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Abstract 

Non-Euclidean geometry is an abstract subject and difficult to learn, but mandatory for students. 

The ethnomathematics approach as a learning approach to improve students’ spatial abilities. The 

aim of this research is to discover new elements of the spatial abilities of non-Euclidean geometry; 

determine the relationship between spatial abilities for Euclid, Lobachevsky, and Riemann 

geometry. This study used the micro genetic method with a 2×2 factorial experimental research 

design. The sample of this research is 100 students of mathematics education. There are three 

valid and reliable research instruments through expert trials and field trials. Data collection was 

carried out in two ways, namely tests and observations. Quantitative data were analyzed through 

ANCOVA, and observational data were analyzed through the percentage of implementation of 

the learning trajectory stages. The result is that the spatial ability of students who are given the 

ethnomathematics learning approach is higher than students who are given the conventional 

learning approach for Lobachevsky geometry material after controlling for the effect of Euclidean 

geometry spatial ability. Also, the same thing happened for the spatial abilities of Riemann 

geometry students. The learning trajectory is conveying learning objectives (learning objective); 

providing ethnomathematics-based visual problems; students do exploration; students make 

conclusions and summaries of exploration results; and ends with students sharing 

conclusions/summaries about concepts and principles in geometric systems. It was concluded 

that learning non-Euclid geometry through learning paths with an ethnomathematics approach 

had a positive impact on increasing students’ spatial abilities. 
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INTRODUCTION 

Geometry learning is very important for students 
who are prospective mathematics teachers. That is 
because in schools teachers are needed who are able to 
teach Euclid and non-Euclid geometry. However, there 
are still many mathematics education students who will 
teach in schools have difficulty understanding the 
concepts and principles of geometry, especially non-
Euclid. Therefore, an ethnomathematics approach is 
needed to make it easier to understand. Spatial ability is 
an important competence in understanding geometry. 
However, the elements that exist to date are more 
elements of the spatial capabilities of Euclid geometry 

(Maier, 1998), so new spatial elements are needed for 
non-Euclid geometry. To achieve this requires the 
genetic decomposition of the research subject through 
the framework of theory of action-proses-object-scheme 
(APOS) (Dubinsky & McDonald, 2000). 

Learning geometry with a real-world approach, 
broad concepts can be extended to other forms. Such as 
connecting ‘vast’ with other ‘big’; investigating the 
relationship between area and circumference; 
connecting the unit of measurement with reality; also, 
integrating some geometric activities (Fauzan et al., 
2002). In the learning of geometry (in general 
mathematics), the relationship with reality becomes a 
significant process. It is emerging from the mathematical 
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reality. Like the idea from Freudenthal that reality as a 
framework is inherent in mathematics itself 
(Gravemeijer, 2008; Plomp & Nieveen, 2013). During 
geometry learning, we can interpret the mathematical 
process of students in solving problems or in an effort to 
achieve certain concepts or principles. The cognitive 
process is a mathematical process that can be analyzed 
through the genetic decomposition of students (Cooley 
et al., 2007; Widada et al., 2019a, 2020). Genetic 
decomposition is a structured collection of mental 
activities that a person undertakes to describe how 
mathematical concepts/principles can be developed in 
his mind (Cooley et al., 2007; Widada, 2002). Genetic 
decomposition analysis is an analysis of a genetic 
decomposition based on the activity of actions, 
processes, objects, and schemes (APOS theory) carried 
out by a person in mathematical activity (Widada, 2017).  

Based on Maier (1998) that the elements of spatial 
ability are spatial perception ability, visualization 
ability, mental rotation ability, spatial relation ability, 
and spatial orientation ability. Spatial perception ability 
is an ability that requires the location of the object being 
observed horizontally or vertically. Visualization ability 
is the ability to show the rules of change or movement of 
the constituents of a building either three-dimensional to 
two-dimensional or vice versa. Mental rotation ability is 
the ability to rotate two-dimensional and three-
dimensional objects precisely and accurately. The ability 
of spatial relations is the ability to understand the 
arrangement of an object and its parts and their 
relationship with each other. The ability spatial 
orientation is the ability to observe an object from 
various circumstances (Maier, 1998). 

Geometry is a compulsory subject for mathematics 
education students (Nugroho et al., 2019). Objects are 
abstract, so students often have difficulty understanding 
them (Widada et al., 2019b). Therefore, teachers must be 
able to manage geometry learning appropriately. It is 
carried out through reflection on the initial abilities of 
the student. Teachers should conduct needs analysis, 
concept analysis, and task analysis (Nugroho et al., 
2019).  

Geometry is a deductive structure in mathematics. 
The structure starts from a primitive element consisting 
of points, lines and planes. Axioms in geometry become 

base statements. It is a true statement without having to 
be proved in its structure (Frassia & Serpe, 2017). An 
axiom is a true statement that serves to avoid the 
swirling of proofs. In geometry, there is a sense that 
limits a concept. That is a definition. Statements that are 
logical consequences in deductive structures in 
geometry are a theorem. The theorem must be proved to 
be true in the structure. Therefore, students are obliged 
to have mature cognitive processes (Dubinsky & 
McDonald, 2000). In addition, the results of the research 
of Wu and Ma (2006) suggest that investigating why 
elementary school students have difficulty in 
quadrilaterals, and for advanced geometry students 
have difficulty understanding and proving the 
properties of Saccheri quadrilaterals (initial survey of 
researchers). Preliminary findings suggest that 
quadrilaterals, except for squares and rectangles, are 
rarely displayed in textbooks, and in their daily lives. 
Because students are psychological beings who are able 
to actively process information. 

A geometric system is a mathematical structure 
constructed by the set of all points with the basic entities 
of points, lines and planes. The system is built on the 
axiom of incidence (Eves, 1972). Eves states that there are 
three geometric systems namely Euclid geometry, 
Lobachevsky geometry, and Riemann geometry. Euclid 
constructs geometry (the elements) by basing five axioms, 
five postulates and twenty-three definitions (Hitchman, 
2018). Euclid’s five axioms are, as follows.  

1. Through two different points can be made exactly 
one line. Can always draw a line from one point to 
another.  

2. Through three different points and allusions 
always can create infinite line segments of many 
on a line. 

3. Can always paint a circle centered on a point with 
the radius of the specified line segment. 

4. All the angles of the elbows to each other are 
equally large. 

5. If a straight line intersects two straight lines and 
makes the sum of the angles in unilateral less than 
two right angles, those two lines if extended 
infinitely will converge on side, where both angles 
in unilaterally are less than two right angles. 

Contribution to the literature 

• This study found a new theory about learning trajectories to improve the spatial abilities of non-Euclidean 
geometry, namely, understanding learning objectives, understand visual problems based on 
ethnomathematics, do exploration, students make conclusions and summaries of exploration results, and 
ends with students sharing summaries. 

• The findings show that there is a trajectory of students’ spatial thinking in understanding non-Euclidean 
geometry through an ethnomathematical learning approach in terms of APOS theory. 

