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Abstract 

In this paper, we propose to use a Bayesian three-dimensional item response model to estimate 

the student’s understanding of the vector concept. The experiment involved administering a test 

with 20 items about understanding vectors to 120 undergraduate students. The understanding is 

considered a latent variable of three dimensions related to observable data from item responses 

of a vector test. The Bayesian approach was used to obtain estimations about individual 

parameters, which were qualitatively analyzed based on a framework for understanding concepts. 

According to the results, we classify students into three levels of understanding in each dimension 

analyzed. We observed that a high percentage of students reached a medium level of 

understanding, while a low percentage achieved a high level of understanding. In addition to the 

classification, we obtained understanding profiles to quantify the level of students’ understanding 

in each of the dimensions. These profiles offer a more nuanced view of students’ understanding 

of the concept vector, which has significant practical implications. This information can guide the 

improvement of teaching strategies and curriculum design, allowing educators to address specific 

areas of difficulty and enhance learning in the concept of vectors. 

Keywords: understanding, vector concept, multidimensional item response model, 

undergraduate students 

 

INTRODUCTION 

The vector is a very important concept in 
mathematics and physics, since it is essential to study 
topics of analytical geometry, linear algebra, vector 
calculus, vector analysis, among others (Gacovska-
Barandovska et al., 2020; Harel, 2021; Kösa & Karakus, 
2010; Parraguez & Oktaç, 2010; Stewart & Thomas, 2009), 
and for modeling real-world phenomena and 
characterizing physical magnitudes having magnitude 
and direction; for example, motion, force, velocity, 
acceleration, magnetic field, electric field. These 
magnitudes require knowledge of the graphic and 
algebraic representations of vectors and their basic 
operations, such as addition, subtraction, dot product, 
cross product (Barniol & Zavala, 2014b; Heckler & Scaife, 
2015; Knight, 1995; Mauk & Hingley, 2005; Mikula & 
Heckler, 2017; Scaife & Heckler, 2010; Shodiqin & 
Taqwa, 2021). 

Many authors have found that the vector concept is a 
difficult topic to learn for students, mainly in adding and 
subtracting vectors graphically, determining direction, 
calculating magnitude, operating graphically with 
vectors, performing basic operations using unit vectors, 
determining components, calculating the dot product, 
and calculating the cross product, among others 
(Angateeah et al., 2017; Barniol & Zavala, 2014a, 2014c, 
2016; Carli et al., 2020; Donevska-Todorova, 2015; Flores-
García et al., 2008; Latifa et al., 2021; Özdemir & 
Çoramik, 2018; Qonita & Ermawati, 2020; Tairab et al., 
2020). These difficulties are due to the lack of 
understanding of the vector concept (Knight, 1995; 
Flores-García et al., 2007; Nguyen & Meltzer, 2003; 
Wutchana, 2021). A good understanding can amend 
difficulties and enable students to learn other related or 
advanced concepts. On the other hand, a poor 
understanding of the vector concept significantly affects 
the correct interpretation and application of principles in 
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various areas of knowledge. For example; in physics, 
there is confusion between magnitudes or mistakes in 
the interpretation of forces; in chemistry, scalar values 
are confused with vectors. Then, is it possible to 
quantitatively know a student’s level of understanding? 
What tools or methods are most effective for measuring 
understanding of the vector concept in students at 
different educational levels? Therefore, our interest in 
this work is to estimate the level of students’ 
understanding of this concept by using a Bayesian item 
response model. 

In previous research, understanding of vectors has 
been studied: for example, through multiple-choice tests, 
Barniol and Zavala (2014d) assessed the understanding 
of the vectorial representation and informed that 
students have difficulty understanding concepts such as 
unit vectors, dot product, and cross product. Sirait and 
Oktavianty (2017) studied the ability to understand 
vectors (addition, subtraction, and components) and 
concluded that addition and subtraction in two 
dimensions were more challenging to understand than 
vector components because most students could 
determine the direction and magnitude of vector 
components and identify 𝑥, 𝑦 components. Latifa et al. 
(2021) identified students’ difficulties understanding 
vector concepts, and they adopted five categories of 
understanding: very less, less, adequate, good, and very 
good. The results indicated that students have on 
average, less or even, very less understanding, and their 
main difficulty is representing vectors graphically. 
Taqwa and Rahim (2022) compared students’ abilities to 
understand the addition and subtraction of vectors in 
one, two, and three dimensions using visual (graphic) 
and mathematical (symbolic) representations. The 
results showed that the students’ ability to understand 
vector concepts with mathematical representations was 
better than visual representations since students are 
more accustomed to operating vector algebra. 

Regarding understanding levels, Saraçoğlu and Kol 
(2018) investigated students’ level of understanding and 
misconceptions about vector magnitude, addition and 
subtraction of vectors, dot product, and cross product. 
They classified the responses into four understanding 
levels: full understanding, partial understanding, 

misunderstanding, and not understanding. They 
conclude that, in general, the students showed a partial 
understanding of vector magnitude, a full 
understanding of the addition and subtraction of 
vectors, a misunderstanding of the vector dot product, 
and no understanding of the vector cross product.  

