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Abstract 

The mathematical connections Colombian engineering students activated when they solved 

vector problems were explored. The study was based on the extended theory of connections and 

the onto-semiotic approach. We followed a qualitative methodology that consisted of three 

stages: (1) selection of engineering students as participants; (2) application of a questionnaire with 

15 tasks on vectors to the participating students; and (3) analysis of these data based on the 

theoretical articulation. The results show that students perform arithmetic operations with vectors, 

find the scalar and vector product, the norm of a vector, the angle between vectors, and unit 

vector based on mathematical connections (procedural, meaning, different representations, and 

implication), detail from an onto-semiotic point of view. However, some students have difficulty 

finding the angle between vectors because they misuse the norm. Furthermore, the new 

metaphorical connection based on mnemonics activated by the “law of the ear” is reported. The 

connections activated by engineering students to solve problems about vectors may have been 

influenced by the explanations provided by their calculus teacher, who promotes connections for 

the teaching and learning mathematical concepts. 

Keywords: mathematical connections, onto-semiotic approach, vectors, engineering students, 

higher education 

 

INITIAL CONSIDERATIONS 

Mathematical connections play an essential role in 
different sociocultural environments and educational 
levels because they contribute to the mathematical 
understanding of students and teachers. It means that 
when a person uses mathematics in their daily life or 
solves mathematical problems (intra or extra-
mathematical), in most cases, they establish connections 
by following a step-by-step procedure involving 
meanings, properties, propositions, representations, 
arguments, etc. (Berry & Nyman, 2003; NCTM, 2000; 
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Rodríguez-Nieto, 2021; Rodríguez-Nieto et al., 2022a; 
Rodríguez-Nieto et al., 2023). 

Likewise, mathematical connections have been 
integrated with STEAM approach to recognize and 
appreciate that mathematics is closely related to science, 
technology, engineering, and art. However, all these 
areas of knowledge start or emerge from a sociocultural 
context with an ethnomathematical essence (Rodríguez-
Nieto & Alsina, 2022; Rodríguez-Nieto & Escobar-
Ramírez, 2022). In this line, it makes sense to investigate 
the mathematical connections in engineering students, 
who require mathematics as a central tool for the design 
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of structures, parts, software management, situation 
modeling, etc. (Mendoza-Higuera et al., 2018; 
Rodríguez-Gallegos, 2017). 

An exhaustive exploration of mathematical 
connections has been conducted at various educational 
levels. For example, connections were studied in basic 
operations and verbal arithmetic problems among fifth 
and sixth-grade students (Frías & Castro, 2007). 
Additionally, Businskas (2008) investigated 
mathematical connections among secondary school 
teachers, focusing mainly on quadratic equations, and 
detailed a model that categorizes the connections into 
different representations: instruction-oriented, part-
whole, procedure, and implication. In the field of pre-
university education in Mexico, the research of García-
García and Dolores-Flores (2018, 2021a, 2021b) stands 
out. His research revolved around the impact of 
mathematical connections on students’ understanding of 
the derivative and integral, delving into the connections 
of reversibility. 

At the university level, Dolores-Flores and García-
García (2017) highlighted the importance of intra-
mathematical and extra-mathematical connections in 
problem-solving by Mexican university students. In this 
context, procedural connections, modeling, and different 
representations are crucial in applying strategies to solve 
problems. Additionally, aiming to enhance the analysis 
of mathematical activities of university students and 
professors, Rodríguez-Nieto et al. (2022a) articulated the 
theory of connections with the conceptual metaphor 
theory, giving rise to a new category of connection called 
“MT mathematical connection”, where mathematical 
concepts are connected with bodily experiences or 
everyday situations. For example, a function is 
continuous if its graph can be drawn without lifting the 
pencil from the paper. Rodríguez-Nieto et al. (2021a) 
investigated university students’ understanding of the 
graph of the derivative. They confirmed that students 
achieve more accurate graphical representations of f and 
f’ when provided with the algebraic expression of f. 
Conversely, difficulties arise in graphing f or f’ without 
this algebraic information. Additionally, Rodríguez-
Nieto et al. (2021b) assessed the quality of mathematical 
connections made by university students when solving 
problems related to the derivative, and the connections 

were classified into three levels: level 2 or advanced, 
indicating that the subject establishes the connection and 
argues why consistently; level 1 is a connection without 
justification; and level 0, incorrect or inconsistent 
mathematical procedures. 

In other research, Campo-Meneses and García-García 
(2020), as well as Campo-Meneses et al. (2021), explored 
the mathematical connections made by high school and 
university students on exponential and logarithmic 
functions, highlighting that the reversibility connection 
is the most important, as it addresses the bidirectional 
processes attributed to these inverse functions. 
Regarding the concept of vectors, considered by teachers 
and researchers as one of the most abstract topics in 
teaching linear algebra and calculus, students manifest 
difficulties during the learning process. The teaching is 
limited to memorized algorithms that only allow them 
to solve specific problems (Possani et al., 2010; Salgado 
& Trigueros, 2014). For this reason, Flores-García et al. 
(2007) point out that students have difficulties finding 
conceptual connections in the content and visualize it as 
a collection of equations to be memorized. On the other 
hand, Gutiérrez and Martín (2015) mention that 
university students struggle to understand the 
fundamental properties of vectors because, during their 
school education, their learning was limited to solving 
non-contextualized problems without connections to 
applications in other areas, such as physics. 

Barniol and Zavala (2016) mention that most 
university students need help understanding the 
concept of vectors, particularly when they face 
challenges in interpreting the dot product as a 
projection. In this sense, the need to continue exploring 
the topic and contribute to strengthening the 
understanding of this concept is confirmed. Flores et al. 
(2017) identify that one of the difficulties students have 
when performing operations between vectors relates to 
deficiencies in some basic arithmetic processes. For 
example, errors are observed when adding or 
subtracting integers, solving a first-degree equation, and 
even implementing the Pythagorean theorem. The above 
is due to the traditional concept teaching, which does not 
provide any didactics to help the student develop a 
functional understanding of operations between vectors. 

Contribution to the literature 

• This article analyzes the mathematical connections of engineering students based on a combined use of 
extended theory of connections (ETC) and onto-semiotic approach (OSA), delving into mathematical 
practices, objects, processes, and semiotic functions (SFs). 

• The potential of analyzing the connections in the written productions is shown that reflects on the one 
hand, the detailed responses of the students and, on the other, the difficulties of the students in finding 
the unit vector and the angle between two vectors due to their disconnection when finding the norm and 
do arithmetic operations. 

• A new category of metaphorical (MT) connection based on mnemonics is proposed. 
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On their part, Tairab et al. (2020) categorized the 
difficulties students face during the vector concept 
learning process into two main categories. The first 
refers to conceptual understanding because students 
need help distinguishing basic concepts, explicitly 
differentiating between a scalar and vector quantity. The 
second category relates to operationalizing arithmetic 
processes unrelated to the concept. Most students 
perform calculations without understanding the 
relationships between scalar and vector quantities or the 
vector’s direction. Students need more connection 
between conceptual and procedural aspects to 
understand this concept. Additionally, Cárcamo et al. 
(2023) determined that university students exhibit 
difficulty studying the vector concept due to their failure 
to establish connections between the topic’s conceptual, 
representational, and procedural aspects. Consequently, 
they cannot make correct abstractions to comprehend 
and apply the concept in problem-solving. 

From a theoretical point of view that is essential in 
this research, various works have been recognized in the 
literature, where theories have been articulated, based 
on the proposals of Prediger et al. (2008), who state that 
the pairing of strategies and to connect theories ranges 
from completely ignoring other theoretical frameworks 
to unifying different approaches locally or globally. In 
this context, Drijvers et al. (2013) analyzed the use of 
algebra for learning the concept of parameter with the 
theory of instrumental genesis and OSA. Artigue and 
Bosch (2014) delved into the notion of praxeology in 
research practices to model mathematical and didactic 
activities. Font et al. (2016) articulated APOS theory with 
OSA to contrast and compare the conceptualization of 
the notion of object, proposing a genetic decomposition 
of the concept of derivative for a subsequent onto-
semiotic analysis. 

For their part, Thanheiser et al. (2021) articulated five 
theoretical approaches (cognitive task demand, lesson 
cohesion, student contribution types, collective 
argumentation, and student cognitive engagement 
activity), to analyze a holistic perspective of classroom 
culture involving the teacher, students, and 
mathematical content. Ledezma et al. (2022) integrated 
OSA and the modeling cycle from a cognitive 
perspective to improve the analysis of mathematical 
activity in real contexts and assess mathematical 
practices, processes, and objects. However, ETC and 
OSA had previously been articulated to address a 
problem associated with understanding the derivative 
because students stop making connections between 
meanings and multiple representations. Likewise, 
Campo-Meneses and García-García (2023) with this 
same articulation analyzed the connections of a teacher 
on exponential and logarithmic functions. However, the 
phenomenon has not been analyzed on the problems 
associated with the understanding of vectors from the 

articulated ETC-OSA framework, but rather from 
individually specific theories. 