• The results showed that there was an effect of the ethnomathematical approach on the students’ spatial 
ability in non-Euclidean geometry learning. 
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The axiom of Euclid alignment (5th axiom) is the basic 
principle of building the Euclid geometry system, but 
the axiom is disputed, so that at the beginning of the 20th 
century, two new axioms appeared. First is the axiom of 
Lobachevsky’s alignment. The axiom became the main 
principle for constructing Lobachevsky geometry. 
Second was the Riemann parallel axiom, which later 
became the basic principle of the Riemann geometry 
system. Next can be discussed about Lobachevsky’s 
geometry spatial ability, Riemann’s geometry spatial 
ability, and Euclid’s geometry spatial ability. 

Based on the foregoing, ethnomathematics presents 
mathematical concepts (geometry) from the school 
curriculum in such a way as to concepts related to the 
culture and daily experiences of students (Hitchman, 
2018). It was intended to improve learners’ ability to 
decipher meaningful relationships and deepen their 
understanding of mathematics. The ethnomathematics 
approach to the math curriculum is intended to make 
school mathematics more relevant and meaningful to 
students and improve the overall quality of their 
education. In this context, applying an 
ethnomathematics perspective in the school math 
curriculum helps develop students’ intellectual, social, 
emotional, and political learning by using their unique 
cultural references to convey their knowledge, skills, and 
attitudes. This kind of curriculum provides a way for 
students to maintain their identity while being 
academically successful. 

Until the 19th century, the view of geometry was 
based on Euclid’s The elements. Geometry as an axiomatic 
deductive system. It was a science of mathematical 
properties with the basic concept of the set of all points. 

Relationships between geometric objects, i.e., points, 
lines and planes are in Euclid space (Anonimous, 2010). 
The principles in geometry are theorems and other 
properties are the result of examining points, lines and 
planes, as well as physical space and their mathematical 
relationships. However, at the beginning of the 20th 
century many scientists studied the axioms of Euclid’s 
alignment, among them Lobachevsky and Riemann. The 
result of their study was the emergence of a new axiom 
about the alignment of lines. Lobachevsky states that 
“through a point outside a line there are at least two lines 
parallel to that line.” It is with this axiom that a 
hyperbolic system of geometry is built. It was one of the 
alternatives of Euclid geometry. The opinion differs 
from Riemann, that “there are no parallel 
lines”(Hitchman, 2018). Riemann-pun built the elliptical 
geometry. Therefore there are three spaces in the 
geometric system, namely parabolic space (Euclid 
geometry), hyperbolic space (Lobachevksy geometry), 
and elliptical space (Riemann geometry) (Clayton, 2010).  

In the development of geometry, there is one very 
important definition, namely the concept of the Saccheri 
quadrilateral.  

Definition: An ABCD quadrilateral with right base 
angles (D and C angles) and congruent sides (AD=BC) is 
called a Saccheri quadrilateral. The side opposite the 
base is the apex, and the angle formed by the sides and 
the apex is the angle of the apex (angle A is equal to angle 
B). DM’=M’C and AM=MB. (Ross, 2010). Therefore, the 
right learning trajectory is needed so that students are 
able to understand the concepts of non-Euclid geometry 
correctly.  

Learning trajectory in geometry learning is the steps 
of student learning activities in understanding 
geometry. It requires good spatial ability. Students have 
a dynamic sense of spatial form (Panorkou & Greenstein, 
2015). Students see the shape by doing a template 
matching activity and then trying to explain the form 
identified is similar to what is in its long-term memory 
(Solso, 1995). 

The notion of dynamic in geometry can be utilized in 
the environment around students, which is related to 
which positively affects students’ geometry abilities. 
Students have the potential to harness the power of 
seeing geometric properties by breaking away from their 
original shapes through a process of abstraction and 
providing a foundation for the formation of geometric 
conceptions, such a dynamic essence they give students 
the opportunity to connect broader geometric concepts 
(Panorkou & Greenstein, 2015). The student’s geometric 
thinking trajectory will affect his learning trajectory.  

Learning trajectory is also expected to overcome 
teacher difficulties in teaching mathematics (Bednarz & 
Proulx, 2003) and student learning difficulties. The 
difficulty of learning mathematics is often explained by 
referring to the gap between students’ personal 
knowledge and the abstract formal mathematical 
knowledge that needs to be acquired (Gravemeijer, 
2008). Based on a constructivist perspective, through 
learning, knowledge is built by students through a 
process between people towards within individuals 
(internalization in their cognitive processes). 
Gravemeijer (2008) states that students who have not 
built up the more sophisticated mathematical 
knowledge that must be learned, this more sophisticated 
mathematical knowledge, literally, does not exist. It can 
all be built through its learning trajectory. 

Hypothetical learning trajectory (HLT) is a theoretical 
model for mathematical learning design. It consists of 
three components namely  

(1) learning objectives,  

(2) a series of learning tasks, and  

(3) a hypothesized learning process.  

Constructs can be applied to instructional units of 
varying lengths (for example, one lesson, a series of 
lessons, the learning of concepts over an extended period 
of time (Simon, 2014) . HLT is a student’s learning 
trajectory so that the mathematical concepts learned by 
elasticity can be understood by students. It is a way to 
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describe pedagogic and didactic aspects in mathematics 
learning (Arnellis et al., 2019). The pedagogic aspect, 
namely the relationship between educators and 
students, and didactics is the relationship between 
students and the material. HLT is made to anticipate 
what might happen, both the thought process of 
students who will get learning and things that will 
happen in the learning process. Therefore, the 
implementation of learning trajectory increases 
motivation, positive attitudes appear such as being 
active, happy, and enthusiastic students following the 
lesson. Also, the high-level thinking ability test scores of 
experimental class students were greater than the 
average scores of the control class after being given 
treatment. According to Pratiwi et al. (2020) that learning 
trajectory in learning geometry about three dimensions 
with a rigorous mathematical thinking approach with a 
qualitative thinking level can improve problem-solving 
skills well. The learning trajectory meets qualitative 
thinking level indicators, especially visualization and 
labeling indicators. The trajectory is  

(1) the student performs the stages of describing the 
desired shape, giving a name, and thinking of a 
plan to be carried out to solve a given problem 
with appropriate, 

(2) the student explains his understanding of the 
concept of the material being taught so that the 
student masters the material, and  

(3) students understand the problems given 
regarding three dimensions, so that students can 
understand the material and achieve the set 
learning objectives. 

Simon (2014) states that the purpose of HLT is to 
provide an empirically based model of pedagogical 
thought based on constructivist ideas. Pedagogy refers 
to all contributions to instructional interventions 
including those made by curriculum developers, 
material developers, and teachers. HLT construction 
provides a theoretical framework for researchers, 
teachers, and curriculum developers as they plan 
instruction for conceptual learning. The components of 
HLT are  

(1) math learning objectives for students,  

(2) math tasks to be used to improve student learning 
(activities that support the goals), and  

(3) hypotheses about student learning (mathematical 
conjectures as a result of activity) (Simon, 2014).  

