
understand the structure of proofs (Durand-Guerrier et 
al., 2012). Miyazaki et al. (2017) proposed a theoretical 
framework of structural understanding of proof. An 
earlier study (Miyazaki et al., 2015) claimed that the use 
of flow-chart proof with open problems could scaffold 
understanding of structure of proof by Japanese junior 
high school students (13-14 years old). However, the 
authors did not report on the progress of students’ 
understanding over time. They only selected episodes 
discussing the validity of proof that contained logical 
reasoning, which is only a part of the whole progress of 
the understanding. 

In this paper, we report on the design and evaluation 
of a learning trajectory of geometry proof (LTGP), 
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offering opportunities for studying students’ 
understanding of the structure of proof over time. LTGP 
aimed at supporting Indonesian prospective 
mathematics teachers (PMTs), aged 18-19 years old, in 
understanding the structure and in constructing 
geometry proof. LTGP was implemented in a first-year 
mathematics course focusing on learning geometry and 
geometrical proof. In Indonesia, proving is not part of 
the high school curriculum and PMTs are introduced to 
geometry proof for the first time. So, the tasks of our 
LTGP are on a level of geometry that is comparable to 
geometry for junior high school students in many other 
countries. As such, LTGP may also be used in the future 
to enhance the proving skills in junior high school 
students. In this paper we present our intervention, and 
we describe the progress of a group of 60 PMTs along 
with three individual trajectories; through these, we 
discuss the variation among students in understanding 
the structure of proof. 

THEORETICAL FRAMEWORK 

In this section, we account for the theoretical 
background of the study with reference to extant 
literature on proof construction, structure of proof and 
how the understanding of structure can support proof 
construction. In learning proof, students are taught a 
deductive method by drawing a conclusion from given 
premises and how definitions, theorems, and axioms are 
used. Proof construction involves a bridging process, 
which involves: 

(1) understanding a given statement and its status,  

(2) recognizing premises, argument, and conclusion,  

(3) constructing intermediate proposition, and  

(4) organizing these into an acceptable sequence 
(Heinze et al., 2008).  

The bridging process includes two types of deductive 
reasoning: universal instantiation and hypothetical 
syllogism. In predicate logic, the universal instantiation 
deduces a singular proposition from an appropriate 
universal proposition (i.e., axioms, definitions, and 
theorems). In propositional logic, the hypothetical 
syllogism connects singular propositions, like premises, 
intermediate proposition, and desired conclusion in a 
logical way. When teaching proof, students should see a 
proof as a structured argument to understand: 

(1) the components of proof and their connections,  

(2) how a proof is composed of its components, and  

(3) why a proof needs the structure that it has 
(Miyazaki et al., 2017). 

In the design of our intervention, we adopted the use 
of flow-chart proof format developed by Miyazaki et al. 
(2012) for the following reasons. Firstly, our previous 
study (Anwar et al., 2021) confirmed that the flow-chart 
proof format supported PMTs’ reading comprehension 
of geometry proof (RCGP). Secondly, Miyazaki et al. 
(2015) showed that the use of flow-chart scaffolded the 
development of understanding of the structure of proof 
by Japanese junior high school students. This finding 
was confirmed in our previous study (Anwar et al., 2021) 
with the same PMTs with a geometrical proof 
background similar to the high school students in 
Miyazaki’s study. Also, the study by Selden et al. (2018) 
suggested the introduction of a structure as a way of 
framing a proof. Its use supports undergraduate 
mathematics students in writing correct, well-organized, 
and easy-to-read mathematical proofs, particularly the 
proof of a mathematical proposition in the form of an if, 
then statement (McKee et al., 2010). 

Understanding the Structure of Proof 

In this study, we use Miyazaki et al.’s (2015) model of 
understanding the structure of proof for the design of 
tasks and the analysis of PMTs’ understanding. The 
model was based on the refinement and adjustment of 
RCGP model, originally developed by Yang and Lin 
(2008), and on their empirical insights gained from 
research among Japanese students into the difficulties of 
learning and teaching proofs. The model entails that 
students start to recognize the individual elements of a 
proof such as the premises, the conclusion, and the 
singular proposition(s), then recognize the relationships 
between these elements, and finally understand the 
relational network of a proof (Table 1). In this model, 
Miyazaki et al. (2015) distinguished three levels of 
understanding:  

(1) pre-structural level,  

(2) partial-structural level, with two sub-levels: 
partial-structural elemental and partial-structural 
relational, and  

(3) holistic-structural level.  

Contribution to the literature 

• This paper offers an LTGP informing curriculum design and instructional development for effective 
teaching of deductive proof, particularly in an early stage of learning deductive proof in geometry. 

• The study indicates how flow-chart proof formats support students’ understanding of the structural 
relationship of a geometry proof. 

• The study indicates how flow-charts with open problems help students to plan a proof preceding its 
construction. 
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At the pre-structural level, students see a proof as a 
collection of meaningless symbolic objects. They fail to 
identify these as components of proof. When students 
start to consider the components, they are at the second 
level, particularly the partial-structural elemental sub-
level. However, knowing the components is not enough 
to understand structure or to construct a proof. At the 
partial-structural relational sub-level, students 
understand hypothetical syllogism and universal 
instantiation. For instance, if a student understands 
universal instantiation, then he/she is able to draw a 
conclusion of a given statement, such as ‘in Δ𝐴𝐵𝐶 and 
Δ𝐴𝐶𝐷, 𝐴𝐵 ≅ 𝐴𝐶, ∠𝐵𝐴𝐷 ≅ ∠𝐶𝐴𝐷, and ∠𝐴𝐵𝐷 ≅ ∠𝐴𝐶𝐷, 
with a conclusion that Δ𝐴𝐵𝐷 ≅ Δ𝐴𝐶𝐷 because of the 
axiom of congruent triangles (A-S-A).’ At this sub-level, 
students may only understand either hypothetical 
syllogism or universal instantiation. Students who do 
not understand hypothetical syllogism will accept 
logical circularity: they draw a conclusion that is given 
as premise or as previous statement in the proof. 
Students who do not understand universal instantiation 
are able to draw a conclusion or connect premises to the 
conclusion, but they cannot identify the appropriate 
universal proposition to justify the conclusion. When 
students logically connect all singular propositions 
(premises, intermediate statements, and conclusion) and 
universal propositions via universal instantiation, and 

all singular propositions from premises to conclusion via 
hypothetical syllogism, they are at the holistic-structural 
level. After they reach this level, they can construct their 
own proof and are able to see the hierarchical 
relationship between theorems and the geometrical 
statement they prove. 

Miyazaki et al. (2017) applied the model to analyze 
introductory geometry proof lessons in Japanese 
secondary schools in which students (aged 14) discussed 
validity of proof that contained logical reasoning, but 
this is only a part of whole progress of understanding. In 
this study we applied the model to capture the whole 
progress of students’ understanding of the structure of 
proof, enabling them to construct their own proof. 

Flow-Chart Proof Format and Open Problems 

Formats that can be used in geometry proofs are two-
column proof, tree proof, paragraph proof, and flow-
chart proof. Details of these formats are found in Cirillo 
and Herbst (2011). Some communities accept or require 
a certain format, but that format might not be accepted 
in other contexts (e.g., two column proofs and flow-chart 
proofs are acceptable in school, but not in mathematics 
journals). Also, some communities see flow-chart proof 
as a ‘pre-formal’ proof, which can be introduced before 
students learn more formal proofs. 

Table 1. Description of levels of understanding of structure of proof, adapted from Miyazaki et al. (2015, 2017) 

Level of understanding Description 

Pre-structural level Students see proof as a collection of symbolic objects without meaning in the 
context of proof. For instance, they know a geometric fact such as congruent sides 
but do not know how to use it in the proof. 

Partial-
structural 
level 

Elemental sub-level Students attend to components of proof (e.g., the premise, the conclusions, the 
singular propositions to be used), but do not know how to specify these 
components in accordance with universal proposition (e.g., 
theorems/axioms/definition) chosen as a reason to justify the proof. 

Relational 
sub-level 

Universal 
instantiation 

Students pay attention to components of proof and are able to use universal 
proposition (e.g., theorems, axioms, definitions) to specify each element of proof. 

Hypothetical 
syllogism 

Students pay attention to components of proof and are able to connect logically all 
elements from premises to conclusion. 

Holistic-structural level Students can connect logically all elements via universal instantiation (connecting 
singular proposition with universal proposition) and hypothetical syllogism 
(connecting singular propositions). They can construct their own proof. 