Once the literature has been reviewed, the 
significance of mathematical connections has been 
acknowledged from various perspectives, including 
research about the networking of theories and the 
relevance of the vector concept in mathematics and other 
disciplines. However, the challenge of establishing 
connections between multiple representations and 
concepts persists (Cárcamo et al., 2023; Tairab et al., 
2020) as students continue to encounter difficulties in 
working with vectors, their diverse representations, 
operations, and real-world applications (Barniol & 
Zavala, 2014; Gutiérrez & Martín, 2015). Consequently, 
exploring further and understanding the connections 
students make when characterizing the vector concept 
remains essential. Therefore, this research aims to delve 
deeper into the mathematical connections of engineering 
students when addressing problems involving vectors. 

In addition to the difficulties that students have in 
solving problems about vectors (caused by stopping 
making mathematical connections), it is also important 
to study this concept because it is fundamental for 
mathematics subjects such as vector calculus, geometry, 
linear algebra, among other and diverse applications 
that students and teachers work on at the higher or 
university level in the development of physics 
curriculum in all universities, especially for 
mathematics, physics, and engineering majors, where 
intra-mathematical and extra-mathematical connections 
based on representations are explicitly evident, 
procedures, operations, theorems, etc. 

TWO THEORETICAL LENS 

This research uses the networking between ETC and 
OSA, a framework for analyzing mathematical 
connections and other aspects involved in developing 
mathematical activity. 

Extended Theory of Connections  

A mathematical connection is understood from an 
integrative view of ETC and OSA as the tip of an iceberg 
made up of a conglomerate of practices, 
processes/objects (problem situations, languages, 
procedures, propositions, definitions, and arguments), 
and SFs that relate them (Rodríguez-Nieto et al., 2022b). 
Mathematical connections can be intra-mathematical 
“are established between concepts, procedures, 
theorems, arguments and mathematical representations 
of each other” (Dolores-Flores & García-García, 2017, p. 
160), and extra-mathematical connections, which 
“establishes a relationship of a mathematical concept or 
model with a problem in context (not mathematical) or 
vice versa” (Dolores-Flores & García-García, 2017, p. 
161). Next, the categories of mathematical connections 
used operationally to analyze the results are presented. 
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De Gamboa et al. (2020) state that extra-mathematical 
connections are based on intra-mathematical 
connections and are important for students and in-
service teachers in problems-solving in the classroom. 
Furthermore, mathematical connections are one of the 
mathematical processes that foster mathematical 
creativity (Sánchez et al., 2022; Seckel et al., 2019). Each 
of the mathematical connections of ETC is described 
below: 

1. Modeling: It is understood as the relationship that 
a subject establishes between the world of 
mathematics and the real world (or the daily life 
of students) and between mathematics and other 
sciences. Specifically, it can be seen as the 
relationship established between the 
mathematical concept and a task in a real context 
(that occurs or may occur in real life) or an 
application task in some discipline other than 
mathematics in which the subject, starting from 
the task build a mathematical model to solve it. 
When the subject builds the mathematical model, 
he uses various knowledge (mathematical or not) 
by executing multiple actions (algebraic, 
symbolic, graphic, etc.) to reach an answer 
consistent with the requirement posed (Campo-
Meneses & García-García, 2023; Dolores-Flores & 
García-García, 2017; Evitts, 2004). For example, 
translating the information expressed in the 
statement of a problem (which requires finding 
the measure of the side of a box so that it has the 
greatest volume) to an initial mathematical 
expression that models the volume 𝑣 = 𝑙𝑒𝑛𝑔𝑡ℎ ∗

𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡.  

2. Instruction-oriented: It refers to the 
understanding and use of a mathematical concept 
D from two (or more) previous concepts B and C 
(which are related), required to be understood by 
a person. These connection types can be 
recognized in two forms:  

(1) the relationship of a new topic with previous 
knowledge, and  

(2) the mathematical concepts, representations, 
and procedures connected are considered 
fundamental prerequisites that people must 
have to develop new content (Businskas, 2008).  

For example, when the in-service teacher tells the 
students that, to work on the derivative of a 
function, they must first remember the concepts of 
function and slope of a line. 

3. Procedural: This mathematical connection is 
evident when rules, algorithms, or formulas are 
used to arrive at a result (García-García, 2019; 
García-García & Dolores-Flores, 2021b). For 
example, if a line is not vertical and 𝑃1(𝑥1, 𝑦1) and 
𝑃2(𝑥2, 𝑦2) are points other than the line, then the 
slope of the line can be found using the formula 

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
, with 𝑥2 − 𝑥1 ≠ 0. 

4. Part-whole: This connection type occurs when 
someone identifies that A is a generalization of B, 
where B is a particular case of A. For example, the 
function 𝑃(𝑥) =  𝑥3 − 𝑥2 − 9𝑥 − 9 is a particular 
case of the general expression 𝑓(𝑥) =  𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑 (Businskas, 2008). These relationships can 
be of inclusion when a mathematical concept is 
contained in another (García-García, 2019). 

5. Implication: This type of connection is based on a 
logical relationship if-then (A→B) (Businskas, 
2008; Mhlolo, 2012). If a function f is increasing on 
an open interval (a, b), then f’ is positive on that 
same interval. 

6. Different representations: This can be alternate 
or equivalent (Businskas, 2008). It is alternate if a 
student represents a mathematical concept in two 
or more different ways in different registers of 
representation: graph-algebraic, verbal-graph, etc. 
For example, an alternate representation is shown 
in Figure 1, where the vector 𝑛 = 3𝑖 + 2𝑗 + 6𝑘 
graphed. While an equivalent representation is a 
transformation within the same register 
(algebraic-algebraic, graph-graph, symbolic-
symbolic, etc.). For example, 𝑛 = 3𝑖 + 2𝑗 + 6𝑘 is 
equivalent to 𝑛 = 〈3, 2, 6〉 in the algebraic or 
symbolic semiotic register. 

7. Feature: It is identified when the subject manifests 
some characteristics of the concepts or describes 
its properties in terms of other concepts that make 
them different or similar to others (Eli et al., 2011; 
García-García & Dolores-Flores, 2021a). For 
example, García-García and Dolores-Flores 
(2021a) affirm that when the person mentions 
some elements of a polynomial function 𝑓(𝑥) =
𝑎𝑛𝑥

𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 + ⋯+ 𝑎0 (derivative 
function or antiderivative function) are 
coefficients (all, 𝑎𝑖 , with 𝑖 = 0, 1, 2, 3, … , 𝑛), literal 
or variables (in this case, the “𝑥”) and exponents 
of the variables (𝑛, 𝑛 − 1, 𝑛 − 2,… , 1). 

 
Figure 1. Connection between different alternate 
representations (Thomas, 2010, p. 693) 
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8. Meaning: This mathematical connection is 
presented “when students attribute a meaning to 
a mathematical concept as long as what it is for 
them (which makes it different from another) and 
what it represents; it can include the definition 
that they have built for these concepts” (García-
García, 2019, p. 131). In this sense, students 
express what the mathematical concept means to 
them, including their context of use or their 
definitions (García-García, 2019). In this research, 
we assume that this type can be more general; that 
is, we accept the existence of a mathematical 
connection between meanings. This type 
manifests when the students relate different 
meanings attributed to a concept to solve a 
specific problem. For example, Stewart (1999) “the 
derivative 𝑓′(𝑎) is the instantaneous rate of 
change of 𝑦 = 𝑓(𝑥) with respect to 𝑥 when 𝑥 = 𝑎” 
(p. 153). 

9. Reversibility: It is present when a subject starts 
from a concept A to get to a concept B and invert 
the process starting from B to return to A (García-
García & Dolores-Flores, 2021a). For example, this 
connection is established when the bidirectional 
relationship between derivative and integral, as 
operators, is recognized and when fundamental 
theorem of calculus is used to link both concepts 
(García-García & Dolores-Flores, 2018). 

10. MT: It is understood as the projection of the 
properties, characteristics, etc., of a known 
domain to structure another less known domain. 
For example, when the teacher or the student uses 
verbal expressions such as “travel through the graph 
without lifting the pencil from the paper,” that 
implicitly suggests the conceptual metaphor “the 
graph is a path” (Rodríguez-Nieto et al., 2022a). 

Onto-Semiotic Approach  

It is an inclusive theoretical approach that 
emphasizes a person’s mathematical knowledge and 
how mathematical instruction is carried out, which arose 
from the need to clarify, connect, and improve 
theoretical and methodological notions of several 
theories used in the Mathematics Education field. From 
this approach, it is essential to describe mathematical 
activity from an institutional or personal perspective, 
modeled in terms of practices and configuration of 
primary objects (PO) and processes activated in said 
practices (Drijvers et al., 2013). For Godino and Batanero 
(1994), mathematical practice is understood as “any 
situation or expression (…) carried out by someone to 
solve mathematical problems, communicate the solution 
obtained to others, validate it or generalize it to other 
contexts and problems” (p. 334). They include objects 
used in a broad sense to refer to any entity that, in some 
way, is involved in mathematical practice and can be 
identified as a unit (Font et al., 2013). Six PO are 
considered:  

(1) problem situations,  

(2) representations,  

(3) definitions,  

(4) propositions,  

(5) procedures, and  

(6) arguments.  

These interconnected objects form the configuration 
of PO (Godino et al., 2019). 

PO that emerge in mathematical practice can do so in 
different ways, which are the result of the different ways 
of seeing, speaking, operating, etc., on PO, which allows 
us to speak of primary personal or institutional objects, 
ostensive or non-ostensive, unitary, or systemic, 
intensive, or extensive, and of content or expression 
(Godino et al., 2007). Now, a configuration is a 
heterogeneous set or system of interrelated objects, 
which can be institutional (epistemic) or personal 
(cognitive) (Godino et al., 2019). 