According to Prediger et al. (2015), structuring HLT 
on students’ cognitive development, i.e., conceptual 
leaning trajectory level. There are HLT levels, i.e., starting 
from situational level is that student is in context of a 
specific situation. Referential level is a model and 
strategy that refers to situation described in the problem. 
General level is a focus on mastering mathematics with 

strategies that refer to context. Formal level is working 
with conventional procedures and notation. 

Gravemeijer (2008) states that the situational level is 
the stage in which students are expected to use their 
informal knowledge and intuitive strategies in the 
context of real problems. The referential level is the 
situational level of the ‘model-of’, i.e., the student is 
expected to give rise to a symbol or mathematical model 
that refers to the real-life situation of a given problem. 
The general level is the ‘model-for’ level, i.e., students 
develop models that can be used in different situations. 
Students are expected to identify patterns and 
relationships so that they can apply strategies to 
different situations. Finally, the formal level is that 
students use their experience with the previous three 
levels to do reasoning. In this level the student is ready 
to work with procedures, algorithms or notations in 
deductive geometric systems (in general mathematics). 
In Lobachevsky’s geometry learning, activity as a ‘model 
of’ ethnomathematics-based real situations such as line 
alignment in bubu (Herawaty et al., 2020), triangular 
properties based on Riemann through grapefruit medium 
(Widada et al., 2020) and “model for” more common 
problems may include parallel lines based on bubu 
fishing gear, and triangles based on children’s toys using 
grapefruit peel. Students who already have sufficient 
knowledge based on all models, will be able to build 
formal geometry (Euclid and non-Euclid). 
Ethnomathematics is an effective approach to learning 
mathematics (Sunzuma et al., 2021). Also, the 
ethnomathematics approach is to train students in 
conceptual understanding, procedural fluency, strategic 
competence, adaptive reasoning, and productive 
dispositions (Abah et al., 2021). 

In implementing HLT, proper implementation steps 
are needed. According to Maloney and Confrey (2013), 
there are eight components of application in 
mathematics learning, namely  

(1) understanding problems and being diligent in 
solving them,  

(2) reasoning abstractly and quantitatively,  

(3) build worthy arguments and critique the 
reasoning of others,  

(4) models with mathematics,  

(5) use the right tools strategically,  

(6) pay attention to precision,  

(7) search and utilize structures, and  

(8) search and express rules in repeated reasoning.  

While the learning trajectory consists of levels of 
thinking; each of them is more sophisticated than the 
latter, which leads to the achievement of mathematical 
goals, and HLT can facilitate teaching and 
developmentally appropriate learning for all learners 
(Clements & Sarama, 2010). That means that the learner’s 
development of thinking illustrates the distinctive path 
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he follows in developing understanding and skills about 
geometry.  

Therefore, in the practice of learning geometry, the 
initial step is that students are treated to real problems 
as a starting-point of learning. It is to trigger his cognitive 
processes so that the student’s mathematical abilities can 
be recalled from his long-term memory, so to the potential 
about mathematical reasoning, mathematical 
connections, mathematical communication, and 
mathematical representations owned by students can be 
optimally utilized to solve problems that given. Thus, 
students will be able to achieve geometric structures 
formally through a process of abstraction, idealization 
and generalization.  

In learning geometry, the objects are the facts, 
concepts, principles and skills of geometry. Related to 
this, according to Panorkou and Greenstein (2015), the 
concept of having elements, namely connected 
attributes, traits and invariants, and the role played in 
the process achieve this through learning about these 
concepts. Starting from a real problem, students are 
expected to be able to classify objects based on their 
attributes, then students are expected to distinguish 
between their attributes and traits, then students It is 
expected to be able to predict the effects of dynamic 
transformations by transforming mental representations 
of their geometric shapes.  

The basic paradigm of HLT is constructivism aimed 
at the development of students’ mathematical 
understanding. The results of research on the trajectory 
of learning geometry, especially about triangles carried 
out by Anwar and Rofiki (2018) showed that students 
found the condition of forming a triangle with a length 
of three sides. The steps are  

(1) starting-point of the student’s learning trajectory is 
to draw a line of three given side lengths,  

(2) students examine two side lengths whether or not 
they can be connected to a line segment as a 
triangle, 

(3) students use a ruler to determine all three lengths 
of sides that can form a triangle, and  

(4) student makes a statement that the sum of each of 
the two sides of the triangle must be greater than 
the third side.  

In the process, the teacher conditions that the 
student’s learning trajectory can achieve the learning 
objectives appropriately. 

HLT in geometry contains three aspects, namely  

(1) spatial,  

(2) shape of planes and spaces (solid), and  

(3) visualization and representation.  

Each of its descriptions is linked to examples of 
activities that are described, analyzed and discussed 
based on core insights. The most important elements of 

such a teaching-learning trajectory are demonstrated in 
schematic representations, including topics related to its 
geometric activity (Gravemeijer et al., 2016). Such as 
spatial ability in looking at the ocean from the top of a 
hill; constructions about making balls; and 
representations about depicting parallel lines. The 
domain of the learning trajectory is visible during the 
learning activities. Therefore, in order for the learning of 
geometry that is deductive-axiomatic and abstract in 
nature it must be made starting from a problem close to 
the student’s mind, the It is much more concrete so that 
learners can easily connect geometric objects in their 
cognitive systems. 

In the curriculum the topic of similarity usually 
includes several parts ranging from the geometry of 
everyday life to deductive geometry. Traditionally, the 
teaching of geometry has largely adopted the Euclidean 
axiom approach (Zhang & Wong, 2021). As is the case 
today, the content and elements of classical mathematics 
books have a great influence on the mathematics 
curriculum. According to Zhang and Wong (2021), 
learning of geometry, outside of the spatial sense, is all 
deductive-axiomatic. In learning, deductive reasoning 
and meticulousness are needed in the geometric system. 
So evidence and proof play an important role in learning 
geometry. However, students have difficulty proving 
the principles in geometry. 

Fish (1996) states that a possible way to address the 
above problem is the introduction of non-Euclid 
geometry at the school level. It is very important to 
identify students who have prerequisite knowledge and 
skills. A number of interesting teaching strategies, such 
as debates, discussions, investigations, and oral and 
written presentations, can be used to introduce and 
develop content material. Therefore, to learn non-Euclid 
geometry, it is necessary that the starting point for 
learning must be close to the student’s local mind and 
culture, namely the ethnomathematics approach 
(Nugroho et al., 2021). Also, to improve the mathematics 
education curriculum (Gebre et al., 2021). The approach 
is one that is closer to the student’s mind and daily life. 
Thus, the purpose of this research is to find the learning 
trajectory of non-Euclid geometry through an 
ethnomathematics learning approach to improve the 
spatial ability of non-Euclid geometry students. 

METHOD 

Participants 

The participants are students of mathematics and 
mathematics education at universities in the Bengkulu 
Province, Indonesia. We selected 100 students through a 
simple random technique. The selection is based on the 
initial characteristics for each group of geometric spatial 
abilities. 
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This research implements a mixed method between 
qualitative and quantitative. The focus of this research is 
to explore students’ spatial abilities during non-
Euclidean geometry learning. The learning is carried out 
through an ethnomathematical approach. Students’ 
understanding of non-Euclidean geometry concepts was 
analyzed based on APOS mental activity. To comply 
with COVID-19 health protocol, the implementation of 
learning is carried out hybrid (online and off-line 
according to the provisions of the head of the research 
site). This study also has exploratory characteristics. 