Alam (2020) studied the understanding by assessing 
students’ cognition about vectors (magnitude, direction, 
addition, subtraction, components, dot product, and 
cross product). He expressed the results in percentages 
according to indicators, such as correct, partially correct, 
wrong, and blank (an option for the problems the 
students could not answer), and described the student’s 
successes and mistakes qualitatively. He found that most 
students who begin university need an adequate 
understanding of vectors.  

In this paper, to carry out our objective, we define the 
understanding as a latent variable that cannot be 
measured directly because it represents a hypothetical 
construct such as intelligence or motivation (Torgerson, 
1958); however, it is possible to use other manifest 
variables to know it, such as the item responses which 
serve as indicators to measure the underlying construct 
(Bollen, 2002; Valdés et al., 2019). Furthermore, we 
consider that understanding is not a one-dimensional 
variable but rather that it is built by three dimensions or 
characteristics, which have to do with the definition, 
distinction, and application of the vector concept. To 
analyze this task, we use a multidimensional item 
response theory (MIRT) model, which defines a 
mathematical relationship between student’s item 
responses and a latent variable of three dimensions that 
represents the understanding level that the items 
measure (Fox, 2010) from a Bayesian approach of the 
statistic. 

Many educational systems and assessment standards 
are deeply rooted in traditional methodologies, which 
limits innovation and the adoption of more advanced 
approaches such as the Bayesian MIRT models. 
However, the Bayesian MIRT models offer the 
advantage of incorporating prior information about 
students’ abilities, which improves the estimation of 
understanding, as in the context of this paper. 
Furthermore, ability estimates are more robust, 

Contribution to the literature 

• In this study, we propose to use a three-dimensional item response theory (IRT) model was used to 
estimate undergraduate students’ understanding of vector concepts. According to the understanding 
estimates obtained, we classify students, for each dimension, into low, medium and high understanding 
about the vector concept.  

• We developed an understanding profile for each student, which represents the pattern of mastery in the 
comprehension dimensions analyzed. The results of this research reveal that most students achieved a 
medium level of understanding of vectors. 

• Understanding profiles are graphically displayed, allowing teachers or researchers to easily identify 
students’ strengths and weaknesses in each dimension of understanding. 
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especially in small samples, as they combine observed 
data with prior information. This approach also allows 
for obtaining credibility intervals instead of point 
estimates, thus facilitating the assessment of uncertainty 
in ability estimates. 

CONCEPTUAL FRAMEWORK 

Understanding Concepts 

For education, it is essential how much students 
achieve in their learning, and this is associated with 
understanding, thought abilities, and knowledge, which 
must be promoted and assessed. Understanding 
concepts involve the ability to apply definitions, give 
examples and counterexamples, use symbols to present 
a concept, use different forms of representation of a 
concept, identify the characteristics of a concept, 
compare concepts, interpret a concept, apply a concept 
in the context that is required, and relate a concept with 
other concepts (Al-Mutawah et al., 2019; Gnaldi, 2017; 
Haji & Yumiati, 2019). 

Trowbridge and McDermott (1980) argue that 
understanding develops from intuition, experience, and 
perception of previous instructions. They also consider 
that understanding can be assessed by  

(1) defining a particular concept in an acceptable 
operational manner,  

(2) distinguishing the concept from other related 
concepts, and  

(3) applying it.  

We considered these three aspects as dimensions of 
understanding in correspondence with the proposed 
MIRT model. 

Understanding Dimensions 

The dimensions to achieve the understanding of the 
vector concept are described, as follows: 

Dimension 1. Define a particular concept in an 
acceptable operational manner  

This dimension refers to knowing and using a 
particular concept’s definition to perform operations 
correctly. In the case of vectors, the student must be able 
to carry out basic operations with this concept (addition, 
subtraction, multiplication by a scalar, dot product, and 
cross product) correctly.  

Dimension 2. The distinction of the concept from other 
related concepts 

The student must differentiate the concept from other 
related concepts. Mainly, it is possible to know if the 
individual distinguishes the characteristics of the vector 
concept and its properties. For instance, he must 
distinguish when and how to perform the vector cross 

product, realize the dot product, and distinguish the 
nature of their results. 

Dimension 3. The application of the concept  

For this dimension, the student must be able to apply 
the concept in different contexts. In this research, the 
students can solve exercises or problems in 
mathematical contexts and related disciplines using the 
vector concept in different representations (graphic, 
algebraic, and unit vectors). For this, it is necessary for 
the student to correctly apply the magnitude, direction, 
and sense of a vector.  

Bayesian MIRT Model 

The IRT models have been successfully employed in 
modern educational measurement and contribute 
significantly to research in education specifically in 
mathematics and physics education (Hori et al., 2020; 
Milovanović & Branovački, 2020; Rakkapao et al., 2016). 