According to Godino et al. (2007), the set of PO 
emerges in mathematical activity through the activation 
of primary mathematical processes (communication, 
problem posing, definition, enunciation, procedures 
(algorithms), and argumentation) derived from the 
application of the process-product perspective to said 
PO, these precise ones occur together with those derived 
from applying the process-product duality to the five 
dualities mentioned above (institutional/personal, 
ostensive/non-ostensive, expression/content, 
extensive/intensive and unitary/systemic): 
personalization-institutionalization; materialization-
idealization; representation-meaning; synthesis-
analysis; generalization-particularization (Font et al., 
2013; Godino et al., 2007) (Figure 2). 

 
Figure 2. Schematization of mathematical knowledge from 
an OSA view (adapted from Font & Contreras, 2008) 
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Another critical component in OSA is the notion of SF 
that allows practices to be associated with the processes 
and objects activated and the construction of an 
operational notion of knowledge, mathematical 
understanding, meaning, and competence (Godino et al., 
2007). An SF is a triadic relationship between an 
antecedent (expression/object) and a consequent 
(content/object) made by a person (person or institution) 
according to a specific criterion or correspondence code 
(Font, 2007). SFs are inferred when mathematical activity 
is viewed from the expression/content duality.  

In Rodríguez-Nieto et al. (2022b), it is stated that the 
notion of SF (OSA) is more general than the notion of 
mathematical connection (ETC) since the connections are 
considered particular cases of SFs of a personal or 
institutional nature. In ETC, the mathematical 
connection may or may not be accurate, revealing from 
the perspective of OSA that when a subject makes a 
correct connection, it coincides with the institutional one. 
When it is incorrect, it is personal. 

Particularly in Godino (2022, p. 8), the importance of 
addressing the meanings of mathematical objects by 
subjects in given circumstances is expressed, referring to 
the semiotic-cognitive problem, which is related to the 
knowledge understood in OSA as the “set of” relations 
that the subject (person or institution) establishes 
between objects and practices, relationships that are 
modeled through the notion of SF. 

These two theoretical frameworks are used because 
ETC allows the use of typology of mathematical 
connections and with OSA it is possible to detail the 
connections in terms of practices, processes, objects, and 
SFs that relate them and to deepen a type of 
understanding of the subject with respect to a 
mathematical concept. 

Networking Between Extended Theory of 
Connections & Onto-Semiotic Approach 

The networking of theories allows us to explore and 
understand how their contributions can be linked 
successfully (or not), respecting their underlying 
conceptual and methodological principles. This helps to 
understand and detail the complexity of the phenomena 
involved in the teaching and learning processes of 
mathematics (Kidron & Bikner-Ahsbahs, 2015; Prediger 
et al., 2008).  

In the context of this research, the work of Rodríguez-
Nieto et al. (2022b) was considered, who present a 
networking between ETC and OSA, which investigates 
three aspects: the nature of mathematical connections 
from the points of view of ETC and OSA; They explore 
how the connections of the subjects’ productions 
(written and verbal) are inferred from both theoretical 
frameworks. To this end, they carried out a content 
analysis of the central publications of both theories, 
identifying principles, methods and paradigmatic 

research questions and asked if there are concordances 
and complementarities between ETC and OSA of 
mathematical connections that allow a more detailed 
analysis of mathematical connections. Furthermore, for 
the analysis they followed the typical steps to develop 
networking of theories (Drijvers et al., 2013; Kidron & 
Bikner-Ahsbahs, 2015; Radford, 2008), which include the 
selection and description of episodes, the identification 
of mathematical connections using ETC and OSA. 

In this way, Rodríguez-Nieto et al. (2022b) identified 
that there is agreement between both theories, given that 
they use content analysis as a method. However, the 
thematic analysis of ETC uses a typology of 
mathematical connections established a priori, while the 
analysis carried out with OSA uses various tools. In this 
networking, the data were first analyzed in terms of 
practices, configurations of PO and SFs that relate them 
to as proposed by OSA. Finally, parts of mathematical 
activity (e.g., practices, PO, and SFs) were encapsulated 
as a type of connection proposed in ETC. 

Although the analysis methods are different, the 
main conclusion is that both theories complement each 
other to carry out a more detailed analysis of the 
mathematical connections. In particular, the detailed 
analysis carried out with OSA tools visualizes a 
mathematical connection, metaphorically speaking, as 
the tip of an iceberg of a conglomerate of practices, 
processes, PO activated in these practices, and SFs that 
relate them, which allows for a comprehensive analysis 
detailing the structure and function of the connection. 
For this reason, in this research a more detailed analysis 
of mathematical connections will be used to analyze the 
productions of engineering students. 

Vector Concept 

Mathematical applications often concern magnitudes 
with both quantity (or intensity) and direction. An 
example of a magnitude is velocity. Thus, the velocity of 
an airplane has a quantity (how fast it flies) and 
direction, which determines its course. Other examples 
of such quantities are force, displacement, and 
acceleration. Physicists and engineers understand a 
vector as a directed straight-line segment, and these 
magnitudes that have quantity and direction are known 
as vector magnitudes.  

On the other hand, a quantity that has quantity, but 
no direction is called a scalar quantity. Examples of 
scalar quantities are length, area, volume, cost, utility, 
and speed. The study of vectors is called vector analysis 
(Leithold, 1998). 

A vector is represented by a directed line segment (or 
briefly directed segment), as a line segment starting from 

a point 𝑃 and reaches a point 𝑄, denoted by 𝑃𝑄⃗⃗⃗⃗  ⃗. is called 
the initial point, and the point 𝑄 is called the end point 
(Leithold, 1998) (Figure 3). 
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Definition of vector in plane & space 

A vector in a two-dimensional plane, denoted by 𝐴 , 
is an ordered pair of real numbers and can be 

represented as 𝐴 = (𝑎1, 𝑎2) ∈  ℝ2. Similarly, a vector in 
three-dimensional space consists of an ordered triple of 

real numbers, which we can symbolize as 𝐴 =
(𝑎1, 𝑎2, 𝑎3) ∈ ℝ3. To correctly define a vector in the plane 
and space, it is essential to establish the structure of these 
vectors in a Cartesian coordinate system. The graphic 
representation of vectors is done using arrows or line 
segments that indicate their direction and magnitude. In 
a Cartesian coordinate system, vectors are drawn from a 
source point to an end point, and their length represents 
the magnitude of the vector. Furthermore, the elements 
of a vector are the characteristics that define its 
magnitude and direction (Figure 4). 

It is important to note that a vector in an 𝑛-

dimensional space is represented as 𝐴 =

 (𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛) ∈ ℝ𝑛. In what follows, let us consider 
vectors in 𝑛-dimensional space. Now, we define the 

length or norm of a vector 𝐴 , denoted by ‖𝐴 ‖ as ‖𝐴 ‖ =

√𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2 + 𝑎5
2 + ⋯+ 𝑎𝑛

2 . The norm of a vector 
is always a non-negative value. On the other hand, the 
fundamental operations that can be performed with 
vectors are shown: the addition of vectors and 
multiplication by a scalar. A scalar is simply a real 
number (Thomas, 2010). 

METHODOLOGY 

This research is qualitative (Cohen et al., 2018). It 
seeks to identify the mathematical connections in solving 
problems about vectors by engineering students. Three 
stages were followed: the first refers to the selection of 
the participants (engineering students); The second 
deals with the collection of data through a questionnaire 
and participant observation; and, in the third stage, the 
data were analyzed to recognize the mathematical 
connections of the students. 

Participants & Context 

The participants consisted of 58 students (aged 18-20 
years) from different engineering fields from a 
university on the Colombian Caribbean Coast who were 

studying vector calculus and participated in this 
research. These students have previous mathematics 
training in calculus I and calculus II courses related to 
teaching and learning functions, limits, derivatives, 
integrals, and their real-world applications.  

In addition, they are aware of this research for 
educational purposes and have chosen to participate 
voluntarily. 

Data Collection  

The data were collected by creating a questionnaire 
with 15 tasks involving operations with vectors and their 
meaning (Table 1), which was structured based on the 
literature review and the contents of calculus books 
(Thomas, 2010).  

In addition, the performance indicators and contents 
reflected in the syllabus of the first semester of vector 
calculus were considered. Then, the questionnaire was 
implemented in three classes in a sectioned manner. For 
example, the professor in charge of this activity (the first 
author of this article) explained the contents, and then, 
for thirty minutes, he applied the tasks corresponding to 
said theme (five tasks per class). After the students 
solved the tasks, some voluntarily participated in class, 
exposing their way of solving them on the blackboard. 

This questionnaire was reviewed and validated by 
expert teachers (one in charge of linear algebra and 
another who teaches physics) including the authors of 
the article, who analyzed the writing, relevance of the 
tasks, consistency with the level of complexity of the 
students and that it really, the tasks were in line with the 
indicators suggested in vector calculus syllabus.  

At a theoretical level, this questionnaire was 
discussed with the experts to make known that for its 
construction the cognitive semiotic problem of OSA was 
considered, where it began by asking about the meaning 
of the concept of vector and simultaneously sought to 
investigate the connection of meaning (ETC). 

Generally, these tasks aim for the student to have 
knowledge of the meaning of the vector, as well as the 
competence to operate with vectors and strengthen their 
bases to solve situations of application problems 
developed in vector calculus.  