Instrument 

There are three quantitative research instruments, 
namely the Lobachevsky geometry spatial ability test, 
the Riemann geometry spatial ability test, and the Euclid 
geometry spatial ability test (test for accompanying 
covariates/variables). The instrument for the 
implementation of the learning trajectory is the 
observation sheet for the implementation of the learning 
plan (LP). 

The researcher used a spatial ability test instrument 
to explore quantitative and qualitative data. 
Quantitative assessment rubric with ratio scale data. 
Quantitative data is also used as the basis for 
determining the research subjects who will be 
interviewed in depth. Interviews were conducted during 
and after learning geometry through an 
ethnomathematical approach. This research instrument 
has been reviewed and validated by five experts, it has 
also been tested on 30 students. Based on the expert test 
(panelist) of the Lobachevsky geometric spatial ability 
test instrument it was obtained that the average validity 
index of Aiken’s is 0.85 and each grain >0.80 with a 
Cronbach’s alpha coefficient of 0.744. The test showed 
that all items of the Lobachevsky geometry spatial ability 
test were valid and reliable. The results of the Riemann 
geometry spatial ability test expert test that each item 
showed Aiken’s validity index of more than 0.80 and the 
average was 0.84 with a Cronbach’s alpha coefficient of 
0.770. This test gives the meaning that experts agree that 
the instrument of the Riemann geometry spatial ability 
test is valid and reliable. The third instrument is the 
Euclid geometry spatial ability test. The panelists also 
agreed that each item was valid and reliable, with the 
average Aiken’s validity index of 0.85 with a Cronbach’s 
alpha coefficient of 0.770. Thus, these three research 
instruments are valid and reliable based on expert tests. 
Furthermore, all these instruments were tested on 100 
mathematics education students at a university in 
Bengkulu, Indonesia. The data of the trial results were 
analyzed using the help of the Lisrel 8.8 program. 
Analysis of the test data of the Euclid geometry spatial 
ability test instrument obtained the result that each test 
item was valid, this was shown from the T-value of each 
item more than 1.96, with an average of 6.824. The 
instrument is also reliable with a Cronbach’s alpha of 

0.79. For each item of the instrument the spatial ability of 
Lobachevsky geometry is valid with a T-value of more 
than 1.96 and the average T-value is 5.695. Its Cronbach’s 
alpha is 0.88, which means reliable. Also, the T-value of 
each item of the instrument’s spatial ability of Riemann 
geometry >1.96, which means it is valid with the average 
T-value being 6.767 and the Cronbach’s alpha of 0.89. 
Thus, these three research instruments are standard and 
feasible to be used for data collection. 

Data Collection Techniques 

Learning is carried out during using the zoom 
meeting media. Also, supported by social media 
WhatsApp, YouTube, and e-mail. Learning is carried out 
for twelve meetings in a period of eight weeks. After the 
lesson was finished, we conducted a spatial ability test 
via google form for all students out of 100 students. The 
test results were analyzed using the existing assessment 
rubric. However, to determine the four research subjects, 
a pretest was carried out. So that we can conduct in-
depth interviews during the learning process. Interviews 
were conducted using WhatsApp media via video call. 
This in-depth interview was conducted to explore 
students’ spatial abilities on non-Euclidean geometry. 
This interview was recorded to obtain complete and 
accurate data. In the process of collecting data, the 
researcher sent a google form link from the research 
instrument to students. The arguments in the reason 
column are made openly for students to explore. An 
open field that has certain answers according to the 
students’ cognitive processes. 

Experimental Research Design 

To answer a specific research problem regarding the 
effect of the ethnomathematical approach on geometric 
spatial abilities, experimental research was conducted. 
The design used is a 2×2 factorial design, as shown in 
Table 1. 

Information from Table 1 is that A1 
(ethnomathematics learning approach); A2 
(conventional learning approach); B1 (Lobachevsky 
geometry material); B2 (material Riemann geometry). 
Meanwhile, X is Euclid’s geometry spatial ability as a 
covariate; Y is the spatial ability of non-Euclidean 
geometry (Lobachevsky geometry and Riemann 
geometry). For the four cells in Table 1, A1B1 is the 
sample group taught by an ethnomathematics approach 
with Lobachevsky geometry; A1B2 is a sample group 
that is taught by an ethnomathematics approach with 

Table 1. Experimental design (factorial 2×2) 

Content of geometry 

Learning approach 

Ethnomathematics 
(A1) 

Conventional 
(A2) 

Lobachevsky (B1) A1B1 A1B2 
Riemann (B2) A2B1 A2B2 
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material on Riemann geometry; A2B1 is a sample group 
that is taught using a conventional approach with 
Lobachevsky geometry material; and A2B2 is the sample 
group that is taught using a conventional approach with 
Riemann geometry material. Based on the research 
design in Table 1, details of research activities in the 
lecture process are summarized in Table 2. 

Data analysis techniques to achieve goals to achieve 
goals (4) data are analyzed by covariate analysis 
(ANCOVA). To achieve goal (3) it is analyzed by frame 
analysis method and fixed comparison method. 
Meanwhile, to achieve the objectives (5) an analysis of 
the implementation of the learning trajectory scenario in 
the lesson plan (LP) is used. 

 Data Analysis 

The research data were analyzed through a micro-
genetic approach (Siegler & Crowley, 1991). The micro 
genetic approach is an approach to data analysis of 
learner activity that can generate a more precise 
description of cognitive changes than is possible. Data 
analysis used the frame analysis method (FAM) 

(Karadag, 2009). It was a spiral and cyclic structure with 
many cycles interacting with each other. Each cycle after 
the first one interacts with the previous cycle. The 
collection of mental activities obtained through the 
frame method is collected in pieces of statement (tree) 
through genetic decomposition analysis to find the 
characteristics of spatial ability elements of non-Euclid 
geometry (forest) (Karadag, 2009; Widada et al., 2020). 
The cognitive processes in each of the above stages are 
always analyzed using the genetic decomposition of 
students (Widada et al., 2019). Researchers analyzed the 
data using genetic decomposition analysis techniques. 
Researchers follow pre-analysis, microanalysis, and tree-
to-forest sub-stages for each test item and its arguments. 
The description of each subject of study is categorized in 
action-process-object-scheme (Dubinsky & McDonald, 
2000). Each stage of mental activity (APOS) can be 
represented in real activity (Widada, 2011). 