The MIRT model is a statistical model that describes 
the interactions between multiple students’ abilities and 
the test items. In many cases, multiple abilities are 
required to perform successfully within a domain. This 
model can deliver more detailed information than 
information obtained from classical measurement 
models within the educational context; that is, the results 
can be presented in individual profiles for multiple 
abilities instead of providing one single score (Hartig & 
Höhler, 2009; Kunina-Habenicht et al., 2009; Min & 
Aryadoust, 2021). In this context, we model 
understanding of the students as a three-dimensional 
latent variable using a MIRT model. We described the 
MIRT model used next.  

Considers that 𝑌𝑖𝑘 is a random variable denoting the 
response of student i to item k, then the probability of the 
correct answer 𝑝𝑖𝑘, corresponding to i-th student in the 
k-th item is given by Eq. (1) (Reckase, 2009): 

 𝑃(𝑌𝑖𝑘 = 1|𝜽𝑖 , 𝒂𝑘 , 𝑑𝑘) = 𝑝𝑖𝑘 =
𝑒𝒂𝑘𝜽′𝑖+𝑑𝑘

1+𝑒𝒂𝑘𝜽′𝑖+𝑑𝑘
, 𝑖 =

1, … , 𝑁;  𝑘 = 1, … , 𝐾, 
(1) 

where 𝒂𝑘𝜽′
𝑖 + 𝑑𝑘 = ∑ 𝑎𝑘𝑙𝜃𝑖𝑙

3
𝑙=1 + 𝑑𝑘, 𝜽𝑖 is a vector of the 

parameter indicating the understanding of i-th student, 
𝒂𝑘 is a vector of item discrimination parameters of the k-
th item, 𝑑 is called the intercept parameter. Note that this 
model is a multidimensional extension of the two-
parameter logistic model (2PL) and represents the 
conditional probability that the i-th student responds 
correctly to the k-th item given an understanding level 
𝜽𝑖. 

Traditionally, frequentist analysis has been used in 
IRT; however, the Bayesian approach becomes very 
attractive for modeling item response data (Fox, 2010). 
So, we make statistical inferences from the Bayesian 
approach, in which the parameters of interest are 
considered random variables. In the framework of this 
paper, 𝜽 is the parameter of interest, which represents 
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the understanding level of a student about the vector 
concept and has a prior distribution beforehand; the 
responses to a pair of items are statistically independent 
given the understanding parameter. Let 𝒀 = (𝑦𝑖𝑘), 𝑖 =
1, … , 𝑁, 𝑘 = 1, … , 𝐾, denote the observed dichotomous 
response matrix. Then, the likelihood function is given 
byEq. (2): 

 𝐿(𝜽|𝒀) = ∏ ∏ 𝑝𝑖𝑘
𝑦𝑖𝑘𝐾

𝑘=1 (1 − 𝑝𝑖𝑘)𝑦𝑖𝑘𝑁
𝑖=1 , (2) 

where 𝑝𝑖𝑘 is defined in Eq. (1). From the Bayesian point 
of view and based on Y, we are interested in the posterior 
distribution of 𝜽, which is obtained through the Bayesian 
theorem, as follows (Eq. [3]): 

 𝑃(𝜽|𝒀) =
𝐿(𝜽|𝒀) 𝑃(𝜽)

𝑃(𝒀)
, (3) 

where 𝑃(𝜽) is the prior distribution of 𝜽 and 𝑃(𝒀) es the 
marginal distribution of Y. We use Markov chain Monte 
Carlo (MCMC) methods to obtain samples from Eq. (3) 
employing the JAGS software (Plummer, 2012), within R 
software (R Core Team, 2023) because 𝑃(𝜽|𝒀) is 
analytically intractable.  

METHODS 

Participants 

In this study, 120 Mexican engineering and 
mathematics students between 18 and 22 years old 
participated. The careers share subjects, for example, 
both differential and integral calculus, vector calculus, 
analytical geometry, and linear algebra. The participants 
were chosen under the criteria of having studied the 
vector concept and that they agreed to participate.  

In addition, a simple random sampling of a 
population of students from a university in Guerrero 
was carried out, achieving a significant sample size with 
an estimation error of 3% and a confidence level of 95%. 
Since there was no prior information on the student’s 
abilities concerning understanding the vector concept, 
they were all assigned the same non-informative prior 
information. 

Instrument 

For data collection, we used the test of understanding 
of vectors (TUV) designed and widely studied by Barniol 
and Zavala (2014a). The TUV is a multiple-choice test 
with 20 items, which are questions about ten properties 
of the vector concept, such as direction, magnitude, 
graphic representation, components, unit vector, 
addition, subtraction, multiplication by a scalar, dot 
product, and cross product (Table 1).  

Barniol and Zavala (2014a) carried out the design of 
the TUV based on the dimensions of understanding 
proposed by Trowbridge and McDermott (1980). Each 
test item has five answer options, of which only one is 
correct. The remaining wrong answers characterize 
students’ most common mistakes when working with 
the vector concept. Moreover, these authors provide 
evidence detailed on the validity, reliability and 
discriminatory power of the TUV using five statistical 
proofs: difficulty index, discrimination index, biserial 
point coefficient, Kuder Richardson, and Ferguson’s 
delta. In other research, the characteristics of the TUV 
items have been studied through different IRT models; 
for example, Rakkapao et al. (2016) applied the three-

Table 1. Properties of the vector concept (adapted from Barniol & Zavala, 2014a) 

Properties Item Description 

Direction 5 Choosing a vector with the same direction from among several in a graph. 
17 Calculation of the direction of a vector written as unit vector notation. 