 
Figure 3. Vector as a directed line segment (Thomas, 2010) 

 
Figure 4. Elements of a vector (Thomas, 2010) 
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Data Analysis 

In this research, the data were analyzed considering 
the integrative method resulting from the networking 
between ETC and OSA as evidenced in Rodríguez-Nieto 
et al. (2022b), using elements of thematic analysis (Braun 
& Clarke, 2006) and the onto-semiotic analysis, where 
initially these two methods are similar, that is, the data 
transcriptions (ETC) and OSA narrative are the same 
because they allow the interviews to be seen in text 
format or, if the data are written productions, they are 
organized to make them more accessible to the 
researcher.  

Then, the rest of the data analysis remains regarding 
practices, processes, configurations of PO, and SFs 
(Table 2). It should be noted that the analysis followed 
in this work is more linked to the use of OSA tools and 
ETC connection categories. 

Based on the analysis method described in Table 2, 
the results or connections established by the engineering 
students are reported. 

FINDINGS 

This section details some students’ mathematical 
connections used when solving problems involving 
vectors. Narrative, mathematical practices, processes, 
PO, and configuration for some tasks (e.g., 1, 2, and 7) 
will be reported jointly, considering the mathematical 
activity of several students who proceeded similarly. 

Temporal Narrative 

Student P1 was assigned task of meaning of a vector 
to which he responded that it is a line segment that 
consists of magnitude, direction, and sense. Later, in the 
second task, he was asked how to represent a vector, and 
P1 responded with a graph and an example with 
different representations. In the third task referring to 
addition of vectors, P1 followed rule of adding 

component by component of vectors �⃗⃗�  and �⃗⃗� , so result 

was �⃗⃗� + �⃗⃗� = (𝟑 + (−𝟒), (−𝟏) + 𝟓) = (−𝟏, 𝟒). Other tasks 
are narrated in mathematical terms, highlighting 
procedures, definitions, representations, etc. 

Table 1. Questionnaire with tasks 

Items 

1. For you, what does a vector mean? 
2. How is a vector represented? 

3. Given the vectors �⃗⃗� = (𝟑,−𝟏) ∈ ℝ𝟐 and �⃗⃗� = (−𝟒, 𝟓)  ∈ ℝ𝟐, calculate �⃗⃗� + �⃗⃗� . 

4. Given the vectors �⃗⃗� = (𝟒,−𝟐) ∈ ℝ𝟐 and �⃗⃗� = (𝟔,−𝟑) ∈ ℝ𝟐, calculate: �⃗⃗� − �⃗⃗� . 

5. Given a vector �⃗⃗� = (𝟒, −𝟓). Calculate: 3�⃗⃗�  and 5�⃗⃗� . 

6. Given vectors �⃗⃗� = (𝟒, 𝟑) ∈ ℝ𝟐;  �⃗⃗� = (−𝟐, 𝟏) ∈ ℝ𝟐;  �⃗⃗� = (𝟖, 𝟐) ∈ ℝ𝟐. Determine scalars 𝒉 & 𝒌 such that �⃗⃗� = 𝒉�⃗⃗� + 𝒌𝑩.⃗⃗  ⃗ 

7. Find a unit vector that has the same direction and sense of �⃗⃗� = (𝟐,−𝟏, 𝟐) ∈ ℝ𝟑. 

8. Given the vectors �⃗⃗� = (𝟑𝒊 + 𝒋) & �⃗⃗� = (−𝟐𝒊 + 𝟒𝒋), obtain a unit vector that has the same direction and sense of �⃗⃗� + �⃗⃗� . 

9. Given the vectors �⃗⃗� = (𝟒, 𝟐,−𝟔) ∈ ℝ𝟑 and �⃗⃗� = (−𝟓, 𝟑,−𝟐) ∈ ℝ𝟑. Calculate �⃗⃗� ∙ �⃗⃗� .  

10. Determine the angle between the vectors �⃗⃗� = (𝟐, 𝟐,−𝟏)  ∈ ℝ𝟑 and �⃗⃗� = (𝟓,−𝟑, 𝟐) ∈ ℝ𝟑.  

11. Given the vectors �⃗⃗� = (𝟐, 𝟏, −𝟏) ∈ ℝ𝟑 and �⃗⃗� = (𝟓, − 𝟒, 𝟐) ∈ ℝ𝟑. Demonstrate that �⃗⃗�  and �⃗⃗�  are orthogonal. 

12. Let �⃗⃗� = (𝟒, −𝟐, 𝟏) ∈ ℝ𝟑 and �⃗⃗� = (𝟑, 𝟓,−𝟐) ∈ ℝ𝟑. Calculate: �⃗⃗�  ×  �⃗⃗� . 

13. Let �⃗⃗� = (𝟏, 𝟓, 𝟐) ∈ ℝ𝟑 and �⃗⃗� = (𝟒, 𝟕,−𝟏) ∈ ℝ𝟑. Calculate: �⃗⃗�  ×  �⃗⃗� . 

14. Find the angle 𝜽 between the vectors �⃗⃗� = (𝟏, 𝟓, −𝟐) and �⃗⃗� = (𝟑, −𝟏, 𝟒). 

15. Given vectors 𝑨(𝟏, 𝟎, 𝟏), 𝑩(𝟐, 𝟎, −𝟏) & 𝑪(𝟎, 𝟏, 𝟒), area of triangle they determine, ABC, is given by (
𝟏

𝟐
) |𝑨𝑩⃗⃗⃗⃗⃗⃗ × 𝑨𝑪⃗⃗⃗⃗  ⃗|.  

 

Table 2. Phases of ETC-OSA data analysis (Rodríguez-Nieto et al., 2022c) 

Phases Description 

1 Transcription of interviews 
or organization of written 

productions 

The students’ written productions were organized so that the researchers became familiar 
with the students’ responses. Additionally, this process is critical to ensure that the 

researcher further analyzes, reads, and interprets the information collected. 
2 Temporal narrative The student’s resolution of the task is mathematically explained. It contains the practices 

carried out by the student and some important primary objects identified in the narrative. 
3 Mathematical practice The mathematical practices or sequence of actions are described, regulated by 

institutionally established rules useful for solving a problem. In these mathematical 
practices the foundation of each mathematical connection of ETC is evident. 

4 Cognitive configuration It is the system of primary mathematical objects that a subject mobilizes as part of the 
mathematical practices developed to solve a specific problem (Godino et al., 2019). 

Actually, these primary objects are a fundamental part of the connection because they are 
generally the beginning (antecedent) and end (consequent) of its structure. 

5 Semiotic functions Semiotic functions are established between primary objects of cognitive configuration. In 
this way, the mathematical connections proposed by ETC are formed and visualized. 

 



EURASIA J Math Sci Tech Ed, 2024, 20(5), em2438 

9 / 24 

Mathematical Practice System 

In this section, we present the students’ sequenced 
actions to carry out the proposed tasks. 

Mp1: Student P1 read and understood the tasks of the 
questionnaire, in this case, task 1, answering that a vector 
is a line segment with magnitude, sense, and direction. 
In the same way, the other students gave their meaning 
about the vector. 

Mp2: P1 responded to task 2 by representing the 
vector graphically as a ray and assigned it a symbolic 
representation by �⃗⃗� . 

Mp3: P1 mentioned that a vector has components �⃗⃗� =

(𝑖̂, 𝑗̂, �̂�) a symbolic representation. 

Mp4: P1 provided an example of a vector �⃗⃗� = (𝟑, 𝟒) 

P1, furthermore, illustrated it graphically on a Cartesian 
coordinate plane. 

Mp5: P1 solves task 3 by adding the components of 

vectors �⃗⃗� + �⃗⃗� = (𝟑, −𝟏, ) + (−𝟒, 𝟓) = (−𝟏, 𝟒). To 
accomplish this, P1 considered rules of signs (Figure 5). 

Mp6: P1 solve task 4 by subtracting the components 

of vectors �⃗⃗� − �⃗⃗� = (𝟒, −𝟐) − (𝟔,−𝟑) = (−𝟐, 𝟏). 

Similarly, P1 applied the rules of signs (Figure 5). 

Mp7: To solve task 5, P1 used the distributive 
property to multiply the scalar by each of the 

components of the vectors; on the one hand, 3�⃗⃗� =

𝟑(𝟒,−𝟓) = (𝟏𝟐,−𝟏𝟓) and on the other, 5�⃗⃗� = 𝟓(𝟒,−𝟓) =
(𝟐𝟎,−𝟐𝟓). 

Mp8: Solved task 6 since he found the values h y k. To 

do this, he first considered the structure of the vector �⃗⃗� =

𝒉�⃗⃗� + 𝒌�⃗⃗� , and then substituted the vectors, as follows: 
(8, 2) = ℎ(4, 3) + 𝑘(−2, 1).  

Mp9: Subsequently, he multiplied the vector 𝐴  by the 

scalar h and the vector �⃗⃗�  by the scalar k, highlighting the 
components of the vectors: (8, 2) = 4ℎ𝑖̂ + 3ℎ𝑗̂ − 2𝑘𝑖̂ +

1𝑘𝑗.̂ 

Mp10: P1 structured two equations with two 
unknowns, considering the vectors’ components (Figure 

6).  