The analysis process through a micro-genetic 
approach with the frame analysis method is carried out 
based on the following stages. The stages are pre-
analysis stage-1, pre-analysis stage-2, pre-analysis stage-
3, microanalysis stage-1, microanalysis stage-2, 

Table 2. Non-Euclid geometry lecture activities 

Meeting 
Sample group 

A1B1 A1B2 A2B1 A2B2 

1st Initial test of spatial ability of Euclid geometry (covariate) 

Preliminary test of spatial 
ability of Lobachevsky 

geometry 

Preliminary test of spatial 
ability of Riemann 

geometry 

Preliminary test of spatial 
ability of Lobachevsky 

geometry 

Preliminary test of spatial 
ability of Riemann 

geometry 
2nd Students learn axiomatic deductive interpreters in geometric systems: concept of base (primitive element), 

statement of base (axiom), concept of being defined (definition), & statements that must be proved (theorem, 
lemma, & corollary) 

3rd Students learn axioms of Euclid’s alignment through an ethnomathematics (local culture) approach. They learn 
to understand importance of learning non-Euclid geometry through neutral geometry. They learn about 

axiomatic structure of neutral geometry: Archimedes’ axiom, Saccheri’s quadrilateral concept, & his theorems 
4th Students learn 

Lobachevsky geometry 
system through an 
ethnomathematics 

approach: Axiom of 
Lobachevsky’s alignment 

& some of its logical 
consequences 

Students learn Riemann 
geometry system through 

an ethnomathematics 
approach: Axiom of 

Riemann’s alignment & 
some of its logical 

consequences 

Students study 
Lobachevsky geometry 

systems through 
conventional approaches: 
Axioms of Lobachevsky’s 
alignment & some of its 

logical consequences 

Students learn Riemann 
geometry system through 
a conventional approach: 

Axiom of Riemann’s 
alignment & some of its 

logical consequences 

5th Alignment theorems in 
Lobachevsky geometry & 

their proofs 

Parallel theorems in 
Riemann geometry & their 

proofs 

Alignment theorems in 
Lobachevsky geometry & 

their proofs 

Parallel theorems in 
Riemann geometry & their 

proofs 
6th Theorems about triangles 

in Lobachevsky geometry 
& their substantiation with 
local cultural starting-points 

Theorems about triangles 
in Riemann geometry & 
their proofs with local 
cultural starting-points 

Theorems about triangles 
in Lobachevsky geometry 

& their proofs 

Theorems on triangles in 
Riemann geometry & their 

proofs 

7th Theorems on 
quadrilaterals in 

Lobachevsky geometry & 
their substantiation with 

local cultural starting-points 

Theorems on 
quadrilaterals in Riemann 

geometry & their 
substantiations with local 

cultural starting-points 

Theorems about 
quadrilaterals in 

Lobachevsky geometry & 
their proofs 

Theorems on 
quadrilaterals in Riemann 
geometry & their proofs 

8th Final test of spatial ability 
of Lobachevsky geometry 

Final test of spatial ability 
of Riemann geometry 

Final test of spatial ability 
of Lobachevsky geometry 

Final test of spatial ability 
of Riemann geometry 
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microanalysis stage-3, tree-to-forest stage-1, tree-to-forest 
stage-2, and tree-to-forest stage-3. To obtain a new theory, 
a process of theoreticization is carried out through a 
fixed comparison method (Glaser & Strauss, 2006). 
Experimental data were analyzed using covariate 
analysis. To facilitate the analysis of the data, the SPSS 
application program was used. 

RESULTS 

Non-Euclid geometric spatial ability is the ability to 
think geometrically through abstraction, idealization 
and generalization processes based on five elements of 
mental and physical activity, namely ethnomathematics 
visualization, mental visualization, iconic relations, 
symbolic relations, and constructing non-Euclid formal 
geometry (Nugroho et al., 2022). Those are elements of 
non-Euclidean geometric spatial abilities with an 
ethnomathematics approach. The application of this 
approach to this study was carried out for six lessons in 
each class. That means that there are twenty-four 
meetings for all groups. The results of observations at 
each learning meeting obtained the percentage of 
implementation of each stage of the learning trajectory. 

Spatial learning tracks on non-Euclidean geometry 
through ethnomathematics learning approach were 
analyzed on observational data on the implementation 
of the learning implementation plan (LP). Based on 
implementation and quasi-experiments, conclusions are 
obtained about the spatial learning trajectory of non-
Euclidean geometry through an ethnomathematics 
learning approach in terms of APOS theory. 

Based on the results of observing the implementation 
of the learning implementation plan through the 
ethnomathematics approach, it can be analyzed in such 
a way that a non-Euclidean geometry spatial learning 
trajectory is produced through an ethnomathematics 
learning approach in terms of APOS theory. The results 
of the observational analysis are listed in Table 3. 

Based on Table 3, it can be seen that the average 
implementation of LP from LP-1 to LP-6 is more than 
85%, which means that each learning trajectory is 
implemented well, and is increasing. This can be seen 
from the graph of Figure 1. 

Based on Figure 1, it means that the learning 
trajectory in learning non-Euclidean geometry with an 
ethnomathematics approach is well implemented. This 
is also supported by the results of statistical tests that 
show that the geometric spatial abilities of students who 
learn through an ethnomathematics approach are better 
than conventional student groups. 

If viewed based on the groups in the quasi-
experiment with a 2x2 factorial design, the 
implementation of the LP (learning trajectory) can be 
described, as follows. Each for group A1B1: 
Lobachevsky geometry and ethnomathematics; group 
A2B1: Riemann geometry and ethnomathematics; group 
A1B2: Lobachevsky and conventional geometry; and 
group A2B2: Riemann and conventional geometry. 

Group A1B1: Lobachevsky Geometry and 
Ethnomathematics 

Based on observational data in group A1B1: 
Lobachevsky geometry and ethnomathematics for six 

Table 3. Percentage of learning trajectory scenario implementation 

Learning trajectory 
Performance percentage (%) 

LP-1 LP-2 LP-3 LP-4 LP-5 LP-6 

Deliver learning objectives 86.50 89.00 90.50 92.00 94.00 97.00 
Student exploring 85.50 90.00 90.50 92.50 95.00 97.00 
Providing ethnomathematics-based visual problems 92.00 95.50 96.00 96.00 95.00 98.00 
Students make conclusions & summaries of exploration results 86.00 89.50 92.00 94.00 97.00 99.00 
Students share conclusions about concepts & principles in geometric systems 88.50 91.00 91.50 93.00 95.00 98.00 
Mean 87.70 91.00 92.10 93.50 95.20 97.80 

 

 
Figure 1. Graph of LP-ethnomathematics implementation 
(Source: Authors’ own elaboration) 

 
Figure 2. Graph of LP-A1B1 implementation (Source: 
Authors’ own elaboration) 
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meetings (6 LP), diagram can be presented, as follows. 
Based on Figure 2, implementation of learning trajectory 
for groups of students studying Lobachevsky geometry 
with an ethnomathematics approach was implemented 
87.70% at LP-1, and continued to increase to 97.80% at 
meeting six, namely LP-6. This shows that the 
implementation of LP from 1-6 has reached more than 
85%, which means that the learning trajectory for the 
group of students who study Lobachevsky geometry 
with an ethnomathematics approach is implemented 
very well. It can also be seen that the implementation of 
the learning trajectory for this group of students is very 
good for every step (Figure 3). 