 

 
Figure 1. An example of a flow-chart proof (Adapted from Miyazaki et al., 2015) 
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The flow-chart proof displays the delineated 
structure of a proof using boxes and connecting arrows 
(Cirillo & Herbst, 2012). A representation of a flow-chart 
proof format is shown in Figure 1. Flow-chart presents 
deductive connections from premises to conclusions by 
identifying singular and universal propositions or 
supporting reasons (Miyazaki et al., 2015). 

Figure 1 indicates that the flow-chart proof visualizes 
not only the components of the proof but also the 
connection between them via two types of logical 
reasoning. Therefore, in this study we introduce flow-
chart proof as a format to represent proofs in geometry 
to help students’ understanding of the structure of proof 
to enable them to construct geometry proofs. The study 
by Anwar et al. (2021) confirmed that the use of the flow-
chart proof format supported students to comprehend 
geometry proof, especially to understand the logical 
status of components and the critical ideas of geometry 
proofs. 

In order to teach students how to construct a proof, 
van Engen (1970) suggested to give more explicit 
attention to strategies of proof construction including 
how to start writing proof. For instance, to prove a 
statement, ‘if P, then Q’, students start from premises P 
to reach a conclusion Q by going through a logical 
sequence of steps in a forward process. In fact, it is not 
always easy to start with the premises and continue with 
a logical sequence of steps. Another, and in many cases 
more fruitful, way is to follow a backward process. Here, 
students can call on the information provided by the 
premises, together with universal propositions. This 
process allows students to focus on information that 
seems essential to them. To write proof they follow the 

reversed process starting from the premises and write 
towards the conclusion Q via a logical sequence of steps.  

A study by Miyazaki et al. (2015) showed that open 
problems supported students in proof construction by 
encouraging them not only to deduce a conclusion from 
given assumptions (forward process) but also to choose 
assumptions to prove a conclusion (backward process). 
In this study, we define an open problem as a problem 
with multiple possible solutions. 

Hypothetical Learning Trajectory 

In this study we used the methodology of design 
research, and more specifically, we used a hypothetical 
learning trajectory (HLT) as a sequence of student tasks 
with specified learning goals, and predictions of 
students’ answers for each task (Bakker, 2018; Mckenney 
& Reeves, 2012; Plomp, 2013; Prediger et al., 2015). As 
such, it gives a detailed, stepwise scenario for the overall 
intended learning goals.  

Following Bakker (2018), our HLT has three different 
functions. Firstly, HLT was used as a guideline for 
designing student tasks through a progression of the 
levels of understanding of structure of proof. Secondly, 
HLT functioned as a guideline for the researcher; based 
on evidence from the implementation of the design 
during class meetings, the researcher revised the 
instructional activities of HLT for the next class meeting. 
Lastly, HLT functioned as a guideline for analyzing data 
by contrasting the learning goals of each task with PMTs’ 
learning outcomes. In design research, this analysis 
might lead to revision of HLT, but in this study we report 
about our experiences with the initial HLT. 

 
Figure 2. Levels & components of understanding of structure of proof in initial hypothetical learning trajectory (HLT) 
(prepared by Anwar) 
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Figure 2 depicts the intended progression of 
students’ levels of understanding of the structure of 
proof in the initial HLT during three class meetings 
through four main learning activities. Arrows identify 
the predictions of the students’ progression to the levels 
of understanding (e.g., partial-structural elemental sub-
level) and their components [e.g., elementary 1 (El1), 
relational universal instantiation 1 (RelUI1), relational 
hypothetical syllogism (RelHS)] over time. 

Intervention and Task Design 

The intervention consisted of six meetings of 150 
minutes each. This study focuses on the last three 
meetings (4th, 5th, and 6th meeting) on proof 
construction. The first three meetings were designed to 
support students’ understanding of definitions of 
geometric concepts (e.g., a midpoint, bisector of a 
segment, vertical angles, etc.), including axioms and 
theorems, and to create conjectures (geometric 
propositions) in the form of if, then statements related to 

axioms of congruent triangles. The teaching in the last 
three meetings aimed to initiate PMTs’ understanding of 
the structure of geometric proof to such a level that they 
develop abilities to construct proofs in this course and 
tackle the more complicated proofs they will encounter 
in subsequent courses.  

As said, we adopted Miyazaki et al.’s (2017) learning 
trajectory including learning goals and learning 
activities to develop our HLT. One of the features of HLT 
is the use of flow-chart proofs. The main learning goals 
intend that students will be able to: 

(1) understand structure of proofs in geometry and  

(2) construct geometric proofs.  

The intervention design consisted of three learning 
phases conducted in three 150-minute meetings. We 
designed tasks with open (e.g., tasks T1, T2, T3, and T4) 
and closed (e.g., task T5, T6, T7, and T8) problems. Tasks 
introduce students to flow-chart proof format, adapted 
from Miyazaki et al. (2015). The term “open” in our open 

 
Figure 3. Open and closed proof problems (prepared by Anwar) 
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problem refers to a situation, where PMTs could give 
more than one answer or suitable proof. An example of 
an open problem is shown in part a in Figure 3. In 
contrast, closed problems refer to proof problems similar 
to the typical form appearing in textbooks, as shown in 
part b in Figure 3. The open problems here are designed 
to encourage PMTs’ creativity and flexibility in choosing 
premises, intermediate propositions or conclusions and 
their connections. 

We detailed the learning goals of the tasks in terms of 
components of understanding, as shown in Table 2. 
These components include student’s understanding of 
the logical status of premises and conclusions, two types 
of reasoning (universal instantiation and hypothetical 
syllogism) and thinking processes to construct proofs 
(forward thinking from premise to conclusion, see part c 
in Figure 3, and backward thinking from conclusion, see 
part a in Figure 3). For instance, a component of 
understanding is the universal instantiation of a specific 
universal proposition (e.g., axiom of congruent triangles: 
S-A-S). If one understands universal instantiation, when 
faced with a question such as “In Δ𝑃𝑀𝑄 and Δ𝑃𝑁𝑄, with 

𝑃𝑀̅̅̅̅̅ ≅ 𝑃𝑁̅̅ ̅̅  given, which additional premises are needed 
to prove Δ𝑃𝑀𝑄 ≅ Δ𝑃𝑁𝑄?”, one can answer by stating “In 

order to use the condition of congruent triangles, 

∠𝑃𝑀𝑄 ≅ ∠𝑃𝑁𝑄 and 𝑀𝑄̅̅ ̅̅̅ ≅ 𝑁𝑄̅̅ ̅̅  are needed.” 

Aims of the Study 

The purpose of this HLT is to scaffold students’ 
understanding of the structure of proof and their 
abilities to construct a geometry proof. The purpose of 
the study is to understand why the intervention helps 
students understand and construct geometry proofs. 
Our intervention was guided by Miyazaki et al.’s (2017) 
levels of proof understanding and our research 
particularly intended to identify the roles of flow-chart 
proof formats in student understanding. The 
corresponding research question is: How does the 
intervention support students’ understanding of the structure 
of proof and their performance in geometry proof 
construction? 

RESEARCH METHODS 

Design of the Study 

This is an intervention-based study in the area of 
proof construction. The term intervention denotes an 
action aimed to change a teaching and learning situation, 

Table 2. Main learning activities, learning goals, targeted component understandings, & tasks of the course meetings 

Meeting & 
activities 

Learning goals Targeted component understanding of structure of proof (Code) Tasks (T) 

Meeting 4: 
Constructing 
flow-chart 
proof with 
open problem 

1. Able to understand 
logical status of 

elements of proof 

1.1. Understand logical status of a conclusion of a singular 
proposition (El1) 

T1a 

1.2. Understand logical status of intermediate proposition & 
conclusion of “multiple” singular propositions (El2) 

T1b 

1.3. Understand logical status of premises of a singular 
proposition(s) (El3) 

T2a, b, T3a, b, 
T4a, b 

2. Able to understand 
connection/chaining 

elements 

2.1. Understand universal instantiation of universal proposition 
(i.e., definition, axiom, & theorem) to justify a singular 
proposition (one singular proposition) (RelUI1) 

T1a, 1c, T2a, 2b 

2.2. Understand universal instantiation of universal proposition 
(e.g., definition, axiom, & theorem) to justify “multiple” 
singular propositions (RelUI2) 