Magnitude 20 Calculation of the magnitude of a vector written as unit vector notation. 

Graphic representation 10 Graphic representation of a vector expressed as unit vector notation. 

Component 4 Graphic representation of the y component of a vector. 
9 Graphic representation of the x component of a vector. 

14 Calculation of magnitude of the x component of a vector (angle measured from the y axis). 

Unit vector 2 Graphic representation of a unit vector. 

Addition 1 Graphical addition of vectors in 2D. 
7 Comparing the magnitude of the vector addition of two same magnitude vectors at 90° 

with the magnitude of the vectors. 
16 Comparing the magnitude of the vector addition of two same magnitude vectors at 

143.13° with the magnitude of the vectors. 

Subtraction 13 Graphical subtraction of vectors in 2D. 
19 Graphical subtraction of a vector in 1D. 

Scalar multiplication 11 Graphic representation of a vector multiplied by a negative scalar. 

Dot product 3 Geometric interpretation of dot product as a projection. 
6 Calculation of dot product using the equation ABcosθ. 
8 Calculation of dot product of vectors written in unit vector notation. 

Cross product 12 Geometric interpretation of cross product as a perpendicular vector. 
15 Calculation of cross product of vectors written as unit vectors notation. 
18 Calculation of a cross product magnitude using the equation 𝐴𝐵𝑠𝑒𝑛𝜃. 
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parameter logistic IRT model to analyze each item of the 
test and the item response curve technique to analyze the 
distractors of each item. Susac et al. (2018) corroborated 
the appropriate performance of the TUV items using the 
Rasch model. In contrast with previous research, we 
propose to use a three-dimensional IRT model to 
estimate students’ understanding level of the vector 
concept. 

Data Collection and Analysis 

The response data were collected by applying the 
TUV. The students were not previously informed about 
the test application and were randomly selected. The test 
was applied in their classrooms for about 25 minutes, 
and they were requested not to leave items unanswered. 
We used the SN notation (S: student, N: student number) 
to identify the students. 

To obtain the response matrix, we assign the value of 
1 if the answer is correct and 0 otherwise, obtaining a 
data frame of 120 lines corresponding to the students 
and 20 columns corresponding to the items. To model 
the student’s understanding level of the vector concept, 
we use Eq. (1) with three dimensions, K = 20, N = 120, 
and 𝒂𝑘𝜽′𝑖 + 𝑑𝑘 = 𝑎𝑘1𝜃𝑖1 + 𝑎𝑘2𝜃𝑖2 + 𝑎𝑘3𝜃𝑖3 + 𝑑𝑘. The 2PL 
multidimensional item response model in Eq. (1) 
considers three dimensions of the parameter 𝜃, 
corresponding to the three aspects to understand a 
concept proposed by Trowbridge and McDermott 
(1980). We consider these three characteristics to be 
abilities that a student requires to understand the vector 
concept (see Figure 1).  

Bayesian estimation in the MIRT model produces 
reliable estimates even in the presence of variability and 
noise in the data. In mathematics, where abilities and 
concepts interrelate in complex ways, this robustness is 
essential, unlike classical IRT models. By considering 
multiple dimensions, the MIRT model allows a more 
detailed assessment that goes beyond aggregate scores, 
providing a more complete understanding of each 
student. 

Since the joint posterior distribution is analytically 
intractable and the marginal posterior distributions of 
the parameters are complicated; then, we can obtain 
samples from Eq. (3) using MCMC techniques. The most 
common MCMC methods are the Gibbs sampling 

(Casella & George, 1992; Gelfand & Smith, 1990) and the 
Metropolis-Hastings (Chib & Greenberg, 1995; 
Metropolis et al., 1953). Currently, many of the MCMC 
algorithms have been already implemented in computer 
programs, such as WinBUGS and JAGS (Plummer, 2012), 
Stan and t-walk. All of these software packages provide 
programs for Bayesian modeling through posterior 
simulation given a specified model and data. The R 
packages, such as R2jags (Su & Yajima, 2015) and rjags 
(Plummer, 2015), allow one to run JAGS from within R 
software (R Core Team, 2023). In this paper, we use JAGS 
within R to obtain samples from the marginal posterior 
distributions of interest. 

RESULTS AND DISCUSSION 

Reliability of the Test 

We analyze the TUV’s reliability using two internal 
consistency measures: Cronbach’s alpha and Kuder-
Richardson. For the 20 items of the test, Cronbach’s 
alpha was 0.705 and Kuder-Richardson 0.71, which 
indicates that the test applied has an acceptable 
reliability.  