Mp11: To find the values of h and k, P1 implemented 
the reduction method to solve 2×2 linear equations by 
multiplying equation 1 by one (yielding: 8 = 4ℎ − 2𝑘) 
and multiplying equation 2 by 2 (yielding: 4 = 6ℎ − 2𝑘). 

Mp12: P1 added equations 1 and 2 to eliminate the k 
terms and obtained the equation 12 = 10ℎ. 

Mp13: P1 used the multiplicative inverse or MT 

clearance to find the value of ℎ =
12

10
, which is simplified 

as equal to ℎ =
6

5
. 

Mp14: P1 replaced the value of ℎ =
6

5
 in equation 1, 

yielding the expression 8 = 4 (
6

5
) − 2𝑘. 

 
Figure 5. Addition & difference of vectors (Source: Authors’ own elaboration)  

 
Figure 6. Written evidence in resolution of task 6 (Source: Authors’ own elaboration) 
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Mp15: P1 performed arithmetic operations, obtaining 

different equivalent representations 8 = 4 (
6

5
) − 2𝑘 =

8 =
24

5
− 2𝑘. 

Mp16: P1 applied the properties of additive inverses 
(for example, the additive inverse of -2k is 2k) to obtain 

2𝑘 + 8 =
24

5
. 

Mp17: P1 applied the properties of additive inverses 
(for example, the additive inverse of 8 is -8) to deduce 

2𝑘 =
24

5
− 8, and then performed operations with 

fractions to obtain 2𝑘 =
−16

5
. 

Mp18: To find the value of k, P1, and P3 among other 
students, apply the law of extremes or what is 
metaphorically called the “law of the ear,” obtaining 𝑘 =
−

16

5

2
= −

8

5
. In this way, P1 found the values of h and k. 

P1: The first thing I did was set up the equation. I 
equaled vector C to the multiplication of h by 
vector A plus the multiplication of k by vector B. I 
performed the operation and then separated the 
terms h and k into two different equations. After 
that, I multiplied the equations by a number that 
favored me to eliminate one of the unknowns 
later. I multiplied equation 1 by one and equation 
2 by 2. In this case, the k was canceled, and I was 
left with the equation 12=10h. I replaced that 12 
over 10 equal to h in equation 1 to find the second 
unknown k equal to -8/5 and h equal to 6/5; those 
are the scalars. 

Interviewer (I): Could you explain how you got 

the value of k? 

P1: I subtracted the eight that I was adding from 
the other side to leave the k alone. I still had the 
number 2. I divided it, and with the law of the ear, 
I multiplied the ends by the ends and the middles 
by the media. In this case, it would be -16 times 1 
and 5 times 2. I would stay with -8/5 because half 
of 16 is 8, and half of 10 would be 5. 

However, P12 did not use the “law of the ear” to find 
the result of k. 

Mp19: To solve task 7, for example, students P1, P2, 
P3, P4, P5, P6, P7, P9, P10, P11, P12, P13, P14, P15, P17, 
P18, P19, P20, P22, P23, and P28 proceed similarly, 

initially stating if the vector 𝐴 = (𝑎1, 𝑎2, 𝑎3)  ∈ ℝ3 o (𝐴 =
𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘), the unit vector can be determined using 

the following formula: �⃗⃗� =
𝑎1

‖𝐴 ‖
𝑖 + 

𝑎2

‖𝐴 ‖
𝑗 +

𝑎3

‖𝐴 ‖
𝑘 =  

𝐴 

‖𝐴 ‖
. 

Mp20: Then, students found the norm of the vector 

�⃗⃗� = (𝟐, −𝟏, 𝟐), as follows: ‖𝐴 ‖ =  √(2)2 + (−1)2 + (2)2. 

Mp21: Students developed arithmetic operations of 
potentiation and radiation to find the result of the norm: 

√4 + 1 + 4 = √9 = 3. 

Mp22: Next, they substituted the components of 𝐴  

and the norm √9 = 3 in the formula: �⃗⃗� =
2

√9
𝑖 − 

1

√9
𝑗 +

2

√9
𝑘. 

Mp23: The students then expressed the unit vector in 

Cartesian coordinates: �⃗⃗� = (
2

3
, −

1

3
,
2

3
), an equivalent 

representation of �⃗⃗� =
2

√9
𝑖 − 

1

√9
𝑗 +

2

√9
𝑘. 

Mp24: The participants verified the unit vector by 
calculating its norm, which equaled 1 (Figure 7). 

Mp25: In solving task 8, students initially considered 

the sum of vectors �⃗⃗� = (𝟑𝒊 + 𝒋) y �⃗⃗� = (−𝟐𝒊 + 𝟒𝒋) 

component by component, resulting �⃗⃗� + �⃗⃗� = (1, 5). 
Then, to find the unit vector, they first found the norm 
using arithmetic operations, potentiation, radiation, and 

equivalent representations: ‖�⃗⃗� + �⃗⃗� ‖ =  √12 + 52 =

√1 + 25 = √26.  

Mp26: The students applied the formula to construct 

the unit vector �⃗⃗� =
1

√26
𝑖 +  

5

√26
𝑗. 

Mp27: The students verified their procedures by 

calculating the norm of the vector �⃗⃗� =
1

√26
𝑖 +  

5

√26
𝑗, as 

follows: ‖�⃗⃗� ‖ =  √(
1

√26
)
2

+ (
5

√26
)
2

= √
1

26
+

5

26
= √

26

26
= 1. 

This result confirmed that they determined the unit 

vector with the same direction and magnitude as �⃗⃗� + �⃗⃗�  
(Figure 8). 

Mp28: In task 9, all students found the scalar product 

between the vectors (�⃗⃗� = (𝟒, 𝟐, −𝟔) and �⃗⃗� = (−𝟓, 𝟑,−𝟐)) 
by multiplying component by component (4)(−5) +
(2)(3) + (−6)(−2). 

Mp29: The students performed arithmetic operations 
to obtain the scalar: −20 + 6 + 12 = −2 (Figure 9). 

Mp30: To solve task 10, students considered the 
formula. Therefore, they first found the scalar product 

between the vectors �⃗⃗� = (𝟐, 𝟐, −𝟏) and �⃗⃗� = (𝟓, −𝟑, 𝟐), 

obtaining ((𝟐 ∗ 𝟓) + (𝟐 ∗ (−𝟑)) + (−𝟏 ∗ 𝟐)). 

Mp31: Then, students applied arithmetic operations 
and the law of signs to obtain the scalar: 10 + (−6) +
(−2) = 2. 

Mp32: The students found the norm of the vector �⃗⃗� =

(𝟐, 𝟐, −𝟏), which resulted: ‖𝐴 ‖ =

 √(2)2 + (2)2 + (−1)2 = √4 + 4 + 1 = √9 = 3. 

Mp33: the students determined the norm of the 

vector �⃗⃗� = (𝟓, −𝟑, 𝟐), which was: ‖�⃗� ‖ =

 √(5)2 + (−3)2 + (2)2 = √25 + 9 + 4 = √38. 

Mp34: Once the students found the scalar product 

and the norms of the vectors �⃗⃗�  and �⃗� , they substituted 

the values into the formula 𝐴 ∙ �⃗� =  ‖𝐴 ‖‖�⃗� ‖ cos(𝜃) 

working it in two equivalent ways: 1) 2 =

 (√9)(√38) cos(𝜃) for the case of P1, P2, P13 y P18 or, 2) 

cos(𝜃) =
2

(√9)(√38)
 for P23. 
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 Mp35: The students applied the inverse cosine of the 
argument to find the value of the angle: 𝜃 =

𝑐𝑜𝑠−1 (
2

(√9)(√38)
). 

Mp36: With the calculator, they found the measure of 
the angle 𝜃 = 83.79° (Figure 10). 

 
Figure 7. Procedures to find unit vector (Source: Authors’ own elaboration) 

 
Figure 8. Participation in P28 & P30 (Source: Authors’ own elaboration) 

 
Figure 9. Written production of P26 to obtain scalar (Source: Authors’ own elaboration) 
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Mp36: In solving task 11, the students applied the 

scalar product between the vectors �⃗⃗� = (2, 2, −1) and 

�⃗⃗� = (5, −4, 2), as follows: 𝐴 ∙ �⃗� = ((2 ∗ 5) + (2 ∗ (−4)) +

(−1 ∗ (2)) (Figure 11). 

Mp37: Figure 11 shows how the students did 

arithmetic operations and obtained 𝐴 ∙ �⃗� = 10 − 8 − 2 =

0. P1 stated that if the scalar product is 0, it is orthogonal 
(an expression that activates the implication connection). 

Mp38: The students solved task 12 and task 13 using 
the same method (Figure 12). For example, P2, to solve 
task 13, proceeded with the method of determinants, 
where he initially applies the definition of the vector 

product and constructs the matrix |
𝑖 𝑗 𝑘
1 5 2
4 7 −1

|. 

Mp39: Then, the student multiplied each element of 
the first row by the determinant of the submatrix that 

 
Figure 10. Procedure to find angle between vectors (Source: Authors’ own elaboration) 

 
Figure 11. Evidence of how to find orthogonal vector (Source: Authors’ own elaboration) 

 
Figure 12. P2 finding vector product (Source: Authors’ own elaboration) 
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results from eliminating the first row for i and the first 
column for i. That is, he calculates the cofactor C11 and 
multiplies it by the first element of the first row 

𝑖 |
5 2
7 −1

| = (−5 − 14) = −19. 