T1b, T3a, b, T4a, b 

2.3. Understand logical chaining (i.e., hypothetical syllogism) 
connecting some singular propositions (RelHS) 

T2a, T3a, T4a, 
T1c, T2b, T3b, T4b 

3. Able to apply 
forward/backward 
process to construct 

their proof 

3.1. Apply forward thinking to complete/create flow-chart 
proof 

T1a, b, c 

3.2. Apply backward thinking to complete/create flow-chart 
proof 

T2a, b, T3a, b, 
T4a, b 

Meeting 5: 
Reading & 
constructing 
proof 

4. Able to transform 
their flow-chart into 
other formats & vice 

versa 

4.1. Rewrite a proof in other formats (two-column or 
paragraph) by reference to given flow-chart proof (Hol1) 

T5 

4.2. Rewrite a proof in flow-chart proof by reference to given 
paragraph, & two-column proof, format (Hol1) 

T6 

Meeting 6: 
Constructing 
& rewriting 
proof 

5. Able to construct 
flow-chart proof & 

transform proof into 
another form of proof: 
A paragraph or two-

column 

5.1. Construct flow-chart proof of a geometric proposition (see 
proof as a whole) (Hol2) 

T7b 

5.2. Rewrite a proof in other formats (two-column or 
paragraph) by reference to constructed flow-chart proof (Hol1) 

T7c 

5.3. Construct flow-chart proof of a geometric proposition (see 
a proof as a whole) (Hol2) 

T8a 

5.4. Rewrite a proof in other formats (two-column or 
paragraph) by reference to constructed flow-chart proof (Hol1) 

T8b 
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here geometry proof (Stylianides et al., 2017). We 
designed an HLT and implemented and tested HLT in 
two classrooms, class 1 (C1) and class 2 (C2). HLT was 
used in one class, and a (slightly) revised version was 
used in the other class of students. The minor revisions 
included details in the formulation of tasks and 
additional instruction by the teacher. We collected 
several data before, during and after the intervention, 
including pre-test, students’ written answers to tasks, 
students’ utterances in class discussions and student pair 
discussions, task-based interviews, and post-tests. We 
analyzed these data by comparing the actual learning for 
each task with the aims specified in the initial HLT.  

Participants  

Participants were 60 PMTs during their first year of 
the university of four-year curriculum, aged 18-19: 32 
PMTs (six males, 26 females) in C1 and 28 PMTs (five 
males, 23 females) in C2. This proportion reflects the 
number of females and males in Indonesian teacher 
education programs, particularly in mathematics 
education. PMTs begin learning formal proofs in 
geometry. PMTs were introduced to the fundamentals of 
plane geometry at their secondary school, including the 
properties of polygons (triangles, rectangles, squares, 
etc.), similarity, and congruence applied to issues 
involving measurement and computation, but they were 
not exposed to proof. 

The lecturer in this intervention was the first author, 
hereafter called a lecturer-researcher, whose role is 
twofold (Mills, 2014). As a lecturer, he provided students 
with tasks and allowed the students to explore the tasks 
in pairs while discussing ideas with each other. The 
lecturer supported the students by probing their 
thinking, asking them to explain and justify their 
strategies, and encouraging the free exchange of ideas. 
As a researcher, he audio-recorded group and classroom 
discussions. The lecturer-researcher also wrote reflection 
notes during or after each class.  

Data Collection  

All students took a pre-test and a post-test (a week 
before and a week after the intervention, respectively), 
testing their understanding of structure of proof as an 
indication of the effect of the intervention, see the 
Appendix A.  

The tasks tested proof reading comprehension and 
proof construction. But, in this article we focus on proof 
construction. Pre- and post-test questions were similar in 
terms of complexity and type of task, but they differed 
in the proposition to be proven.  

During meetings all students’ written answers to the 
tasks were collected, and classroom discussions and 
discussions in groups were audiotaped. The written 
answers to the tasks and students’ utterances during 

whole-class discussions and group discussions were 
used to interpret students’ understanding.  

We combined the data collected during intervention 
with data from interview sessions for triangulation 
purposes and for gaining more detailed information 
about the individual learning trajectories. Six students 
were selected for post-interviews based on their ability 
to communicate actively, gender diversity (three males 
and three females), diversity in expected proof 
construction performance, and their willingness to 
participate. The interviews were individual think-aloud 
sessions in which students worked on proof construction 
problems, conducted a day after the last course meeting. 
Each interview lasted for about 60 minutes.  

In the interview sessions, interviewees solved a proof 
construction problem, and they were requested to speak 
out loud and explain as much as they could to 
investigate their thinking. During the interviews, the 
interviewer gave minimal directions. He also explained 
that any time he asks “why?” it did not mean that the 
participant was wrong, but that he was seeking to 
understand his/her thinking.  

Data analysis 

Analysis of pre- and post-test  

We categorized students’ written answers to pre- and 
post-test to determine the level of understanding of 
structure of proof at the initial and end stage of the 
intervention. We used a rubric for identifying PMTs’ 
levels of understanding, see Appendix B. 

Analysis of student answers to tasks in class meetings 

We scored students’ answers to each task to 
determine whether they reached the targeted 
components of understanding of structure of proof. 
Students’ answers (written in flow-chart, see the 
problem in Figure 3) were scored one when each 
component of understanding targeted by the task was 
present in the answer, following the criteria of each 
component of understanding in Table 3, and zero if the 
answers did not meet the criteria.  

A second rater who had not participated in the prior 
coding activities independently scored 25% of students’ 
written answers (pre-test, tasks, and post-test) using the 
scoring rubric (Table 3). We calculated the percentage of 
agreement between raters to test the inter-rater 
reliability (Mchugh, 2012). The percentages of agreement 
of pre-test, task, and post-test were 80%, 93%, and 80% 
(that is, one point difference in scores of about two to 
three students). 

Analysis of classroom discourse 

We transcribed students’ utterances from audio 
recordings during classroom and pair discussions. Then, 
we coded and classified the transcriptions using criteria 
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in Table 3 to investigate whether they provided 
evidence of reaching the components of understanding 
of structure of proof in HLT.  

Our analysis focused on some parts of classroom and 
pair discussions as it aimed to support and triangulate 
our claims of analysis of students’ tasks.  

Analysis of interviews 

We transcribed the interviewees’ utterances during 
interview sessions. Next, we scored their answers to the 
interview tasks using criteria in Table 3 to determine 
whether components of understanding of structure of 
proof targeted by the task emerged.  

FINDINGS 

Students’ Levels of Understanding of Structure of 
Proof 

Table 4 gives the percentages of students who 
reached the levels of understanding of structure of proof 
based on their performances on a proof construction 
problem in the pre- and post-test. Table 4 shows that 
50% of PMTs reached the highest level of understanding 
of structure of proof after the intervention. In contrast, 
no PMTs were at the holistic-structural level in the pre-

test. Because of the hierarchical nature of the levels, it can 
also be concluded that 97% of PMTs reached the partial-
structural elemental level, and 75% of PMTs reached the 
partial-structural relational level in the post-test. So, the 
intervention supported the vast majority of PMTs in 
understanding the structure of a proof. 

In the pre-test, all PMTs wrote their proof of a 
proposition in a narrative way as a paragraph proof. In 
contrast, in the post-test, only 10% of PMTs wrote the 
proof in the form of paragraph proof, and the other 90% 
wrote the proof in the form of flow-chart or 
combinations of flow-chart with other proof formats (i.e., 
two-column proof, paragraph proof). In addition, almost 
all PMTs (27 of 30) who were at the holistic-structural 
level after the intervention wrote the proof in the form of 
a flow-chart proof or combined the flow-chart proof with 
other proof formats. This is an indication that the use of 
flow-chart proof helped students understand the 
structure of proof, and then, construct a proof. 