Figure 3 shows that each step of the learning 
trajectory for a group of students studying Lobachevsky 
geometry with an ethnomathematics approach is 
accomplished at over 85%. Starting from understanding 
learning objectives (91.50%), and the highest is student 
exploration activities (95.42%), to the final step of 
sharing summaries (92.83%). This shows that the 
learning trajectory of learning Lobachevsky geometry 
with an ethnomathematics approach is  

(1) delivering learning objectives (learning objective),  

(2) providing ethnomathematics-based visual 
problems,  

(3) students do exploration,  

(4) students make conclusions and summaries of 
exploration results, and  

(5) students share conclusions/summaries about 
concepts and principles in geometric systems. 

Group A1B2: Lobachevsky and Conventional 
Geometry 

Based on observational data in group A1B2: 
Lobachevsky and conventional geometry for six 
meetings (6 LP), diagram in Figure 4 can be presented. 

Based on Figure 4, the implementation of the learning 
trajectory for groups of students studying Lobachevsky 
geometry with a conventional approach was 
implemented 87.20% at LP-1, and continued to increase 
to 96.80% at meeting to6, namely LP-6. This shows that 
the implementation of LP from 1-6 has reached more 
than 85%, which means that the learning trajectory for 
the group of students studying Lobachevsky geometry 
with the conventional approach is very well 
implemented. It can also be seen that the implementation 
of the learning trajectory for this group of students is 
very good for every step (Figure 5).  

Figure 5 shows that each step of the learning 
trajectory for a group of students studying Lobachevsky 
geometry with a conventional approach is accomplished 
at over 85%. Starting from understanding learning 
objectives (91.00%), and the highest is student 
exploration activities (94.83%), to the final step of 
sharing summaries (92.17%). This shows that the 
learning trajectory of learning Lobachevsky geometry 
with a conventional approach is  

(1) delivering learning objectives (learning objective),  

(2) providing ethnomathematics-based visual 
problems,  

(3) students do exploration,  

(4) students make conclusions and summaries of 
exploration results, and  

 
Figure 3. Learning trajectory graph-A1B1 (Source: Authors’ 
own elaboration) 

 
Figure 4. Graph of LP-A1B2 implementation (Source: 
Authors’ own elaboration) 

 
Figure 5. Graph of learning trajectory-A1B2 (Source: 
Authors’ own elaboration) 
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(5) students share conclusions/summaries about 
concepts and principles in geometric systems. 

Group A2B1: Riemann Geometry and 
Ethnomathematics 

Based on observational data in group A2B1: Riemann 
geometry and ethnomathematics for six meetings (6 LP), 
the diagram in Figure 6 can be presented. 

Based on Figure 6, implementation of learning 
trajectory for groups of students studying Riemann 
geometry with an ethnomathematics approach was 
implemented 89.40% at LP-1, and continued to increase 
to 97.40% at meeting to6, namely LP-6. This shows that 
implementation of LP from 1-6 has reached more than 
85%, which means that learning trajectory for groups of 
students who study Riemann geometry with an 
ethnomathematics approach are implemented very well. 
It can be seen that implementation of learning trajectory 
for students is very good for every step (Figure 7). 

Figure 7 shows that each step of the learning 
trajectory for a group of students studying Riemann 
geometry with an ethnomathematics approach 
accomplished above 85%. Starting from understanding 
learning objectives (91.00%), and the highest is student 
exploration activities (95.17%), to the final step of 
sharing summaries (92.59%). This shows that the 

learning trajectory of learning Riemann geometry with 
an ethnomathematics approach is  

(1) delivering learning objectives (learning objective),  

(2) providing ethnomathematics-based visual 
problems,  

(3) students do exploration,  

(4) students make conclusions and summaries of 
exploration results, and  

(5) students share conclusions/summaries about 
concepts and principles in geometric systems. 

Group A2B2: Riemann and Conventional Geometry 

Based on observational data in group A1B2: Riemann 
and conventional geometry for six meetings (6 LP), the 
diagram in Figure 8 can be presented. 

Based on Figure 8, the implementation of the learning 
trajectory for groups of students studying Riemann 
geometry with a conventional approach was 
implemented 87.50% at LP-1, and continued to increase 
to 97.80% at meeting to6, namely LP-6. This shows that 
the implementation of LP from 1-6 has reached more 
than 85%, which means that the learning trajectory for 
groups of students who study Riemann geometry with 
the conventional approach are implemented very well. It 
can also be seen that the implementation of the learning 
trajectory for this group of students is very good for 
every step (Figure 9).  

Figure 9 shows that each step of learning trajectory 
for groups of students studying Riemann geometry with 
the conventional approach is accomplished at over 85%. 
Starting from understanding learning objectives 
(91.67%), and the highest is student exploration activities 
(95.25%), to the final step of sharing summaries (92.50%). 
This shows that the learning trajectory of learning 
Riemann geometry with a conventional approach is  

(1) delivering learning objectives (learning objective),  

(2) providing ethnomathematics-based visual 
problems,  

(3) students do exploration,  

 
Figure 6. Graph of LP-A2B1 implementation (Source: 
Authors’ own elaboration) 

 
Figure 7. Graph of learning trajectory-A2B1 (Source: 
Authors’ own elaboration) 

 
Figure 8. Graph of LP-A2B2 implementation (Source: 
Authors’ own elaboration) 
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(4) students make conclusions and summaries of 
exploration results, and  

(5) students share conclusions/summaries about 
concepts and principles in geometric systems. 

Based on the explanation above, it can be seen that 
the learning trajectory is consistently implemented very 
well. This can also be seen from the overall data analysis 
listed in the graph, as follows. 

Based on Figure 10, it is certain that the learning 
trajectory of learning non-Euclid geometry 
(Lobachevsky and Riemann) is  

(1) delivering learning objectives (learning 
objectives) (91.29%),  

(2) providing ethnomathematics-based visual 
problems (91.65%),  

(3) students do exploration (95.17%),  

(4) students make conclusions and summaries of 
exploration results (93.15%), and  

(5) students share conclusions/summaries about 
concepts and principles in geometric systems 
(92.62%).  

Based on this research, which has been published, the 
application of the ethnomathematics approach to 
learning non-Euclidean geometry improves the spatial 
abilities of non-Euclidean geometry (Nugroho et al., 
2022). That is data analysis using covariate analysis 
(ANCOVA). In this publication it was concluded that 
there were differences in spatial ability between students 
with Lobachevsky geometry and Riemann geometry 
after controlling for the influence of Euclid’s spatial 
ability in geometry. There is a difference in spatial 
abilities between students who were given an 
ethnomathematics and conventional approach after 
controlling for the effect of Euclid geometry’s spatial 
ability. There is an interaction effect of geometry 
material and learning approach on the spatial ability of 
non-Euclid geometry after controlling for the influence 

of the spatial ability of Euclidean geometry. There is a 
linear effect of covariate Euclidean geometry spatial 
ability on non-Euclid geometry spatial ability. Geometry 
spatial ability, geometry material and Euclid’s learning 
approach together influence spatial ability. The students’ 
spatial ability for Lobachevsky geometry material is not 
higher than the Riemann geometry material, which is 
taught with an ethnomathematics learning approach 
after controlling for the effect of Euclid’s geometry 
spatial ability. The students’ spatial abilities for 
Lobachevsky geometry are not higher than the material 
for Riemann geometry, which is taught with the 
conventional learning approach after controlling for the 
influence of the spatial abilities of Euclid geometry. The 
spatial ability of students who were given the 
ethnomathematics learning approach was higher than 
students who were given the conventional learning 
approach for Lobachevsky geometry after controlling for 
the influence of Euclid’s geometry spatial abilities. The 
spatial ability of the students who were given the 
ethnomathematics learning approach was higher than 
the students who were given the conventional learning 
approach for Riemann geometry after controlling for the 
influence of the spatial abilities of Euclid’s geometry. 
Based on the results of this study, the learning trajectory 
is the right learning trajectory for learning non-
Euclidean geometry through an ethnomathematics 
approach. 