Mp40: The student calculates the cofactor C12 and 
multiplies it by the second element of the first row, 

which is −𝑗 |
1 2
4 −1

| = −(−1 − 8) = 9. It is important to 

note that the signs for the cofactors are alternate; for 
example, for 𝐶12 = (−1)1+2 = (−1)3 = −1 indicates that 
the second cofactor’s sign is negative. 

Mp41: The student finds the cofactor C13 and 
multiplies it by the third element of the first row, 

referring to 𝑘 |
1 5
4 7

| = (7 − 20) = −13. 

Mp42: The student P2 states that the vector product 

is: 𝐴  × �⃗� = (−11, 9, −13). 

Mp43: To solve task 14 on the angle between the 

vectors �⃗⃗� = (𝟏, 𝟓, −𝟐) and �⃗⃗� = (𝟑, −𝟏, 𝟒), students 

initially applied the formula: ‖𝐴  ×  �⃗� ‖ =

 ‖𝐴 ‖‖�⃗� ‖ sen(𝜃). 

Mp44: The students used the method of 
determinants, applied the definition of the vector 

product, and constructed the matrix |
𝑖 𝑗 𝑘
1 5 −2
3 −1 4

|. 

Mp45: Then, the students took each element of the 
first row and multiplied it by the determinant of the 
submatrix; that is, they calculated the cofactor C11 and 
multiplied it by the first element of the first row 

𝑖 |
5 −2

−1 4
| = (20 − 2) = 18. 

Mp46: P25 and P28 calculated the cofactor C12 and 
multiplied it by the second element of the first row, i.e., 

−𝑗 |
1 −2
3 4

| = −(4 + 6) = −10.  

Mp47: The students found the cofactor C13 and 
multiplied it by the third element of the first row, 

referring to 𝑘 |
1 5
3 −1

| = (−1 − 15) = −16. It is 

concluded that 𝐴  ×  �⃗� = (18, −10,−16). 

Mp48: P25 and P28 applied the norm of 𝐴  ×  �⃗�  equal 

to √680 = 2√170. 

Mp49: The students found the norm of the vector �⃗⃗� =

(𝟏, 𝟓, −𝟐), which resulted: ‖𝐴 ‖ =

 √(1)2 + (5)2 + (−2)2 = √1 + 25 + 4 = √30 = 5.48 

Mp50: the students also found the norm of a vector, 

which is �⃗⃗� = (𝟑, −𝟏, 𝟒) and obtained:‖�⃗� ‖ =

 √(3)2 + (−1)2 + (4)2 = √9 + 1 + 16 = √26 = 5.1 

Mp51: The students replaced the values obtained in 

the vector product and its norm in the formula 2√170 =

 √30√26 sen(𝜃). 

Mp52: P25 and P28 performed operations with 

radicals and obtained 2√170 = 2√195 sen(𝜃). 

Mp53: The students applied arithmetic operations to 

find the value of sen(𝜃) =
2√170

2√195
. 

Mp54: The students applied the inverse sine and 

found the value of the angle 𝜃 = sen−1 (
2√170

2√195
) = 69,01° 

(Figure 13). 

Mp55: To solve task 15 on the area of the triangle, 
students found distances between the given points or the 

vectors 𝐴𝐵⃗⃗⃗⃗  ⃗ y 𝐴𝐶⃗⃗⃗⃗  ⃗. For example, students ensure that the 

coordinates of the vector 𝐴𝐵⃗⃗⃗⃗  ⃗ are the coordinates of the 
end point (point B) minus the coordinates of the origin 

point (point A): if 𝐴(1,0,1) and 𝐵(2,0,−1), then 𝐴𝐵⃗⃗⃗⃗  ⃗ =
(2 − 1, 0 − 0,−1 − 1) = (1,0, −2). 

Mp56: To find the vector 𝐴𝐶⃗⃗⃗⃗  ⃗ = (0 − 1, 1 − 0, 4 − 1) =
(−1,1,3). 

Mp57: Then, the students applied the method of 
determinants, in turn applying the definition of the 
vector product, and constructed the matrix 

|
𝑖 𝑗 𝑘
1 0 −2

−1 1 3

|. 

Mp58: The students considered each element in the 
first row and multiplied it by the determinant of the 
submatrix: 0 + 2 = 2. 

Mp59: The students calculated −(3 − 2) = −1.  

Mp60: The students performed operations on the 
submatrix, resulting in (1 + 0) = 1. Consequently, they 

obtained that 𝐴𝐵⃗⃗⃗⃗  ⃗  ×  𝐴𝐶⃗⃗⃗⃗  ⃗ = (2, −1, 1). 

 
Figure 13. Evidence of resolution of task 14 (Source: Authors’ own elaboration) 
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Mp61: The students found the norm of 𝐴𝐵⃗⃗⃗⃗  ⃗  ×  𝐴𝐶⃗⃗⃗⃗  ⃗ 

equal to √4 + 1 + 1 = √6. 

Mp62: The students substituted the values obtained 

into the formula 
1

2
|𝐴𝐵⃗⃗⃗⃗  ⃗  ×  𝐴𝐶⃗⃗⃗⃗  ⃗|, obtaining 

√6

2
= 1.22 𝑢2. 

Mp63: The students manually graphed the triangle in 
their response to the questionnaire and on the board 
(Figure 14).  

Mp64: The students graphed the triangle using 
GeoGebra, thanks to the discussions generated after 
completing the written questionnaire (Figure 15). 
Students and teachers need to work with GeoGebra 
(Figure 15) because it allows “visualizing mathematical 

objects, and permanently evidence the connections 
established by a person in the graphical and algebraic-
symbolic views” (Rodríguez-Nieto, 2021, p. 273). 
Furthermore, to address the topic of vectors, it is 
essential to resort to different representations due to 
their magnitude, direction, and the sense that people 
must understand. 

Cognitive Configuration 

Since several students participated in this research, 
the cognitive configuration of PO presented in Table 3 
will only be exemplified with the mathematical activity 
of some students who proceeded similarly when solving 
some tasks. 

 
Figure 14. Area & representation of triangle (Source: Authors’ own elaboration) 

 
Figure 15. Procedure to find & represent area of triangle (Source: Authors’ own elaboration) 

Table 3. Cognitive configuration of primary objects 

Ops’ description 

Task 1 

There are 15 proposed tasks, but tasks 1, 2, & 7 will be considered in this configuration. 
T1: For you, what does a vector mean? 
T2: How is a vector represented? 

T7: Find a unit vector that has the same direction and sense of �⃗⃗� = (𝟐,−𝟏, 𝟐) ∈ ℝ𝟑. 
Linguistic elements (LE) 

Verbal: Vector, point, line segment, unit vector, norm, magnitude, direction, sense, angle, scalar, reduction method, 
linear equations, multiplicative inverse, additive inverse, potentiation, square root, inverse cosine, etc. 
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Based on the information in Table 3, SFs related to 
PO will be constructed. The links between the objects 

that support the mathematical connection are visualized 
(Figure 17). 

Table 3 (Continued). Cognitive configuration of primary objects 

Ops’ description 

Symbolic: �⃗⃗� ;  𝟓�⃗⃗� ; �⃗⃗� = (�̂�, 𝒋,̂ �̂�); �⃗⃗� = (𝟑, 𝟒); �⃗⃗� + �⃗⃗� = (𝟑, −𝟏, ) + (−𝟒, 𝟓) = (−𝟏, 𝟒); �⃗⃗� − �⃗⃗� = (𝟒, −𝟐) − (𝟔,−𝟑) = (−𝟐, 𝟏); �⃗⃗� = 𝒉�⃗⃗� + 𝒌�⃗⃗� ; 

(𝟖, 𝟐) = 𝒉(𝟒, 𝟑) + 𝒌(−𝟐, 𝟏); (𝟖, 𝟐) = 𝟒𝒉�̂� + 𝟑𝒉𝒋̂ − 𝟐𝒌�̂� + 𝟏𝒌𝒋;̂ 𝟖 = 𝟒𝒉 − 𝟐𝒌; 𝟒 = 𝟔𝒉 − 𝟐𝒌; 𝟏𝟐 = 𝟏𝟎𝒉; 𝒉 =
𝟏𝟐

𝟏𝟎
 ; 𝒉 =

𝟔

𝟓
; 𝟖 = 𝟒 (

𝟔

𝟓
) − 𝟐𝒌; 

𝟖 = 𝟒(
𝟔

𝟓
) − 𝟐𝒌 = 𝟖 =

𝟐𝟒

𝟓
− 𝟐𝒌; 𝟐𝒌 + 𝟖 =

𝟐𝟒

𝟓
; 𝟐𝒌 =

𝟐𝟒

𝟓
− 𝟖; 𝟐𝒌 =

−𝟏𝟔

𝟓
; 𝒌 =

−
𝟏𝟔

𝟓

𝟐
= −

𝟖

𝟓
;  �⃗⃗� =

𝒂𝟏

‖�⃗⃗� ‖
𝒊 +  

𝒂𝟐

‖�⃗⃗� ‖
𝒋 +

𝒂𝟑

‖�⃗⃗� ‖
𝒌 = 

�⃗⃗� 

‖�⃗⃗� ‖
; �⃗⃗� = (𝟐, −𝟏, 𝟐); 