Partial-Structural Elemental and Relational Level of 
Understanding 

Table 5 presents the percentages of PMTs who 
identified the components of proof (e.g., premises, 

Table 3. Criteria used to determine students’ understanding of structural understanding of proof (on Miyazaki et al., 2017) 

Component Criteria 

El1 The flow-chart mentions a correct conclusion 
El2 The flow-chart consists of all correct intermediate proposition(s) and a conclusion 
El3 The flow-charts consist of all correct premises and intermediate proposition(s) 
RelUI1 The single-step proof flow-chart consists of all correct intermediate proposition(s) and a conclusion and all 

appropriate universal propositions (i.e., definition, axiom, or theorem) 
RelUI2 The multi-step proof flow-chart consists of all correct intermediate conclusion(s) and conclusion; and all 

appropriate universal propositions (i.e., definition, axiom, or theorem) 
RelHS1 The completed flow-charts connect all singular propositions logically from premises to conclusion or do not 

indicate PMTs accept circular reasoning 
RelHS2 The constructed flow-charts connect all singular propositions logically from premises to conclusion or do 

not indicate PMTs accept circular reasoning 
 

Table 4. Percentage of students who reached a certain level of understanding of structure of proof in pre- & post-test (n=60) 

Levels of understanding Before intervention (pre-test) After intervention (post-test) 

Pre-structural 68 3 
Partial-structural elemental sublevel 27 22 
Partial-structural relational sublevel 5 25 
Holistic-structural 0 50 

 

Table 5. Percentages of PMTs who reached components of understanding of structure of proof (partial-structural elemental 
sub-level) in written answers to tasks T1, T2, T3, & T4 

Component understanding 
Task no. (in percentage) 

T1a T1b T1c T2a T2b T3a T3b T4a T4b 

(El1) Understanding logical status of a conclusion in a singular proposition 100         
(El2) Understanding logical status of conclusions in all singular propositions  92 92       
(El3) Understanding logical status of premises in singular    96 81 100 89 93 76 
(RelUI1) Universal instantiation in one-step proof 92  88 93 81     
(RelUI2) Universal instantiation in multi-step proof  92    95 84 82 72 
(RelHS1) Hypothetical syllogism (complete flow-chart)    98  96  95  
(RelHS2) Hypothetical syllogism (create flow-chart)   92  96  89  100 
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conclusion, and singular proposition), to instantiate a 
universal proposition to deduce a singular proposition 
and to connect logically all singular propositions from 
premises to conclusion by hypothetical syllogism. The 
percentages are calculated from the flow-charts written 
in PMTs’ answers to the tasks (i.e., T1, T2, T3, and T4). 

Regarding the components of understanding El1, El2, 
and El3, Table 5 shows that almost all PMTs (i.e., over 
92%) chose correct premises, intermediate propositions 
and conclusions to produce correct singular propositions 
in tasks T1a, T1b, T2a, T3a, and T4a. This data indicates 
that most PMTs understood the logical status of 
components of proof when completing a given flow-
chart. For example, as we see in Figure 4, PMT32 created 
five singular propositions in task T1c.  

The flow-chart shows that PMT32 understood the 
logical status of premises and conclusion in the singular 
proposition. Particularly, she understood how the 
conclusion can be derived from given premises, so she 
understood the singular proposition as an element of 
proof. In tasks asking PMTs to create their own flow-
charts (i.e., T1c, T2b, T3b, and T4b) percentages are 
somewhat lower. The El3 score of T2b is lower than the 
El3 score for T3b, and the El3 score for T4b is lower than 

the one for T3b. This may be explained by the different 
degrees of difficulty of the tasks. 

The percentages of RelUI1 in Table 5 show that most 
PMTs (over 81%) chose the appropriate axiom, 
definition, or theorem and placed it in the rounded 
rectangle in the flow-chart (blank rounded rectangles 
asked for a single singular proposition to be completed). 
Most PMTs (92% in T1b, 95% in T3a, 84% in T3b, 82% in 
T4a, and 72% in T4b) chose an appropriate axiom, 
definition, or theorem in the flow-chart. Thus, most of 
PMTs were able to instantiate an appropriate universal 
proposition (i.e., axiom/definition/theorem) to justify 
each singular proposition in a flow-chart proof. As an 
example, in task T2a, PMT5 wrote a correct universal 
proposition “axiom of side-angle-side” in the rounded 

rectangle to justify a singular proposition “if 𝐴𝑂̅̅ ̅̅ ≅

𝐵𝑂̅̅ ̅̅ , 𝐶𝑂̅̅ ̅̅ ≅ 𝐷𝑂̅̅ ̅̅  and ∠𝐴𝐷𝐶 ≅ ∠𝐵𝑂𝐷, then Δ𝐴𝐶𝑂 ≅ Δ𝐵𝐷𝑂”, 
as shown in part a in Figure 5.  

In T2b (part b in Figure 5), PMT5 created her three 
own flow-charts consisting of a singular proposition 
with correct premises and universal proposition to 
justify each singular proposition. PMT5’s flow-charts 
indicate that she understood the relational connection 
between a singular proposition and a universal 
proposition via universal instantiation. 

 
Figure 4. PMT32’s flow-chart of task 1c (a scan of the participants’ answers, reprinted with permission) 

 
Figure 5. PMT5’s flow-chart proofs of tasks T2a & T2b (a scan of the participants’ answers, reprinted with permission) 
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Regarding the understanding of hypothetical 
syllogism, the percentages of RelHS1 in Table 5 show 
that less than 5% of PMTs wrote a conclusion as one of 
premises (T2a, T3a, and T4a). So, most of PMTs 
understood hypothetical syllogism and applied this 
reasoning to connect all components of proof logically.  

The percentages of RelHS2 in Table 5 detail that a few 
PMTs wrote a premise as a conclusion and/or created an 
unconnected flow-chart from premises to conclusion 
(8% in T1c, 4% in T2b, 11% in T3b, and 0% in T4b). So, 
only a small number of PMTs used circular reasoning to 
complete the given flow-chart. Circular reasoning is an 
indication of the lack of understanding of hypothetical 
syllogism in constructing a proof. For instance, in T3b, 
PMT38 created two flow-charts, as shown in Figure 6. 
PMT38 wrote an appropriate universal proposition to 
justify each singular proposition in both flow-charts. 

However, in the second flow-chart PMT38 wrote “ 𝐴𝐵̅̅ ̅̅ ≅

𝐶𝐷̅̅ ̅̅ ” as one of premises to deduce an intermediate 
proposition in which this proposition is a conclusion, as 
indicated by the red rectangle in Figure 6, indicating 
circular reasoning.  

Holistic-Structural Level of Understanding 

Table 6 presents the percentages of PMTs who 
reached the holistic component of understanding. Table 

6 shows that the percentage of PMTs who rewrote the 
flow-chart proof into a paragraph or two-column proof 
in task T5 (75%) was slightly higher than the percentage 
(70%) of PMTs who rewrote the paragraph proof into 
flow-chart proof in task T6. Although the difference is 
small and not significant (Wilcoxon signed-rank test: Z=-
.688, p=.491), PMTs argued that the flow-chart proof 
format is easier to understand and makes it easier to 
write the proof in other formats. For instance, during a 
whole-class discussion, PMT19 stated about flow-chart 
proof: “I can see the process easily”, “I can see clearly 
which statements support the conclusion. I mean origin 
of the conclusion” and “the steps of the proof are easy to 
be seen”.  

In contrast to the flow-chart proof, some PMTs had 
difficulties to identify the connection between 
statements in two-column proofs. For instance, during 
whole-class discussion, after PMT11 read the two-
column proof of task T5 created by PMT28 as shown in 

 
Figure 6. PMT38’s flow-chart proof of task T3b (a scan of the participants’ answers, reprinted with permission) 

Table 6. Percentage of PMTs who reached holistic component of proof understanding in students’ written answer to tasks 
T5, T6, T7, & T8 

Component understanding 
Task 

T5 (1-16) T6 (1-17) T7 (1-3) T8 

Hol1 rewriting/writing proof by reference to a given/constructed proof 75 70 83 83 
Hol2 proof construction   91 85 

 

 
Figure 7. PMT28’s two-column proof for task 5 (prepared by Anwar) 
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Figure 7, she stated that statement 5 was deduced from 
statement 4 and said, “number 4 is derived from number 
3”. Our interpretation is that PMT11 thought that each 
statement in the left column is deduced from a previous 
statement, indicating that the representation of the two-
column proof did not lead to PMT11’s understanding of 
the connection between statements in a proof. 

Table 6 also shows that the percentages of students 
at level Hol2 were high in the answers to tasks T7 (91%) 
and T8 (85%). This indicates that most PMTs were able 
to construct a flow-chart proof. The percentage of Hol2 
in task T7 was higher than that in task T8, because of a 
difference in the complexity of the problem. In T7, the 
proof steps were given in the text. In contrast, in T8, 
PMTs should devise their own proof steps and then 
write their flow-chart proof. As shown in Table 6, the 
percentages of Hol1 increased from T5 (75%) to T7 (83%) 
and then remained stable in T8. This indicates that most 
PMTs were able to write flow-chart proof into other 
proof formats and that percentage improved over time.  

Students’ Learning Trajectories 

We simplified the information from Figure 2 and 
Table 2 into Figure 8, presenting HLT enacted in the 
intervention and the components of understanding 
targeted by the tasks. The graph represents the meetings 
of the intervention (M) and tasks (T). The partial-
structural elemental sub-level is shaded in green, the 
partial-structural relational sub-level in orange, and the 

holistic structural level in blue. We show how individual 
students progressed during the intervention meetings 
and how their progression followed HLT. 