Students’ Understanding Level  

We present the results concerning the implemented 
model in Eq. (1). We obtain Bayesian point estimations 
of students’ understanding level in each dimension 

denoted by 𝜃̂𝑖𝑗 , 𝑖 = 1, 2, … , 120, 𝑗 = 1, 2, 3. These 

estimations represent 120 values of the understanding of 
each student in each dimension and are graphically 
presented in a boxplot (see Figure 2). According to the 
IRT model, the values range of the estimated 
understanding from -4 to 4, then zero is a reference point. 

In this context, values of 𝜃̂ greater than zero mean that 
students understand the vector concept better; in 

contrast, negative values of 𝜃̂ mean that students do not 

 
Figure 1. Dimensions to understand a concept (Source: 
Authors’ own elaboration) 

 
Figure 2. Estimated students’ understanding level of each 
dimension (Source: Authors’ own elaboration) 
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achieve a good understanding. The estimates obtained 
range from the understanding, shown in Figure 2, from 
-1 to 1.2 approximately. Based on these values and for 
interpretive purposes, we categorize students into three 
levels of understanding: low, medium, and high. Then, 
if a student has an understanding close value to -1, it 
means that he has a low understanding level; by 
contrast, if his estimated understanding level is close to 
1.2, it means he has a high understanding. In order to 
obtain the student classification intervals according to 
their estimated understanding level, we use 𝜃𝑗 ±

0.5 𝑆𝑑(𝜃̂𝑗), where 𝜃𝑗 is mean of the 𝜃̂𝑖𝑗 and 𝑆𝑑(𝜃̂𝑗) is 

standard deviation of 𝜃̂𝑗 . In Table 2, we present the 

intervals obtained and the corresponding 
percentage/number of students in each category. 

In Figure 3, we can see that in the three dimensions, 
the highest percentage of students is concentrated in the 
medium level of understanding, followed by the low 
and high levels.  

The mean estimation in each understanding 
dimension is 𝜃1 = −0.1472, 𝜃2 =  −0.1299, and 𝜃3 =

 −0.1610, which means that the students generally had a 
medium understanding level of the vector concept. 
These results support what is shown in Figure 3. 

The MIRT model allowed us to develop 
understanding profiles of each student, from which 
more information can be obtained from the responses of 

the items instead of only correct or incorrect answers. In 
correspondence with this research, we call them 
understanding profiles (Hartig & Höhler, 2009; Wu & 
Adams, 2006). These profiles represent the pattern of 
students’ domain in the three dimensions 𝜃1, 𝜃2, 𝜃3. 

Students’ Understanding Profiles 

Through understanding profiles, it is possible to 
know in detail the students’ strengths or weaknesses in 
each dimension of understanding; for example, the 
number of students who dominate or have weaknesses 
in some of the dimensions of understanding, groups of 
students with equal understanding profiles or, the 
number of students who have a specific ability. Then, 
these profiles serve as a framework of reference in 
teaching.  

To denote each student’s understanding profile, we 
use the first letter of the level corresponding to them 

according to their estimate value 𝜃̂𝑖𝑗. For example, we 

denote the HMM profile by referring to a student who 
has a high level of understanding in dimension 𝜃1, and a 
medium level of understanding in dimensions 𝜃2 and 𝜃3. 
Hence, we consider 7 types of profiles (see Table 3) since 
more than 90% of the students fit them.  

The predominant profile was MMM, with 30 
students, which means a medium level of understanding 
in the three understanding dimensions. The second most 
frequent profile was the LLL; 28 students showed a low 
understanding level 𝜃1, 𝜃2, 𝜃3. The third recurrent profile 
was the HHH, which indicates a high understanding of 
the operational definition, distinction, and application of 

Table 2. Rate of students in each category according to the estimated level of understanding 

Dimension Understanding Interval Rate of students 

Define a particular concept in an 
acceptable operational manner (𝜃1 ) 

Overall [-0.964, 1.267] 100% (120) 
Low-level [-0.964, -0.35) 30% (36) 

Medium-level (-0.35, 0.058) 45.8% (55) 
High-level (0.058, 1.267] 24.2% (29) 

The distinction of the concept from 
other related concepts (𝜃2 ) 

Overall [-1.057, 1.279] 100% (120) 
Low-level [-1.057, -0.3619) 37.5% (45) 

Medium-level (-0.3619, 0.1025) 38.3% (46) 
High-level (0.1025, 1.279] 24.2% (29) 

The application of the concept (𝜃3 ) Overall [-0.979, 1.243] 100% (120) 
Low-level [-0.979, -0.3661) 28.3% (34) 

Medium-level (-0.3661, 0.0441) 45% (54) 
High-level (0.0441, 1.243] 26.7% (32) 

 

 
Figure 3. Percentage of students in each understanding 
level in each dimension (Source: Authors’ own elaboration) 

Table 3. Types of understanding profiles 

Profile type Number of students 

MMM 30 
LLL 28 
HHH 24 
MLM 14 
MHM 6 
HMH 6 
LML 5 
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the vector concept. Other profiles found were the MLM, 
MHM, HMH, and LML.  