‖�⃗⃗� ‖ =  √(𝟐)𝟐 + (−𝟏)𝟐 + (𝟐)𝟐; √𝟒 + 𝟏 + 𝟒 = √𝟗 = 𝟑; �⃗⃗� =
𝟐

√𝟗
𝒊 − 

𝟏

√𝟗
𝒋 +

𝟐

√𝟗
𝒌; �⃗⃗� = (

𝟐

𝟑
, −

𝟏

𝟑
,
𝟐

𝟑
); �⃗⃗� = (𝟐, 𝟐, −𝟏) y �⃗⃗� = (𝟓, −𝟑, 𝟐); 

((𝟐 ∗ 𝟓) + (𝟐 ∗ (−𝟑)) + (−𝟏 ∗ 𝟐)) = 𝟏𝟎 + (−𝟔) + (−𝟐) = 𝟐; �⃗⃗� = (𝟐, 𝟐, −𝟏); ‖�⃗⃗� ‖ =  √(𝟐)𝟐 + (𝟐)𝟐 + (−𝟏)𝟐 = √𝟒 + 𝟒 + 𝟏 = √𝟗 =

𝟑; �⃗⃗� = (𝟓, −𝟑, 𝟐); ‖�⃗⃗� ‖ =  √(𝟓)𝟐 + (−𝟑)𝟐 + (𝟐)𝟐 = √𝟐𝟓 + 𝟗 + 𝟒 = √𝟑𝟖; �⃗⃗� ∙ �⃗⃗� =  ‖�⃗⃗� ‖‖�⃗⃗� ‖ 𝐜𝐨𝐬(𝜽); 𝟐 =

 (√𝟗)(√𝟑𝟖) 𝐜𝐨𝐬(𝜽) ; 𝐜𝐨𝐬(𝜽) =
𝟐

(√𝟗)(√𝟑𝟖)
; 𝜽 = 𝒄𝒐𝒔−𝟏 (

𝟐

(√𝟗)(√𝟑𝟖)
); 𝜽 = 𝟖𝟑. 𝟕𝟗° … 

Graphic: see Figure 14, Figure 15, & Figure 16. 

Concepts/definitions (CD): Previous concepts: Vector, point, line segment, norm, magnitude, direction, sense, angle, scalar, 
reduction method, linear equations, multiplicative inverse, additive inverse, potentiation, square root, unit vector, 
inverse cosine ... 

Definition 1 (D1): A vector is a line segment with magnitude, sense, and direction. 
D2: Unit vector is a vector with a magnitude equal to 1. 
D3: Orthogonal vector: Two vectors are orthogonal if the dot product between them equals zero. 

Propositions/properties: Previous propositions: Arithmetic operations, determinants, systems of linear equations, etc. 

Proposition 1 (Pr1): A vector is represented by an arrow (task 2). 

Pr2: Unit vector is �⃗⃗� = (
𝟐

𝟑
, −

𝟏

𝟑
,
𝟐

𝟑
) equivalent to �⃗⃗� =

𝟐

√𝟗
𝒊 − 

𝟏

√𝟗
𝒋 +

𝟐

√𝟗
𝒌. (Task 7). 

Pr3: Measure of the angle 𝜽 is 𝟖𝟑. 𝟕𝟗° (task 10). 

Procedures: Main procedure 1 (Mpc1): Represent the vector (task 2). 

Auxiliary procedure 1.1 (Apc 1.1): Draw the Cartesian plane. 
Apc1.2: Locate the end point of the vector (3, 4). 

Apc1.3: Draw the arrow (directed segment) from (0, 0) to (3, 4) and symbolically called P1 �⃗⃗� = (𝟑, 𝟒). 
Mpc2: Find the unit vector (task 7). 

Apc2.1: Use the formula: �⃗⃗� =
𝒂𝟏

‖�⃗⃗� ‖
𝒊 + 

𝒂𝟐

‖�⃗⃗� ‖
𝒋 +

𝒂𝟑

‖�⃗⃗� ‖
𝒌 = 

�⃗⃗� 

‖�⃗⃗� ‖
. 

Apc2.2: Substitute the components of the vector to find its norm �⃗⃗� = (𝟐, −𝟏, 𝟐), ‖�⃗⃗� ‖ = √(𝟐)𝟐 + (−𝟏)𝟐 + (𝟐)𝟐. 

Apc2.3: Do arithmetic operations of potentiation and establishment to find the norm: √𝟒 + 𝟏 + 𝟒 = √𝟗 = 𝟑. 

Apc2.4: Replace the components of �⃗⃗�  and the norm √𝟗 = 𝟑 in the formula: �⃗⃗� =
𝟐

√𝟗
𝒊 −  

𝟏

√𝟗
𝒋 +

𝟐

√𝟗
𝒌 = (

𝟐

𝟑
, −

𝟏

𝟑
,
𝟐

𝟑
). 

Mpc3: Find the angle between the vectors �⃗⃗� = (𝟐, 𝟐,−𝟏) y �⃗⃗� = (𝟓,−𝟑, 𝟐). 

Apc3.1: Use the formula �⃗⃗� ∙ �⃗⃗� =  ‖�⃗⃗� ‖‖�⃗⃗� ‖ 𝐜𝐨𝐬(𝜽).  

Apc3.2: Find the scalar product between the vectors �⃗⃗�  & �⃗⃗� , obtaining ((𝟐 ∗ 𝟓) + (𝟐 ∗ (−𝟑)) + (−𝟏 ∗ 𝟐)). 

Apc3.3: Apply the arithmetic operations and law of signs to obtain the scalar: 𝟏𝟎 + (−𝟔) + (−𝟐) = 𝟐. 

Apc4: Find the norm of the vector �⃗⃗� = (𝟐, 𝟐,−𝟏) = ‖�⃗⃗� ‖ =  √(𝟐)𝟐 + (𝟐)𝟐 + (−𝟏)𝟐 = √𝟗 = 𝟑. 

Apc5: Find the norm of the vector �⃗⃗� = (𝟓, −𝟑, 𝟐) = ‖�⃗⃗� ‖ =  √(𝟓)𝟐 + (−𝟑)𝟐 + (𝟐)𝟐 = √𝟑𝟖. 

Apc6: Substitute the values obtained in the formula �⃗⃗� ∙ �⃗⃗� =  ‖�⃗⃗� ‖‖�⃗⃗� ‖ 𝐜𝐨𝐬(𝜽) working it in two equivalent ways: 1) 𝟐 =

 (√𝟗)(√𝟑𝟖) 𝐜𝐨𝐬(𝜽) y 2) 𝐜𝐨𝐬(𝜽) =
𝟐

(√𝟗)(√𝟑𝟖)
 . 

Apc7: Apply the inverse cosine of the argument to find the value of the angle: 𝜽 = 𝒄𝒐𝒔−𝟏 (
𝟐

(√𝟗)(√𝟑𝟖)
)= 𝟖𝟑. 𝟕𝟗° (Figure 10). 

Arguments: Argument 1 (A1) for task 2: Thesis: Vector is represented with an arrow. 
Reason 1 (R1): P1 constructs a Cartesian coordinate plane and locates the point (3, 4). 
R2: P1 drew an arrow from the point (0, 0) to (3, 4). 
R3: In response to task 1 P1, other participants understand the vector as a line segment. 
Conclusion: The vector is represented by an arrow or line segment. 

Argument (A2) for task 3: Thesis: The unit vector is: �⃗⃗� = (
2

3
, −

1

3
,
2

3
). 

R1: Initially, P1 and other participants used the formula: �⃗⃗� =
𝑎1

‖𝐴 ‖
𝑖 + 

𝑎2

‖𝐴 ‖
𝑗 +

𝑎3

‖𝐴 ‖
𝑘 =  

𝐴 

‖𝐴 ‖
. 

R2: Then, they found the norm ‖𝐴 ‖ = 3. 

R3: Finally, through arithmetic operations, P1 and other participants found the unit vector following the formula. 

Conclusion: based on the set of ratios, the unit vector is �⃗⃗� = (
2

3
, −

1

3
,
2

3
). 
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Next, Table 4 shows the mathematical connections 
established by P1 when solving tasks 1, 2, and 7, 
considering OSA tools, where the mathematical 
connection is made up of a conglomerate of practices, 
processes, objects (Figure 17) and SFs that relate them (in 
Figure 17 in blue for task 1; gray for task 2 and in orange 
color for task 7). 

Table 4 shows the mathematical connections 
established by P1 to solve tasks 1, 2, and 7, mainly based 
on mathematical practices. 

Mathematical connections are essential to achieve an 
adequate and consistent result, but when a mathematical 
practice fails, it is directly reflected in the processes, 
objects, and SF. Figure 18 presents an example of a 
mathematical connection of meaning. 

 
Figure 16. Graphic & symbolic representation of vector (Source: Authors’ own elaboration) 

 
Figure 17. Semiotic functions made by P1 (Source: Authors’ own elaboration) 

Table 4. Detailed analysis of connections established by P1 when solving task 

Mp Processes Objects SF Mathematical connections (ETC) 

Mp1 -Signification/understanding 
-Problematization 

-Enunciation 

Explain that a vector is a line segment with 
magnitude, sense, and direction. 

SF1 
SF2 
SF3 

Meaning 
Feature 

Mp2 -Problem-solving 
-Enunciation 

-Representation 

P1 stated that vector is represented 
graphically using a straight or ray segment 
& associated with symbolic expression �⃗⃗� . 