Individual Students’ Trajectories 

All students began at the pre-structural elemental 
level, see Table 4, as we assumed that students already 
know some geometric terms, definitions and axioms 
regarding congruent triangles from previous meetings. 
All students generally progressed in similar ways 
through the main path of the learning trajectory; 
individual differences emerged in the timing of 
development and the degree to which students could 
engage in constructing all possible flow-chart proofs. In 
the following paragraphs we present the learning 
trajectories for three PMTs. These three PMTs succeeded 
in improving their level of understanding of structure of 
proof from pre-structural level at the initial stage of 
intervention to the holistic level of understanding, but 
they differed in the paths followed to develop their 
understanding as visualized in Figure 9.  

The full-colored rectangles indicate that PMT reached 
a particular component of understanding. In contrast, 
the light-colored rectangles indicate that PMT only 
partially achieved to reach the level intended by the task. 
The non-colored black line rectangles show that PMT 
failed to reach particular component of understanding.  

 
Figure 8. Hypothetical learning trajectory showing tasks targeting components of understandings of geometrical proof 
(prepared by Anwar) 

 
Figure 9. Learning trajectories of three PMTs (prepared by Anwar) 
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PMT2 

Part a in Figure 9 presents PMT2’s progression 
through the learning trajectory. PMT2 is one of PMTs 
who demonstrated to have reached the highest level 
after the trajectory, and her progress followed the 
trajectory targeted by the tasks. During the interview 
session, PMT2 proved a geometric proposition and used 
a flow-chart proof format to represent the proof. During 
the process of constructing the flow-chart, the 
interviewer posed some questions to investigate PMT2’s 
strategies. PMT2 answered “firstly, I see the premises 
written in the statement, see the figure following the 
statement …”, “... find other conditions that can be 
concluded from the premises …”, and “then find other 
conditions [intermediate propositions] such that I can 
find that segment DB and AE are congruent 
[conclusion]”. In this case, PMT2 started to construct a 
proof from the premises, which were written explicitly 
in the text or extracted from the figure following the 
statement to be proven, and, next, she found 
intermediate propositions to come to the desired 
conclusion by using universal instantiation of universal 
propositions (i.e., forward thinking). She also argued 
that presenting geometry proof using flow-chart enabled 
her to trace previous statements used to deduce the 
intermediate proposition or conclusion in the proof: “… 
if I use two-column format it cannot be seen from which 
statements the congruent triangle is deduced”. The use 
of flow-chart proof format also enabled PMT2 to find 
easily a following intermediate proposition to arrive at 
the desired conclusion “yes, so I can explore the next 
statement [intermediate proposition]”. 

PMT28 

PMT28’s progression through the learning trajectory 
is depicted in part b in Figure 9. The light-colored 
rectangles in T1b (RelUI2) indicate that PMT28’s 
understanding of universal instantiation in T1b was 
considered incomplete because one of the universal 
propositions used to justify the conclusion was incorrect. 
At the initial meeting, PMT28 used inappropriate 

universal propositions to create a singular proposition. 
For instance, in task T1b PMT28 deduced a conclusion 
“𝑚∠𝐶𝐴𝐵 = 𝑚∠𝐶𝐵𝐴” from the intermediate proposition 
“∠𝐶𝐴𝐵 ≅ ∠𝐶𝐵𝐴”, but used an incorrect universal 
proposition (i.e., definition of addition of angles) to 
justify the conclusion. This indicates that PMT28 lacks 
understanding of universal instantiation. This is also 
visible in PMT28’ answer to task T1c, as shown in Figure 

10, which is visualized by the light-colored rectangles of 
RelUI2 in task T1c. 

However, in task T1c PMT28 connected all 
statements in the proof logically as indicated by the 
correct statements in the rectangles. This means that 
PMT28 did not use circular reasoning. So, PMT28 
reached RelHS2, visualized by the full-colored rectangle. 
The light- and full-colored rectangles of RelUI2 and 
RelHS2 in task T1c indicate that the understanding of 
these two components, universal instantiation, and 
hypothetical syllogism, were developed independently. 
This also shows that RelHS2 can be reached before 
RelUI2, and this raises questions on the hierarchical 
nature of these two levels of understanding. 

PMT33 

PMT33’s progression through the learning trajectory 
is depicted in part c in Figure 9. For the first tasks T1 and 
T2, she followed the trajectory as intended by HLT. The 
white rectangle for task T3a indicates that PMT33 did not 
reach the component ReLHS1 targeted by this task 
because she showed circular reasoning. In task T3b, 

PMT33 chose two premises “ 𝑂𝐵̅̅ ̅̅ ≅ 𝑂𝐷”̅̅ ̅̅ ̅ and ”𝐴𝐵̅̅ ̅̅ ̅ ≅ 𝐷𝐶̅̅ ̅̅ ” 
to conclude the intermediate proposition “Δ𝐴𝐵𝑂 ≅

Δ𝐶𝐷𝑂” and then finally drew the conclusion “ 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ ” 
(see Figure 11). This circular reasoning indicated that 
PMT33 lacked understanding of hypothetical syllogism, 
which connects singular propositions in the proof. 
However, PMT33 instantiated appropriate universal 
propositions (e.g., theorem S-S-S and definition of 
congruent triangles) to justify singular propositions, 
which indicated that PMT33 understood universal 
instantiation. Based on the cases of PMT28 and PMT33, 

 
Figure 10. PMT28’s flow-chart proof of task T1c (a scan of the participants’ answers, reprinted with permission) 
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our interpretation is that these two components of 
understanding, universal instantiation and hypothetical 
syllogism, developed independently. 

In the interview session, PMT33 constructed the 
proof of the geometric proposition “In polygon 𝐴𝐷𝐵𝐸, if 

𝐴𝐶̅̅ ̅̅ ≅ 𝐶𝐵̅̅ ̅̅ , 𝐸𝐶̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ , then 𝐴𝐸̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅ ”. The point C is a 
midpoint of segment AB. PMT33 wrote correct premises, 
intermediate proposition “Δ𝐸𝐶𝐴 ≅ Δ𝐵𝐶𝐷”, and 

conclusion “𝐴𝐸̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅ ” (see Figure 12). He identified a 
premise ∠𝐸𝐶𝐴 ≅ ∠𝐷𝐶𝐵, which is not stated explicitly in 
writing but embedded in Figure 12. The student said “it 
is simple, because these [pointing to angles ∠𝐸𝐶𝐴 and 
∠𝐷𝐶𝐵] are vertical angles, so this [pointing to ∠𝐸𝐶𝐴] 
must be congruent with this [pointing to ∠𝐷𝐶𝐵]”). 

Figure 12 and his verbal explanation indicate that 
PMT33 chose appropriate universal propositions to 
justify each singular proposition. PMT33 also explained 
why he chose “axiom of side-angle-side” as universal 
proposition: “I have to think how I can prove that these 
two triangles are congruent, so I have to use side-angle-
side, and side-side-side is not possible because this 

[pointing to 𝐴𝐸̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅ ] must be proven … based on my 
experience [wrote conclusion as one of premises in task 
T3b]”. This indicates that PMT33 not only understood 
the universal proposition but also hypothetical 

syllogism, because all singular propositions are 
connected logically. 

In the interview session, PMT33 explained his 
thinking to find intermediate propositions to connect 
premises to the conclusion when he started to construct 
the proof. He started with choosing the premises 
(“firstly, I wrote the given statements [premises]”), 
seeing the conclusion (“see the end [pointing the 

conclusion 𝐴𝐸̅̅ ̅̅ ≅ 𝐵𝐷̅̅ ̅̅ ]”) and thinking on how to come to 
this conclusion (“Think how I can arrive to this 
conclusion”). PMT33 used backward thinking to plan 
the construction of the proof. This way of reasoning 
combined with the correct use of premises, intermediate 
proposition, and universal proposition to justify each 
singular proposition in the flow-chart, as visualized in 
Figure 12, indicates that PMT33 had full understanding 
of the structure of proof and ability to construct the proof 
after the intervention. 

DISCUSSION 

In this study, we conducted an intervention-based 
study aimed at enhancing students’ understanding of 
the structure of proof. Our research offers knowledge 
about the development of students’ understanding of 

 
Figure 11. PMT33’s flow-chart proof in task T3b (a scan of the participants’ answers, reprinted with permission) 

 
Figure 12. PMT33’s flow-chart proof in interview session (a scan of the participants’ answers, reprinted with 
permission) 
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the structure of Euclidean proof and how it can be 
supported, which can be used as a guide for teachers to 
develop a more detailed discourse (Ivars et al., 2018). 
Overall, we found that the intervention supported not 
only PMTs’ understanding of the structure of proof but 
also their performance on proof construction. 