The MMM profile indicates that the three dimensions 
of understanding must be strengthened, and then it is 
necessary to analyze their weaknesses. For example, we 
observed that students with this profile had difficulty 
solving items 8, 11, and 12 since only one student 
answered correctly; in items 2, 15, and 19, two students 
answered correctly; in item 13, three students answered 
correctly; in items 16 and 17, four students answered 
correctly, and in item 20 five students answered 
correctly. Five items involve the unit vector notation, 
items 2, 8, 15, 17, and 20. 

In item 2 (graphic representation of a unit vector), 
there were two common incorrect answers: option B (10 
students) and option E (16 students). Option B implies a 
unit vector that has x and y components of one unit. 
Barniol and Zavala (2014a, 2014d) reported that students 
choosing option B, believe that this unit vector has a 
magnitude of 1; that is, students perform incorrectly the 
process of identifying the unit vector of a given vector 
(normalization process) or as Barniol and Zavala (2012) 
mention, some students simply do not operate. Susac et 
al. (2018) state that students did not correctly use the 
notion of vector magnitude and vector decomposition. 
Consequently, we consider that dimensions 𝜃1 and 𝜃3 
must be favored. On the other hand, option E refers to 
the same given vector. Barniol and Zavala (2014d) found 
that the student’s argument for this response is that the 
unit vector of a given vector is the addition of the two 
components written in the unit vector notation, which 
yields the same given vector. Then, in this case, it is also 
necessary to contribute dimension 𝜃2 because they do 
not distinguish the characteristics of the unit vector.  

In item 8 (calculation of the dot product), we noted 
the two most frequent incorrect answers, option C (15 
students) and option D (12 students). This result agrees 
with what was found by Barniol and Zavala (2014a, 
2014d), who mention that students calculated the 

product of vector 1𝑖 (from vector 𝐴) and vector 5𝑖 (from 

𝐵⃗⃗) obtaining 5𝑖, and then added 3𝑗 (from vector 𝐴) to the 
result. For the above, we can associate with students 
incorrectly carrying out the dot product procedure, and 
do not identify that the dot product results in a scalar 
then, dimensions 𝜃1 and 𝜃2 must be improved. Option D 

is the result of adding 𝐴 and 𝐵⃗⃗, which indicates that 
students confuse the dot product with adding vectors. 
Therefore, it is necessary to improve the understanding 
in dimension 𝜃2. 

In item 15 (calculation of cross product), there were 
two common incorrect answers: option C (10 students) 
and option E (10 students). In option C, students 

multiplied 1𝑖 (from 𝐴) and 5𝑖 (from 𝐵⃗⃗ ) obtaining 5𝑖, and 

added the vector 3𝑗 (from 𝐴) to the result. And in option 

E, students added 1𝑖 (from 𝐴) and 5𝑖 (from 𝐵⃗⃗ ) obtaining 

the vector 6𝑖, and adding the vector 3𝑗 (from 𝐴) to the 

result. In both cases, this denotes that the students 
incorrectly developed the cross-product. Therefore, 
dimension 𝜃1 must be amended. Likewise, in item 17, the 
correct answer is 126.87°, but there were two frequent 
incorrect answers: options B (11 students) and D (11 
students). In option B determined the angle 53.13° as 

(
4

3
) , in option D measured the vector angle 

counterclockwise from the x-axis, and they assumed the 
vector is in the third quadrant at 45°. Hence, is necessary 
to favor dimension 𝜃3, because they applied the direction 
of the vector incorrectly. During the instruction, pointing 
out the measurement of angles is essential.  

In item 20, students failed to determine the 

magnitude of the vector 𝐴 = 2𝑖 + 2𝑗, possibly they 
added 2 + 2 = 4 or incorrectly applies the Pythagorean 

Theorem (|𝐴| = √22 + 22 = 4). In the same case of item 

17, is necessary to favor dimension 𝜃3, because they 
incorrectly applied the magnitude of the vector.  

In general, we observed that students had difficulties 
in developing the dot product and cross product, 
multiplying a vector by a negative scalar, in the 
geometric interpretation of the cross product, 
subtracting two vectors in one dimension, and 
determining the magnitude of a vector; however, the 
responses reflected that the biggest obstacle was the 
representation of unit vectors. Research by Barniol and 
Zavala (2014c) mentions that a few studies about vector 
concepts in mathematical and physical contexts have 
focused on difficulties in problems that involve unit 
vector notation. This notation is important because it is 
commonly used in mathematics and physics university 
courses. Strengthening skills in the unit vector 
representation and procedures such as normalization of 
a vector, calculating angles, and the Pythagorean 
Theorem is essential for studying vectors. In Figure 4, we 
can graphically see some MMM understanding profiles. 

An LLL understanding profile means a low 
understanding of the three dimensions analyzed in this 

 
Figure 4. Example of students with MMM profile (Source: 
Authors’ own elaboration) 
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research, making it difficult to understand the vector 
concept well. The number of correct answers was 
between 0 and 4. There were zero correct answers in 
items 11, 13, 15, and 17; in item 20, there was one correct 
answer. Particularly, S59 failed in all test items, in Figure 

5 we can graphically the behavior of this student and 
other LLL understanding profiles. 