DISCUSSION 

Based on this research, which has been published, the 
application of the ethnomathematics approach to 
learning non-Euclidean geometry improves the spatial 
abilities of non-Euclidean geometry (Nugroho et al., 
2022). That is data analysis using covariate analysis 
(ANCOVA). In this publication it was concluded that 
there were differences in spatial ability between students 
with Lobachevsky geometry and Riemann geometry 
after controlling for the influence of Euclid’s spatial 

 
Figure 9. Graph of learning trajectory-A2B2 (Source: 
Authors’ own elaboration) 

 
Figure 10. Average of each learning step of 4 sample groups 
(Source: Authors’ own elaboration) 
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ability in geometry. There is a difference in spatial 
abilities between students who were given an 
ethnomathematics and conventional approach after 
controlling for the effect of Euclid geometry’s spatial 
ability. There is an interaction effect of geometry 
material and learning approach on the spatial ability of 
non-Euclid geometry after controlling for the influence 
of the spatial ability of Euclidean geometry. There is a 
linear effect of covariate Euclidean geometry spatial 
ability on non-Euclid geometry spatial ability. Geometry 
spatial ability, geometry material and Euclid’s learning 
approach together influence spatial ability. The students’ 
spatial ability for Lobachevsky geometry material is not 
higher than the Riemann geometry material, which is 
taught with an ethnomathematics learning approach 
after controlling for the effect of Euclid’s geometry 
spatial ability. The students’ spatial abilities for 
Lobachevsky geometry are not higher than the material 
for Riemann geometry, which is taught with the 
conventional learning approach after controlling for the 
influence of the spatial abilities of Euclid geometry. The 
spatial ability of students who were given the 
ethnomathematics learning approach was higher than 
students who were given the conventional learning 
approach for Lobachevsky geometry after controlling for 
the influence of Euclid’s geometry spatial abilities. The 
spatial ability of the students who were given the 
ethnomathematics learning approach was higher than 
the students who were given the conventional learning 
approach for Riemann geometry after controlling for the 
influence of the spatial abilities of Euclid’s geometry. 

Based on the results of this study, the learning 
trajectory is the right learning trajectory for learning 
non-Euclidean geometry through an ethnomathematics 
approach. Those are the five steps of the learning 
trajectory, as follows.  

Step 1: Math Goal (Learning Objective)  

Lecturers and students review the learning objectives 
of geometry based on visual problems with an 
ethnomathematics approach. Lobachevsky’s geometry 
uses ethnomathematics: bubu, trumpet, and goa 
tourism. Riemann geometry: grapefruit, sphere, and 
globe. 

Step 2: Launch of Visual Problems 

In step 2, the lecturer launched a visualization-based 
problem with an ethnomathematics approach for the 
class as a whole. Through student activity sheets, 
lecturers help students understand problem settings, 
mathematical contexts, and challenges. The following 
questions can help lecturers prepare for launching: 
estimate what students will do? What do students need 
to understand the context of the story and the challenges 
of the problem? What difficulties can be predicted for 
students? How can you prevent giving help too far from 

the given problem? The launch phase is also a time for 
lecturers to introduce new ideas, clarify definitions, 
review old concepts, and relate problems to previous 
student experiences. Lecturers must be careful not to 
lecture too much, and give too little challenge from 
routine assignments, or cut off the structure of the 
strategy from an open launch of the problem. 

Step 3: Student Exploring 

In the explore phase, students work to solve 
problems individually, in pairs, in small groups, or 
sometimes in a class as a whole. Their work, such as 
collecting data, sharing ideas, making patterns, making 
conjectures, and developing problem solving strategies. 
The role of the lecturer in this phase is to walk around 
the class, observe student performance individually, and 
encourage students to carry out assignments. Lecturers 
help students to work diligently by asking questions and 
confirming what is needed. For students who are 
interested and adept at in-depth investigations, lecturers 
provide extra challenges related to problems. The 
following questions can help lecturers prepare for the 
exploring phase:  

(1) How will the lecturer organize students to explore 
this problem? (individually?, in pairs?, groups?, 
class as a whole?),  

(2) What materials will students need?,  

(3) How will students record and report their work?,  

(4) Anticipate what can be done to deal with the 
various strategies they use?,  

(5) What questions can be given to encourage 
students to keep working, thinking and 
studying?,  

(6) What questions can be given to focus their 
thinking if they are frustrated or stop carrying out 
tasks?, and 

(7) What questions can be given to challenge students 
if the initial level questions are “answered”? 

Step 4: Student of Summarize 

The summary phase begins when most students have 
collected sufficient data or have made sufficient progress 
toward solving the problem. In this phase, students 
discuss their solutions, as well as the strategies they use 
to approach problems, organize data, and find solutions. 
Through discussions, lecturers help students improve 
their understanding of mathematics in problems and 
guide them in improving their strategies so that 
problem-solving techniques are efficient and effective. In 
the summary discussion gives instructions so that 
lecturers and students play a significant role. Ideally, 
they will ask conjectures, ask questions, try alternatives, 
reason, refine their strategies and conjectures, and make 
connections.  
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As a result of the discussion, students will become 
more skilled at using ideas and techniques that generate 
experience with the problems they face. In the 
summarizing phase, it contains problems, 
investigations, and units that are intended so that the 
lecturer can estimate the level of development of 
students’ mathematical knowledge. The following 
questions can help the teacher prepare a summary:  

(1) How can lecturers help students understand and 
appreciate the various methods used?,  

(2) How can lecturers arrange discussion procedures 
about student summaries in thinking about 
problems?,  

(3) What concepts and strategies are needed to make 
conclusions?,  

(4) What definition or strategy do we need to 
generalize?,  

(5) What linkages and extensions can be made?,  

(6) What new questions have increased and how to 
handle them?, and  

(7) What are the possible follow-ups, practices, or 
implementation of ideas after the summary? 

Step 5: Share of Summarize 

In this step, students share a summary. Lecturers give 
instructions for students to play a significant role. 
Ideally, they will ask conjectures, ask questions, 
alternative attempts, reason, refine their strategies and 
conjectures, and make connections. As a result of the 
discussion, students will become more skilled at using 
ideas and techniques that generate experience with the 
problems they face.  