Specifically, our quantitative data of pre- and post-
test indicated that the intervention indeed supported 
PMTs’ structural understanding of proof. After the 
intervention 50% of PMTs were at the highest level of 
structural understanding (as opposed to 0% before 
intervention), indicating that they see a proof as a whole 
including the proof elements and their connections. 
Evidence from students’ answers to tasks, in particular 
the percentages of PMTs who reached specific 
components of understanding of the structure of proof 
targeted by each task, also showed that the designed 
tasks of the intervention (i.e., Tasks T1, T2, T3, T4, T5, 
and T6) supported PMTs’ understanding of geometry 
proof. An additional 25% of PMTs reached the partial-
structural relational level in the post-test. 12 of these 15 
PMTs failed to use correct universal propositions to 
justify all singular propositions (i.e., lack of 
understanding of universal instantiation) and the others 
(three of 15 PMTs) lacked understanding of hypothetical 
syllogism, because they used circular reasoning. Also, 
during the intervention, we saw that the number of 
students understanding hypothetical syllogism was 
higher than the number understanding universal 
instantiation, showing that the identification of correct 
universal propositions such as theorems, axioms, or 
definitions (i.e., understanding universal instantiation) 
was more difficult than understanding hypothetical 
syllogism. Our interpretation is that tasks T2b, T3b, and 
T4b assigning PMTs to construct multiple flow-chart 
proofs and the whole class discussions about these flow-
charts helped PMTs avoid circular reasoning. This 
interpretation aligns with findings by Inagaki et al. 
(1998).  

The intervention also supported PMTs’ performance 
of proof construction. 50% of PMTs were at the holistic 
level in the post-test being able to construct a complete 
proof, consisting of all premises, intermediate 
propositions and conclusion, with correct universal 
propositions, and all statements connected logically 
from premises to conclusion. This PMTs’ ability to 
construct correct proofs aligned with Miyazaki et al. 
(2017) who hypothesized that students who reach the 
holistic level are able not only to reconstruct previously 
taught proofs, but also to plan and construct their own 
proofs. A notable finding was that the post-test 
percentage was lower (50%) than PMTs’ performance on 
task T8 (85%), which was a similar proof construction 
problem. Some issues might explain this difference. 
Firstly, PMTs answered task T8 immediately after they 
discussed task T7 (i.e., proof construction problem with 
proof planning) about how to construct a proof. This 

fresh experience might have helped them to solve task 
T8 as opposed to the post-test problem a week after the 
last meeting. This issue raises questions about the 
retention of students’ performance. With our present 
data we cannot draw conclusions on the sustainability of 
students’ performance, and further research is needed to 
gain more insight. Secondly, the limited time allotted to 
students to complete the post-test might also contribute 
to the lower student’s performance. For instance, after 
the post-test, PMT51 said that the time was not enough 
to complete the proof. 

While related studies (e.g., Miyazaki et al., 2017) 
proposed a theoretical framework of understanding of 
the structure of proof, we reported in this paper that 
students progressed through different routes along the 
levels of understanding. We identified two ways of 
progression in reaching the holistic level of 
understanding. One is that students start from the pre-
structural and go to the partial-structural elemental sub-
level, then reach the holistic level via firstly 
understanding universal instantiation then hypothetical 
syllogism. A second path is similar, but the difference is 
that students reach the holistic level via firstly 
understanding hypothetical syllogism and then 
universal instantiation. Besides the two different routes 
along the levels of understanding, the progression of 
PMTs’ understanding of the structure of proof occurred 
along the three levels of understanding, following the 
framework by Miyazaki et al. (2017).  

Reflecting on our study we became aware of some 
limitations. The first one is that our learning trajectory 
was designed for a specific group of students whose 
initial understanding of geometric terms, symbols, its 
definitions and properties (e.g., axioms and basic 
theorem) was limited to the concepts of congruent 
triangles. The proof in this context was limited to a 
relatively simple, direct proof of a geometric proposition 
in the form of an implication or if, then statement, which 
is high school level content in other countries. Some 
other characteristics of our intervention could have 
affected our conclusions, particularly the use of 
GeoGebra Geometry application in the first three 
meetings for supporting students’ understanding of 
geometric terms, definitions, basic axioms, and theorems 
of congruency. This might have influenced PMTs’ 
understanding of how to instantiate the definitions, 
axioms, and theorems, for instance, in order to deduce a 
conclusion from given assumption(s). Additionally, 
conjecturing through constructing and dragging by 
using GeoGebra might have affected students’ 
understanding of a conditional statement, particularly 
the logical status of premises and conclusions (Anwar et 
al., 2022; Baccaglini-Frank & Mariotti, 2010). Further, we 
are aware that the statements in this paper were 
translations of students’ utterances from Bahasa 
Indonesia into English, and those translations might not 
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fully represent the meaning of the Indonesian words to 
the reader. 

CONCLUDING REMARKS 

Our findings showed that the use of the flow-chart 
proof format in our intervention enabled PMTs to see the 
components of proof and their relational connections. 
We introduced flow-chart proofs involving one or two 
singular propositions before students worked with more 
singular propositions. The positions and representations 
of premises and singular propositions in the flow-chart 
(i.e., rectangle, rounded rectangle, and connecting 
arrows) helped students understand the structure of 
proof, as suggested by Cirillo and Herbst (2011), 
elaborated by Miyazaki et al. (2017) and confirmed by 
our findings.  

The tasks of reading and constructing flow-chart 
proofs and rewriting flow-chart proofs in other formats 
supported PMTs in constructing more formal proof 
formats. Therefore, we suggest that a flow-chart proof 
can be introduced to develop the use of other, more 
formal formats like paragraph and two-column proof, 
which are more commonly used in presenting a proof, 
specifically in Indonesian geometry classes. In addition, 
findings of our previous study (Anwar et al., 2021) bore 
out that the use of flow-chart proof together with 
paragraph and two-column proof improves students’ 
RCGP.  

Working with tasks designed to encourage PMTs to 
choose premises, intermediate propositions and 
conclusions in order to complete and create flow-charts, 
stimulated their ability to think forward and backward 
in constructing geometry proof, particularly proof in the 
form of an if, then statement. This finding justified 
Miyazaki et al.’s (2015) claim that flow-chart proof with 
open problems enhances students’ ability to think 
forward and backward interactively. This forward and 
backward thinking helped PMTs to plan for a proof that 
precedes its construction, particularly determine the 
intermediate propositions by connecting premises to 
conclusion. This was particularly true for our students 
who did not have experience in proof construction, 
although the instructional emphasis on understanding 
the structure of proof certainly played a role as well.  

Our learning trajectory offers insights that might 
inform curriculum design and instructional 
development for effective teaching of deductive proof, 
particularly in an early stage of learning deductive proof 
in geometry. Specifically, the levels of understanding of 
the structure of proof and their progression with special 
attention to the two independent aspects of relational 
understanding (i.e., universal instantiation and 
hypothetical syllogism) may help in this respect. Also, 
our data showed various instances of students’ circular 
reasoning. The manifestation of circular reasoning in 
class provides an opportunity for teachers to consider 

with their students what a proof is, what role premises, 
intermediate propositions and conclusion play, and how 
the hypothetical syllogism connects them. Last but not 
least, the introduction of flow-chart proof format, 
particularly in the context of a direct proof of an if, then 
proposition, may help students’ understanding of the 
structural relationships of proof, as a preparation to 
learn other, more formal proof formats (i.e., paragraph 
and two-column proof). 
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APPENDIX A 

Task 1 

In Figure A1, we know ∠𝐷𝐴𝐵 ≅ ∠𝐷𝐵𝐴 and ∠𝐷𝐴𝐶 ≅ ∠𝐷𝐵𝐶, find all possible conclusions that can be derived from 
the given statements. Complete the following flow-chart or construct your own flow-charts to visualize the 
connection between the premise(s)/given statement(s) and conclusion. 

 

Figure A1. Example-A1 (prepared by Anwar) 

 

Flow-chart version 1: Flow-chart version 2: 

 

 

Note. Rectangle: A conclusion derived from previous statement. Rounded rectangle: A reason(s) justifying the 
conclusion (definition or axioms). 

Task 2 

In Figure A2, we know 𝐴𝑂̅̅ ̅̅ ≅ 𝐵𝑂̅̅ ̅̅ . We want to make ∆𝐴𝐶𝑂 and ∆𝐵𝐷𝑂 congruent. Which angles and sides should 
be congruent and what condition (axiom/theorem) of congruent triangles should be used? Complete the flow-chart! 