These results may be due to the lack of prior 
knowledge about vectors and their operations or 
mathematical skills such as domain on angles, the 
trigonometric function’s sine and cosine, the Theorem of 
Pythagoras, and the rest. We consider it critical to 
explore whether students have this previous knowledge 
before studying vectors. For example, in their research, 
Mikula and Heckler (2013) conceive vector math 
operations (vector addition, subtraction, components, 
tilted coordinate systems, dot products, and cross 
products in both algebraic and arrow representations) as 
essential skills because are simple procedurals that are 
required to solve different problems and are a fluent skill 
of experts. These skills involve applications and a simple 
conceptual understanding of basic calculation 
procedures, including basic math and interpretations of 
representations. Authors mention that some vector math 
skills must be broken further into subskills (e.g., finding 
components of vectors, trigonometric functions, angles, 
and others); however, they detected that even post 
instruction, students have difficulties in vector subskills, 
for example, often confuse sine with cosine when the 
angle is given from vertical and commit sign errors when 
the angle is given from the tip of the vector. 

It has also been documented that students begin 
university studies with an inadequate understanding of 
vectors (Alam, 2020). In the same way, Nguyen and 
Meltzer (2003) state that approximately half of the 
undergraduate students do not have useful knowledge 
about vectors, even if they have taken a physics course. 
Vector operation difficulties have been observed in pre-

college teachers and graduate students by Wutchana et 
al. (2015), who point out that this is due to teachers 
thinking work with some of the vector concepts is easy 
and they develop the topic naturally, causing some 
difficulties for the students. Similarly, Mikula and 
Heckler (2017) mention teachers believe that knowledge 
about vectors is a requisite for university courses or 
believe that it is sufficiently practiced in the current 
course, and they do not dedicate enough time to develop 
this topic. For their part, Mikula and Heckler (2013) 
consider that although vector math is an important topic 
and mathematics or physics textbooks include an early 
chapter on the topic, this is not sufficient. 

A HHH profile means that the student understands 
the concept’s operational definition, distinction, and 
application. Twenty-four students had this profile, for 
example, S7, S61, S77, S79, and S91, and obtained the 
highest understanding values (Figure 6). These students 
only needed help recognizing the geometric 
interpretation of the dot product (item 3) and identifying 
the mathematical expression for determining the 
magnitude of the dot product (item 6), because of this, 
dimension 𝜃2 must be strengthened.  

It is convenient for this group of students to point out 
their strengths. They had a better performance on item 
10 (graphic representation of a vector expressed as unit 
vector notation) 20 students answered correctly; in item 
9 (graphic representation of the x component of a vector), 
19 students answered correctly; in item 5 (choosing a 

vector in the same direction from 𝐴) 18 students 
answered correctly, and in items 7 (calculation of 

magnitude of the addition of 𝐴 + 𝐵⃗⃗) and 20 (calculation 
of the magnitude of a vector in unit vector notation) 17 
students answered correctly to mention some cases. By 
contrast, the most difficult items were, for example, item 
2 (graphic representation of a unit vector), with only 5 
students answering correctly, and item 3 (geometric 
interpretation of dot product) and item 6 (calculation of 

 
Figure 5. Examples of students with LLL profile (Source: 
Authors’ own elaboration) 

 
Figure 6. Examples of students with HHH profile (Source: 
Authors’ own elaboration) 
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dot product using 𝐴𝐵𝑐𝑜𝑠𝜃), with only 6 correct answers. 
An aspect to highlight is that for both students with 
MMM and HHH profiles, item 2 represented difficulty, 
and although we did not mention it, only 4 students with 
LLL profiles answered correctly. This result is similar to 
that found by Barniol and Zavala (2014a), Rakkapao et 
al. (2016) and Susac et al. (2018), for whom this item is 
one of the most difficult on the TUV. 

Students with HHH profiles can be supported during 
instruction; for example, the teacher can organize 
students into groups and distribute those students who 
have an HHH profile in each group. Also, the teacher can 
give individual training to other students and participate 
in verbal and written ways in front of the class so that 
the rest of the students listen, observe the procedures the 
participant uses, and participate in the evaluation 
process (co-evaluation). These actions enhance the 
cognitive, social, and cooperative skills of students with 
HHH profile, and motivate other students to repeat this 
behavior.  

In Figure 7 we can see the less recurrent profiles, such 
as MLM (S72), MHM (S12), HMH (S30), and LML (S46). 
Furthermore, the LLM (S28), MML (S33), and MHH 
(S55) profiles were only presented once. The behavior in 
all the mentioned profiles indicates that one, two or the 
three dimensions of understanding must be 
strengthened, for example, if the graph of a profile first 
presents a positive slope and then a negative slope, this 
means that the student has greater mastery in the 
dimension of the distinction of a concept. In contrast, if 
the graph of a profile first presents a negative slope and 
then a positive slope, it reflects that the dimensions that 
students dominate are the definition and application of 
the vector concept. In the case of S55, the profile graph 
does not present an inflection point, which means the 
student has a similar understanding of the three 
dimensions analyzed. In general, the graphic 
presentation of the profiles can make it easier for 
teachers and researchers to interpret students’ 
understanding in the three dimensions. 