The following is one application of the learning 
trajectory (HLT) in Lobachevsky geometry with an 
ethnomathematics approach to traditional fishing gear 
(bubu). This is a student’s cognitive process in terms of 
APOS theory (student genetic decomposition) 
(Dubinsky & McDonald, 2000).  

Action 

To facilitate students to take “action” namely:  

(1) understanding real problems related to 
Lobachevsky’s parallel axiom, namely “bubu”. 
(Bengkulu people’s traditional fishing gear).  

(2) choose a binding site for each pot stick,  

(3) one such place is named point P,  

(4) choose a stick at the bottom of the pot that is not 
tied at point P,  

(5) name one stick with the line g,  

(6) choose two sticks tied to the bond at point P, and  

(7) name the two sticks with the lines g1 and g2.  

Mental and physical activities based on real-world 
problems regarding bubu ethnomathematics, can be 
described, as follows (Figure 11). 

It is a cognitive process in the form of mathematical 
connections: A student who succeeds in making 
mathematical connections, namely connecting how 
geometric ideas are related to bubu; relates new 
problems to old ones by asking, “where have I seen 
problems like this before?”; likes seeing how 
Lobachevsky geometry ideas or concepts connect to the 
real world; can easily relate familiar ideas to concepts or 
new skills and love to know when others are thinking 
about a solution strategy in a different way. 

Process 

Process is contemplated action. A process can be 
obtained by performing an action repeatedly. This stage 
is marked when someone can think of doing a process 
without actually doing it and can think about how to 
reverse or arrange a process. To facilitate students to 
carry out the “process (process)”, namely:  

(1) represents one bond point with one point P,  

(2) represents a stick at the bottom of the pot that is 
not tied at point P is a line g, and 

(3) represents two sticks tied to bond at point P with 
two lines, namely the lines g1 and g2 (Figure 12). 

This is the cognitive process of mathematical 
representation (a student who succeeds in 
representation) i.e., having a list of ways to represent a 
problem and its solution; uses a series of representations 
in expressing his thoughts, (words, pictures or drawings, 
graphics or other graphics); uses representation to reveal 
what he thinks, how he knows it, and how the problem 
is solved; can easily move from one type of 
representation to another and know the right or proper 
representation to use and when to use it. 

 
Figure 11. Cognitive process based on bubu (Source: 
Authors’ own elaboration) 

 
Figure 12. Cognitive process to achieve a principle (Source: 
Authors’ own elaboration) 
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Object 

Object is a totality that is carried out in a process. This 
stage is marked by a person’s ability to act on the object 
and provide reasons or explanations about its properties 
and can perform re-decomposition. To facilitate students 
to do “objects”, this module contains:  

(1) questions that consist of several concepts,  

(2) questions that encourage students to provide an 
explanation of what they wrote,  

(3) questions that encourage students to re-describe 
the properties of a concept, and 

(4) questions that train students to be able to flip 
through concepts in the material being taught.  

In order to obtain the principle of parallel axioms of 
Lobachevsky geometry as outlined in Figure 13. 

It is a cognitive process in the form of mathematical 
communication (a student who successfully 
communicates mathematically about Lobachevsky’s 
alignment). Students are able to explain their thoughts 
clearly and concisely, namely seeking clarification about 
two lines that are parallel to a certain line; attempted to 
make a new statement about the axiom of equality in 
special cases; provide an explanation or try to figure out 
why the statement makes sense.  

Scheme 

A schema for a particular Lobachevsky geometry 
concept is a collection of actions, processes and objects 
connected by some general principles so as to form an 
interrelated framework in one’s mind. To facilitate 
students to carry out “schemas”, namely, to include 
achieving a statement in the form of the Lobachevsky 
parallel axiom as a result of an assignment that relates 
general situations involving several concepts being 
studied (Figure 14). 

This process illustrates that students are able to carry 
out problem solving processes well, through an 
ethnomathematics approach. This means that a student 
is a successful problem solver, that is showing 
confidence in solving Lobachevsky’s parallel problems 
through real media; show persistence when faced with 
difficult problems and do not give up; when given an 

unfamiliar problem, knows what to do and can switch 
strategies if one does not work; and has a list of problem-
solving strategies to invoke when solving problems 
about Lobachevsky’s parallel axiom. 

These results provide support for previous research. 
Setiadi et al. (2019) stated that the trajectory of learning 
three-dimensional material through the Euclidean 
geometry approach can overcome learning obstacles that 
occur in studying this topic through the Euclidean 
geometry approach. The stages of the creative thinking 
process that students have are orientation, preparation, 
incubation, illumination and verification, which will be 
passed as a point of student thinking. That is through the 
trajectory of spatial thinking (Arnis et al., 2019). The 
developmental trajectory of children’s spatial skills 
influences variables and associations with subsequent 
mathematical thinking (Möhring et al., 2021). It is the 
influence of various covariates of language skills on 
predicting a person’s spatial development.  

Early spatial reasoning predicts later mathematical 
understanding, indicating that early spatial reasoning 
may play an important role in learning mathematics. 
Yuliardi and Rosjanuardi (2021) state that spatial 
abilities and the development of spatial ability theory are 
related to spatial conceptions in students’ 
understanding.  

HLT design consists of three phases: initial design, 
experiments, and retrospective analysis. HLT results are 
then refined into LIT (local instructional trajectory). The 
conclusion of the research is that HLT is very important 
for teachers to develop learning trajectories as a 
reference in designing learning that can optimize spatial 
abilities. Spatial abilities are needed by students to learn 
the concept of geometry, 

Thus, the learning trajectory of non-Euclidean 
geometry spatial learning through an ethnomathematics 
learning approach in terms of APOS theory is, as follows: 
delivering learning objectives (learning objective); 
providing ethnomathematics-based visual problems; 
students do exploration; students make conclusions and 
summaries of exploration results; and ends with 
students sharing conclusions/summaries about 
concepts and principles in geometric systems. 

 
Figure 13. Achievement of Lobachevsky’s parallel principle 
(Source: Authors’ own elaboration) 

 
Figure 14. Achievement of Lobachevsky’s parallel principle 
(Source: Authors’ own elaboration) 
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CONCLUSIONS 

Learning Euclid and non-Euclid geometry through 
ethnomathematics approaches has a positive impact on 
students’ spatial abilities. There was an increase in the 
spatial ability of students in non-Euclidean geometry 
after learning through an ethnomathematics approach. It 
means that the spatial ability of the students who were 
given the ethnomathematics learning approach was 
higher than the students who were given the 
conventional learning approach for Lobachevsky 
geometry material after controlling for the influence of 
Euclidean geometry spatial abilities.  

Also, the same thing happened for the spatial abilities 
of Riemann geometry students. It is obtained based on 
the application of the non-Euclidean geometry spatial 
learning trajectory, namely conveying learning 
objectives (learning objective); providing 
ethnomathematics-based visual problems; students do 
exploration; students make conclusions and summaries 
of exploration results; and ends with students sharing 
conclusions/summaries about concepts and principles 
in geometric systems. 
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