 

Figure A2. Example-A2 (prepared by Anwar) 

 

 

Note. You may find/create more than one complete flow-charts. 
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Task 3 

In Figure A3, it is already shown that 𝑂𝐴̅̅ ̅̅ ≅ 𝑂𝐶̅̅ ̅̅ . Starting from that, you will show 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  by showing two 
triangles in the diagram are congruent. What else do you need to add to draw the conclusion? What type of condition 
of congruence do you use in there? 

 

 

Figure A3. Example-A3 (prepared by Anwar) 

Complete the following flow-chart! 

 

Note. You may find/create more than one complete flow-charts. 

 

 

 

Task 4 

In Figure A4, we would like to prove 𝐵𝐸̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  by using congruent triangles. What do we need to show this, and 
what conditions of congruent triangles can be used? Complete the flow-chart!  

 

Figure A4. Example-A4 (prepared by Anwar) 

 

 

Note. You may find/create more than one complete flow-charts. 
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Task 5 

In Figure A5, 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  intersect at the point 𝑀, 𝐴𝑀̅̅̅̅̅ ≅ 𝐵𝑀̅̅ ̅̅̅ and 𝐶𝑀̅̅̅̅̅ ≅ 𝐷𝑀̅̅ ̅̅ ̅; then, must ∠𝑀𝐴𝐶 and ∠𝑀𝐵𝐷 be 
congruent? 

 

Figure A5. Example-A5 (prepared by Anwar) 

 

To this problem, Jaka gives the following flow-chart proofs: 

 

Figure A6. Flow-chart proof (prepared by Anwar) 

 

Answer the following on the basis of this question and the proof process. 

1. Label ∠𝐴𝑀𝐶 of this figure as 1 and ∠𝑀𝐴𝐶 of this figure as 2. 

2. Do you agree that ∠𝐴𝑀𝐶 ≅ ∠𝐵𝑀𝐷? Explain why or why not? 

3. If ∆𝐴𝑀𝐶 and ∆𝐵𝑀𝐷 are congruent, what is the corresponding angle of∠𝑀𝐴𝐶? 

4. Besides the known conditions (𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  intersect at the point 𝑀, 𝐴𝑀̅̅̅̅̅ ≅ 𝐵𝑀̅̅ ̅̅̅, 𝐶𝑀̅̅̅̅̅ ≅ 𝐷𝑀̅̅ ̅̅ ̅), which conditions 
can be directly applied? 

5. If someone suggests that the proof process of flow-chart 1, 2, 4, 3, 5, 6 is correct after box 3 and 4 are 
interchanged, would you agree with his or her opinion? 

6. If someone suggests that the proof process of line 1, 2, 3, 5, 4, 6 is correct after box 4 and 5 are interchanged, 
would you agree with his or her opinion? 

7. Which properties (axioms, theorems) are applied in this proof? 

8. On the basis of the question (must ∠𝑀𝐴𝐶 and ∠𝑀𝐵𝐷 be congruent?) and the Jaka’s proof, 

a. What conditions are necessarily used? 

b. What is derived from this proof? 

c. Which axioms/theorems/definitions are applied in this proof? 

9. From this proof process or flow-chart proof, it firstly derives an important result from 𝐴𝑀̅̅̅̅̅ ≅ 𝐵𝑀̅̅ ̅̅̅, 𝐶𝑀̅̅̅̅̅ ≅ 𝐷𝑀̅̅ ̅̅ ̅ and 
other conditions, and then derives a conclusion. 

a. What is this important result? 

b. What is this conclusion? 

10. Which statements can be validated from this proof? 

11. Do you agree that this proof process is correct? Why or why not? 

12. Statement A: if 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  intersect at the point 𝑀, 𝐴𝑀̅̅̅̅̅ ≅ 𝐵𝑀̅̅ ̅̅̅, 𝐶𝑀̅̅̅̅̅ ≅ 𝐷𝑀̅̅ ̅̅ ̅, then ∠𝑀𝐴𝐶 ≅ ∠𝑀𝐵𝐷. 

a. Do you agree that this proof process can prove that statement A is always correct? 

b. Do you agree that this proof process can prove that statement A is sometimes correct and sometimes 
incorrect? 

13. Write the paragraph or two-column proof by reference to the flow-chart proof. 
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Answer the following questions on the basis of what you know. 

14. If a quadrilateral 𝑃𝑈𝑅𝑉 has two diagonals 𝑃𝑅̅̅ ̅̅  and 𝑈𝑉̅̅ ̅̅ , and 𝑄 is the midpoint of both 𝑃𝑅̅̅ ̅̅  and 𝑈𝑉̅̅ ̅̅ , then is ∠𝑅𝑃𝑉 ≅

∠𝑃𝑅𝑈 correct? 

15. If 𝑃𝑅̅̅ ̅̅  and 𝑈𝑉̅̅ ̅̅  intersect at a point 𝑄, and 𝑄 is the midpoint of both 𝑃𝑅̅̅ ̅̅  and 𝑈𝑉̅̅ ̅̅ , which conclusions can be derived? 

16. If 𝑋𝑌̅̅ ̅̅ ≅ 𝑌𝑍̅̅̅̅ , 𝑀𝑌̅̅̅̅̅ ≅ 𝑌𝑁̅̅ ̅̅  and ∠𝑋𝑌𝑀 ≅ ∠𝑍𝑌𝑁, then are ∠𝑌𝑍𝑀 and ∠𝑌𝑀𝑁 congruent? 

Task 6  

As shown in Figure A7, 𝐿, the perpendicular bisector of 𝐵𝐶̅̅ ̅̅ , intersects 𝐴𝐵̅̅ ̅̅  at 𝐷, and intersects 𝐵𝐶̅̅ ̅̅  at 𝑀; and 𝐷𝐴̅̅ ̅̅ ≅

𝐷𝐵̅̅ ̅̅ ; must ∠𝐷𝐶𝐴 and ∠𝐷𝐴𝐶 be equal? 

 
 

Figure A7. Example-A7 (prepared by Anwar) 

 

To this problem, Iwan gives the following two forms of proof: 

A paragraph proof 

As shown in Figure A7, 

Since L, the perpendicular bisector of 𝐵𝐶̅̅ ̅̅ , intersects 𝐵𝐶̅̅ ̅̅  at 𝑀 (Line 1) 

𝑚∠𝐵𝑀𝐷 = 𝑚∠𝐶𝑀𝐷 = 90 and 𝐵𝑀̅̅ ̅̅̅ ≅ 𝐶𝑀̅̅̅̅̅ (Line 2)  

And 𝐷𝑀̅̅ ̅̅ ̅ ≅ 𝐷𝑀̅̅ ̅̅ ̅ (axiom of reflective of congruency) (Line 3) 

∴ ∆𝐵𝑀𝐷 ≅ ∆𝐶𝑀𝐷 (axiom S-A-S) (Line 4) 

∴ 𝐷𝐵̅̅ ̅̅ ≅ 𝐷𝐶̅̅ ̅̅  (def. of congruent polygons, corresponding sides) (Line 5) 

And 𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅  (Line 6) 

From Line 5 and Line 6 →  𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐶̅̅ ̅̅  (Line 7) 

Because 𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐶̅̅ ̅̅ , ∠𝐷𝐶𝐴 ≅ ∠𝐷𝐴𝐶 (Line 8) 

Answer the following in the basis of this question and the proof process: 

1. Do you agree that 𝐵𝑀̅̅ ̅̅̅ ≅ 𝐶𝑀̅̅̅̅̅? Explain why or why not? 

2. Label ∠𝐵𝑀𝐷 in this figure as 1 and ∠𝐶𝑀𝐷 as 2. 

3. If ∆𝐵𝑀𝐷 and ∆𝐶𝑀𝐷 are congruent, what is the corresponding side of 𝐷𝐵̅̅ ̅̅ ? 

4. Besides the known conditions (the perpendicular bisector of 𝐵𝐶̅̅ ̅̅ , intersects 𝐴𝐵̅̅ ̅̅  at 𝐷, and intersects 𝐵𝐶̅̅ ̅̅  at 𝑀; 

and 𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅ ), which conditions can be directly applied without any explanation? 

5. If someone suggests that the proof process of line 1, 2, 4, 3, 5, 6, 7 and 8 is correct after line 3 and 4 are 
interchanged, would you agree with his or her opinion? 