Finally, in Figure 8 the levels of understanding are 
limited by the pink, hatched blue, and yellow areas. 
Here, we can quickly visualize the students who require 
more support (for example, S59 and S104) and those who 
have more abilities and can support other students (for 
example, S91 and S109). Likewise, students (for example 
S10) with a medium level of understanding in defining, 
distinguishing, and applying the vector concept are 
detected. In cases such as S39, S46 and S80, the 
dimensions with strengths and weaknesses are 
identified. 

The results obtained in this research, which indicate 
low, medium, and high levels of understanding of the 
vector concept among students, suggest the need for a 
review and adaptation of teaching strategies and 
curricular development in this area. The diversity in 
levels of understanding suggests implementing 
differentiated methodologies that address diverse 
learning needs. We consider that if a student is classified 
as having a low level of understanding, then the student 
has difficulty identifying and applying the basic 
properties of a vector, as well as performing simple 
operations such as addition and multiplication by a 
scalar. A student who reaches a medium level of 
understanding would be able to handle these operations 
and recognize the importance of vectors in specific 
contexts, although they still present difficulties when 
applying more advanced concepts, such as the 
decomposition of vectors or understanding their 
applications in branches such as physics. Finally, a high 
level of understanding is manifested in the student’s 
ability to apply vector concepts flexibly and creatively in 
various problems, as well as in his or her ability to 
connect these concepts with other areas of mathematics 

 
Figure 7. Examples of students with less recurrent profiles 
(Source: Authors’ own elaboration) 

 
Figure 8. Location of profiles in the understanding levels 
(Source: Authors’ own elaboration) 
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and science. These levels indicate that curricular 
development must incorporate practical and visual 
activities that facilitate conceptual understanding, as 
well as the use of educational technology that allows for 
more interactive learning. 

CONCLUSIONS 

In this paper, we propose using a Bayesian 
multidimensional IRT model with three dimensions to 
estimate the students’ understanding of the vector 
concept. The dimensions considered in the model 
correspond to the three dimensions of understanding: 
the operational definition, the distinction, and the 
application of the concept. Through this model, we can 
estimate the students’ understanding profiles and 
classify them into low, medium, and high levels. 

The results showed that a high percentage of students 
reached a medium level of understanding, while a low 
rate of students achieved a high level of understanding. 
However, there were students with the same level of 
understanding in the three dimensions and students 
with different levels in each dimension. It was possible 
to identify the most complex and straightforward items, 
of which we observed that it is because the firsts require 
a more significant number of students’ abilities to solve 
them correctly, compared to the seconds. By this 
modeling, it was possible to observe those dimensions 
where students do not reach an appropriate 
understanding level and those in which they achieve a 
good understanding level, which can also be noted in the 
individual understanding profiles of each student. 

Likewise, the MIRT model allows us to identify the 
level of understanding of each student concerning other 
students; that is, comparisons of understanding between 
students can be made. The model can provide 
information about the achievements and weaknesses of 
students at each level of understanding. According to the 
results, we provide some strategies to help improve 
understanding; for example, specific tasks can be 
designed for each dimension of understanding. To 
strengthen the dimensions related to the operational 
definition and application of the concept, it is possible to 
resort to the use of software such as GeoGebra and 
Tracker, interactive simulators, or augmented reality 
systems to model real-life situations with vectors, 
visualize the characteristics of a vector, and perform 
vector operations. 

To contribute to the dimension of the distinction of 
the concept from other related concepts, we suggest 
designing tasks where students identify the differences 
between scalar and vector, which determine the 
differences between dot product and cross product, or 
tasks where students identify the differences between 
addition and subtraction of vectors, to mention some 
examples. 

Our findings may impact the literature related to 
understanding the vector concept mainly since, as 
mentioned at the beginning, this concept has wide 
applicability in different areas of knowledge. Therefore, 
knowing each student’s understanding profile can be 
useful for researchers and teachers in designing 
activities that strengthen each dimension of 
understanding.  

These findings can be applied in real-world 
educational settings in several impactful ways; for 
instance, for students who show a low understanding of 
the operational definition dimension, teachers might 
implement focused workshops that emphasize practical 
applications of vectors through interactive tools like 
GeoGebra, which allow for visual and hands-on 
experiences that make abstract concepts more concrete. 
Furthermore, by utilizing the understanding profiles 
that could help to design the instruction in the 
classroom, curriculum design, and assessment practices, 
educators can create more effective learning 
environments that address the diverse needs of their 
students.  

Finally, in future research, concepts from very 
different areas of mathematics can be addressed, such as 
algebra, differential equations, statistics, spatial 
geometry, and differential and integral calculus, to 
mention a few. These studies could provide valuable 
information about the mathematical skills of different 
populations, as well as the effectiveness of different 
teaching methodologies. In addition, different IRT 
models can be explored to evaluate the effectiveness of 
the model. 
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