SF4 
SF5 
SF6 

Feature 
Different representations 

 
… … … … … 
Mp4 Problem-solving 

-Particularization 
-Representation 

-Enunciation 

P1 proposed a particular case of a vector 𝑣 =
(3,4) and represented it graphically in a 

Cartesian coordinate plane. 
Pr1 and A1. 

SF7 
SF8 
SF9 

SF10 

Part-whole 
Different representations 

Feature 
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Notably, in this research, just as there are participants 
who successfully solved the problems, some also 
stopped establishing some connections, which is the 
leading cause of errors and difficulties in working with 
the vector concept. For example, to solve task 7, students 
P8 and P25 made personal connections (OSA view) or 
errors that led them to obtain an inadequate result 
(Figure 19). 

On the other hand, to solve task 10, some 
participants, such as P3, P20, P15, P11, and P24, 
presented difficulties when finding the angle between 
vectors, which is caused by the failure to establish 
procedural connections such as finding the norm by the 
wrong use of formula, operate with radicals and extract 
square root (Figure 20). 

Table 4 (Continued). Detailed analysis of connections established by P1 when solving task 

Mp Processes Objects SF Mathematical connections (ETC) 

Mp4 -Argumentation  SF11 
SF12 
SF13 
SF14 
SF15 

 

… … … … … 
Mp19 -Problem-solving 

-Algorithmizing 
-Enunciation 

P1 and other participants selected the 

formula �⃗⃗� =
𝑎1

‖𝐴 ‖
𝑖 +

𝑎2

‖𝐴 ‖
𝑗 +

𝑎3

‖𝐴 ‖
𝑘 =

𝐴 

‖𝐴 ‖
 to find 

the unit vector. 

SF16 
SF17 
SF18 
SF19 
SF20 
SF21 

Procedural 
Meaning 

Mp5 -Problem-solving 
-Algorithmizing 

 

Find the norm of the vector 𝐴 = (2,−1, 2) 
substituting the components into the 

formula: ‖𝐴 ‖ =  √(2)2 + (−1)2 + (2)2 

SF22 Procedural 

Mp6 -Problem-solving 
-Algorithmizing 

 

Using arithmetic operations to find the 

norm: √4 + 1 + 4 = √9 = 3. 

SF23 
SF13 
SF14 

Meanings 

Mp7 -Problem-solving 
-Algorithmizing 
-Representation 
-Argumentation 

Substitute the values obtained into the 

formula: �⃗⃗� = (
2

3
, −

1

3
,
2

3
), which is an 

equivalent representation of �⃗⃗� =
2

√9
𝑖 −

 
1

√9
𝑗 +

2

√9
𝑘. Pr2 and A2. 

SF24 
SF25 
SF26 

Procedural  
Different representations 

(equivalents) 
Implication 

… … … … … 
 

 
Figure 18. Mathematical connection of meaning (Source: Authors’ own elaboration) 
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In addition to the errors mentioned above, in this 
research, other relevant results were found at a 
theoretical-practical level, given that in some episodes 
for P1’s speech and his written production, they could 
not be categorized into some priori mathematical 
connection. Therefore, an episode of task 6 was deeply 
analyzed, where P1 stated the following: 

“There, the eight that I was adding I subtracted 
from the other side to leave the k alone, I still had 
the number 2, what I did was divide it and with 
the law of the ear I multiplied the ends by the ends 
and the middles by the media. In this case, it 
would be -16 times 1 and 5 times 2, I would stay 

with −
8

5
 because half of 16 is 8, and half of 10 

would be 5”.  

In this extract of the transcription, there is an 
expression that cannot be categorized with any of the 
types of connections proposed a priori in the theoretical 
foundation, which led us to investigate this type of 
expressions “the law of the ear” and it was found that 

refers to mnemonics used by humans to memorize or 
remember procedures more quickly (Balbuena & 
Buayan, 2015; Bor & Owen, 2007; Díaz-Urdaneta & 
Prieto-González, 2015; Drushlyak et al., 2021; Fiallo, 
2010; Hoffmann, 2018; Keller, 2016; Márquez-García, 
2013; Nelson et al., 2013; Reyes-Gasperini et al., 2014; 
Vargas & Urzúa, 2018). Therefore, in this research, the 
new category for ETC is proposed as MT connection based 
on mnemonics, understood as the relationship established 
by the subject between a mnemonic rule (often a familiar 
resource) and a mathematical object, rule, or 
mathematical procedure to memorize and use 
strategically more easily. 

Figure 21 proposes the new extension of ETC with 
MT connection based on mnemonics. Finally, the results 
of this research may have immediate applications in 
science and engineering education by providing 
conceptual and practical information on how to improve 
the presentation of mathematical concepts in vector 
problem-solving contexts and providing a solid 
foundation for the development of more effective and 
contextually relevant teaching strategies based on 

 
Figure 19. Errors caused by P8 & P25 in resolution of task 7 (Source: Authors’ own elaboration) 

 
Figure 20. P3, P15, & P24 caused errors in resolution of task 10 (Source: Authors’ own elaboration) 
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mathematical connections that enrich students’ 
procedures and their processes of meaning, 
problematization, communication and argumentation of 
their ideas. With this, the contribution to the natural and 
exact sciences is recognized. 

DISCUSSION & CONCLUSIONS  

In this research, the mathematical connections of 
university engineering students were analyzed when 
they solved problems about vectors, where the potential 
of their procedures and types of understanding 
demonstrated in the resolution of each problem was 
evident. Another fundamental aspect of this research is 
that mathematical connections are fundamental to 
developing any topic in mathematics and other sciences. 
For example, in differential and integral calculus, there 
are studies focused on derivatives, functions and 
integrals (Galindo-Illanes et al., 2022; García-García & 
Dolores-Flores, 2021b; Rodríguez-Nieto, 2021; 
Rodríguez-Vásquez & Arenas-Peñaloza, 2021; 
Rodríguez-Nieto et al., 2023), but they are also relevant 
in the study of vectors and their applications. 

Particularly in this work, the primary role of 
students’ well-organized written production is reflected. 
The teacher in charge of teaching the subject of vector 
calculus (authors of this research) always tells the 
participating students to consider step-by-step their 
reasoning, equipped with graphs, mention properties, 
use additive and multiplicative inverses, make graphs, 
use meanings, etc., in such a way that their procedures 
are argued and justified from mathematics and as 
algorithmic processes. A particular case was recognized 

when the students found the unit vector and proceeded 
to find the solution in detail. However, some students 
presented difficulties due to disconnections in the 
procedure to find the norm, as other authors have stated 
(e.g., Barniol & Zavala, 2014; Cárcamo et al., 2023; 
Gutiérrez & Martín, 2015; Tairab et al., 2020). However, 
for future research, a study can be promoted, where 
these errors are addressed and contribute to students’ 
understanding of vectors and their use. 

Another contribution of the results of this research is 
related to the implication of the teaching of vector 
calculus based on connections by the teacher of the 
participants in this study, which is relevant because the 
students have followed a path of problem solving. 
detailed or step by step, implicitly evidencing the 
influence of the connections expressed by their teacher. 
It is known that the emphasis of this article is not the 
teacher’s teaching, but it could be stated that this 
teaching of mathematics has enhanced the ways of 
solving problems by students. 

The importance of the results of this research is 
recognized, which emerged inductively and were born 
from the results and the emphasis placed on 
mathematical connections. For example, as the analysis 
is detailed, it was possible to observe and infer novel 
needs and contributions to ETC-OSA theory and 
practice, such as MT connection based on mnemonics that 
directly influences the teaching and learning of 
mathematics at any school grade, goes through the 
different ways of teaching mathematical concepts and is 
transversal to other sciences (Khatin-Zadeh et al., 2023). 
With this success, we notice that literature plays in favor 

 
Figure 21. Synthesis of ETC (Adapted from García-García & Dolores-Flores, 2021a and Rodríguez-Nieto et al., 2022c) 
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of mnemonics and, at the same time, begs to be careful if 
they are used excessively, given that problems could be 
solved in a mechanized way. In fact, Makau et al. (2019) 
and Ni and Hassan (2019) used mnemonics with 
students because it makes it easier for them to perform 
mathematical procedures and they relate them to events 
in their daily lives to ensure understanding. This new 
category makes sense because the “research in 
mathematics education can validate these typologies, 
but it could also include other categories not yet 
identified” (García-García, 2019, p. 131). 

MT connections based on mnemonics are inclusive, and 
to identify them we must recognize three elements:  

(1) keywords that are similar to the word (or term) 
being referred to,  

(2) in acronyms, mnemonics can also be identified 
when the first letter of each word is used in a list 
to construct another word, and  

(3) acrostics are considered, which consist of 
constructing a sentence, where the first letter of 
each constitutes the term studied (Mastropieri & 
Scruggs, 1989).  

Other authors (Maccini et al., 2007; Manalo et al., 
2000; Mastropieri & Scruggs, 1989; Test & Ellis, 2005) 
maintain that teachers’ strategies when using 
mnemonics are powerful because they allow the 
understanding of concepts and mathematical 
procedures and without a doubt, students are more 
fluent in solving problems using mnemonics, regardless 
of whether they have disabilities. Drushlyak et al. (2021) 
recommend mnemonics for the training of mathematics 
teachers and suggest that future studies continue 
working in different environments to teach and learn 
mathematical concepts. 
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