6. If someone suggests that the proof process of line 6, 1, 2, 4, 3, 5, 7 and 8 is correct after line 6 has been changed, 
would you agree with his or her opinion? 

7. Which properties (Axioms, theorems) apply in this proof? 

8. On the basis of the question and the proof, 

a. Which premises are necessarily used? 

b. What final conclusion is derived from these premises? 

9. Which statements can be validated from this proof? 

10. In this proof process, an important result is first derived from the condition is that 𝐿, the perpendicular bisector 

of 𝐵𝐶̅̅ ̅̅ , intersects 𝐵𝐶̅̅ ̅̅  at 𝑀 and other conditions.  
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a. What is this important result? 

b. According to this important result (10-a) and 𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅ , one reason/condition can be derived to confirm 
∠𝐷𝐶𝐴 ≅ ∠𝐷𝐴𝐶. What is this a reason/condition? 

11. Choose the correct statements. 

12. Do you agree that this proof process is correct? 

13. Statement A: if, 𝐿, the perpendicular bisector of 𝐵𝐶̅̅ ̅̅ , intersects 𝐴𝐵̅̅ ̅̅  at 𝐷, and intersects 𝐵𝐶̅̅ ̅̅  at 𝑀; and 𝐷𝐴̅̅ ̅̅ ≅ 𝐷𝐵̅̅ ̅̅ ; 
then ∠𝐷𝐶𝐴 and ∠𝐷𝐴𝐶 must be equal. 

a. Do you agree that this proof process can prove that Statement A is always correct? 

b. Do you agree that this proof process can prove that Statement A is sometimes correct and sometimes 
incorrect? 

14. Refine the paragraph proof by placing them into a flow-chart proof format. 

Answer the following questions on the basis of what you know. 

15. There is a circle with center point 𝑃, radius 𝑃𝑆̅̅̅̅  and 𝑃𝑄̅̅ ̅̅ . If 𝑇 is the midpoint of 𝑃𝑄̅̅ ̅̅ , 𝑆𝑇̅̅̅̅ ⊥ 𝑃𝑄̅̅ ̅̅ , and 𝑆 is the 

midpoint of 𝑃𝑅̅̅ ̅̅ , is ∆𝑅𝑆𝑄 an isosceles triangle? 

16. There are three points P, Q and R. If S is the midpoint of 𝑃𝑄̅̅ ̅̅  and 𝑆𝑇̅̅̅̅ ⊥ 𝑃𝑄̅̅ ̅̅ , what conclusions can be derived? 

17. If 𝐷 is the midpoint of 𝐴𝐸̅̅ ̅̅ , and 𝐵𝐷̅̅ ̅̅  and 𝐴𝐸̅̅ ̅̅  are perpendicular to each other, and 𝐴𝐵̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ , then 𝑚∠𝐴𝐸𝐶 = 90. 
Is this correct? 

Task 7 

Budi is trying to solve the following problem. 

Problem 

In Figure A8, given points A, B, C and D are on OX and OY of ∆𝑋𝑂𝑌, so that 𝑂𝐴̅̅ ̅̅ ≅ 𝑂𝐵̅̅ ̅̅  and 𝑂𝐶̅̅ ̅̅ ≅ 𝑂𝐷̅̅ ̅̅ . When A and 

D, and B and C are connected, prove 𝐴𝐷̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ . 

 

Figure A8. Example-A8 (prepared by Anwar) 

 

Budi described his plan to prove it as follows. 

Budi’s memo 

1. To prove 𝐴𝐷̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ , it is enough to show ∆𝐴𝑂𝐷 ≅ ∆𝐵𝑂𝐶. 

2. I see ∆𝐴𝑂𝐷 and ∆𝐵𝑂𝐶 of Figure A9. More clearly, I can divide it into two parts and show what is assumed, as 
follows. 

 

Figure A9. Example-A9 (prepared by Anwar) 

3. Based on #2, I think I can prove ∆𝐴𝑂𝐷 ≅ ∆𝐵𝑂𝐶. 
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1. Which property (axioms) should be used to say ‘in order to prove 𝐴𝐷̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ , it is enough to show ∆𝐴𝑂𝐷 ≅
∆𝐵𝑂𝐶’ as seen in #1 of Budi’s memo? Choose from a)-d). 

a. In a congruent polygon, corresponding sides and angles are equal. 

b. In a congruent polygon, two corresponding sides and corresponding included angles are equal. 

c. In a congruent polygon, two corresponding angles and corresponding included sides are equal. 

In a congruent polygon, corresponding sides are congruent. 

2. Prove 𝐴𝐷̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅  of the problem by making the flow-chart proof. 

3. Write the proof into two modes of proof representation (a paragraph proof and two-column proof) by 
reference to the flow-chart proof. 

Task 8 

In Figure A10, if ∠𝑃𝑀𝑁 ≅ ∠𝑃𝑁𝑀 and ∠𝑄𝑀𝑁 ≅ ∠𝑄𝑁𝑀, then is 𝑃𝑄̅̅ ̅̅  a bisector of an angle ∠𝑀𝑃𝑁? If YES, write a 
flow-chart proof of the statement! Then, write the paragraph proof and two-column proof by reference to the flow-
chart proof. 

 

 

Figure A10. Example-A10 (prepared by Anwar) 
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APPENDIX B 

Interview Task 

Problem 

Please construct a geometric figure by following the step-by-step construction below: 

1. Draw a line segment AB 

2. Construct a midpoint C of a line segment AB 

3. Draw a line DC 

4. Construct a circle with Center C and radius CD 

5. Construct intersect point between the circle (#4) and line CD 

6. Draw a line segment ED 

7. Construct a polygon ADBE 

Please construct a conjecture based on the constructed geometric figure. Write the conjecture in the form of an 
implication (if, then statement) including the geometric figure, then prove the statement (proposition).  

 

 

 

Post-Test 

Given a statement: “In Figure B1, If 𝐴𝐷 ⃡     is a bisector of a line segment 𝐵𝐶̅̅ ̅̅ , 𝐴𝐵 ⃡    ⊥ 𝐵𝐶 ⃡    , and 𝐷𝐶 ⃡    ⊥ 𝐵𝐶 ⃡    , then 𝐵𝐶 ⃡     is a 

bisector of 𝐴𝐷̅̅ ̅̅ .” Is the statement TRUE? If it is TRUE, Prove it! 

 

Figure B1. Example-B1 (prepared by Anwar) 
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Table B1. Rubric of students’ level of understanding of structure of proof for pre-test, tasks, and post-test 

Levels Description 

Pre-structural (0) • No answer/proof or no flow-chart proof 

• No mention: premises, intermediate conclusion, conclusion & reason (universal 
propositions) 

• Most of premises or intermediate conclusions or conclusion are missing or incorrectly 
stated or inadequate, for instance incorrect symbols 

Partial-structural 
elemental (1) 

• Most of premises or intermediate conclusions or conclusion are correctly stated or 
adequate including the symbols 

• Reference to prior theorems and/or axioms and /or definitions as the reason to justify is 
generally lacking or stated inaccurately or use of inappropriate reason (theorems and/or 

axioms and /or definitions) 

• All statements (singular propositions) in the proof are not connected logically from 
premises to the stated conclusion or acceptance of circular reasoning (e.g. use a 

conclusion as one of premises) 
Partial-
structural 
relational (2) 

Universal 
instantiation 

• All of the premises or intermediate conclusions or conclusion are correctly stated or 
adequate including correct symbols 

• Reference to correct or appropriate prior theorems and/or axioms and /or definitions or 
use of appropriate reason (theorems and/or axioms and /or definitions) 

• All statements (singular propositions) in the proof are not connected logically from 
premises to the stated conclusion or acceptance of circular reasoning (e.g. use a 

conclusion as one of premises) 
Hypothetical 
syllogism 

• All of the premises or intermediate conclusions or conclusion are correctly stated or 
adequate, including the symbols 

• Reference to prior theorems and/or axioms and /or definitions is generally lacking or 
stated inaccurately 

• All statements (singular propositions) in the proof are connected logically from premises 
to the stated conclusion or no acceptance of circular reasoning (e.g. no use of a 

conclusion as one of premises) 
Holistic-structural (3) • All of the premises or intermediate conclusions or conclusion are correctly stated or 

adequate, including the symbols 

• Reference to correct or appropriate prior theorems and/or axioms and /or definitions or 
use of appropriate reason (theorems and/or axioms and /or definitions) 

• All statements (singular propositions) in the proof are connected logically from premises 
to the stated conclusion or no acceptance of circular reasoning (e.g. no use of a 

conclusion as one of premises) 
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