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Abstract 

This study investigated opportunities to learn about optimization problems provided by 

undergraduate calculus textbooks. To accomplish this, we analyzed examples and practice 

problems from two calculus textbooks widely used in the teaching of calculus in the United States. 

Findings of this study indicate that a majority of the problems in both textbooks lack realistic and 

essential contexts, have matching or missing information, and require a low cognitive demand to 

solve. Setting up objective functions is either not necessary or it is straightforward for most 

problems in the two textbooks. In addition, both textbooks provide ample opportunities to 

interpret critical numbers and extrema in context. Overall, findings of this study suggest the 

existence of a relationship between known students’ difficulties with solving optimization 

problems and the opportunities to learn about optimization problems provided by calculus 

textbooks. Implications for several stakeholders, including calculus textbook authors and calculus 

instructors are discussed. 

Keywords: opportunity to learn, textbook research, textbook analysis, calculus, optimization 

problems 

 

INTRODUCTION 

The concept of opportunity to learn originated in the 
early 1960s. Carroll (1963) defined opportunity to learn 
as the time allowed for learning a particular topic. This 
study uses Husen’s (1967) definition of opportunity to 
learn which, according to Floden (2002), is the most 
common definition of opportunity to learn used in the 
mathematics education literature. According to Husen 
(1967), opportunity to learn refers to “whether or not … 
students have had the opportunity to study a particular 
topic or learn how to solve a particular type of problem” 
(p. 162-163). Mathematics textbooks are one such 
opportunity from which students can learn how to solve 
certain types of problems. The role of textbooks as an 
opportunity to learn has received considerable attention 
in the research literature on the teaching and learning of 
K-12 mathematics. Among other things, this research has 
investigated students’ opportunity to learn about 
mathematical topics such as linear functions and 
trigonometry (Wijaya et al., 2015), addition and 
subtraction of fractions (Alajmi, 2012; Charalambous et 

al., 2010), calculus (Haghjoo et al., 2023), probability 
(Jones & Tarr, 2007), statistics (Pickle, 2012), reasoning 
and proof (Stylianides, 2009; Thompson et al., 2012), 
proportional reasoning (Dole & Shield, 2008), and 
deductive reasoning (Stacey & Vincent, 2009). 

There is, however, a paucity of research that has 
examined the opportunity to learn about various 
mathematics topics provided by undergraduate 
mathematics textbooks, which is the motivation for this 
this study. Of the few available studies on the 
opportunity to learn provided by undergraduate 
mathematics textbooks, Mesa et al. (2012) examined the 
opportunity to learn about exponential functions, 
logarithmic functions, and transformations of functions 
provided by college algebra textbooks used at 
community colleges and four-year institutions in the 
United States. Mesa et al. (2012) found that “textbooks, 
independent of the type of institution in which they are 
used, present examples that have low cognitive 
demands, expect single numeric answers, emphasize 
symbolic and numerical representations, and give very 
few strategies for verifying correctness of the solutions” 
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(p. 76). Findings by Lithner (2004) indicate that most of 
the exercises found in an undergraduate calculus 
textbook commonly used in a Swedish university “… 
may be solved by mathematically superficial strategies, 
often without actually considering the core mathematics 
of the book section in question” (p. 405).  

Findings of a recent study (Mkhatshwa, 2022b) on the 
opportunity to learn about ordinary and partial 
derivatives provided by commonly used undergraduate 
calculus textbooks in the United States revealed that a 
majority of the exercises given these textbooks do not 
provide opportunities to engage in higher levels of 
covariational reasoning. Proponents of covariational 
reasoning (Carlson et. al., 2002) have hypothesized that 
students who are able to engage in higher levels of 
covariational reasoning tend to develop robust 
understandings of rate quantities such as derivatives in 
calculus (cf. Nagle et al., 2013; Tyne, 2016). In another 
study, Chang et al. (2016) investigated the nature and 
prevalence of coordination of multiple representation 
tasks (i.e., tasks that require students to translate 
functions from one representation to another) in a 
reformed calculus textbook. Chang et al. (2016) reported 
that the prevalence of these tasks differs by chapter and 
by topic in the textbook. Specifically, Chang et al. (2016) 
found that tasks involving translating algebraic 
functions to verbal functions are prevalent in the early 
chapters of the textbook while tasks involving 
translating algebraic functions to graphical functions 
frequently occur in later chapters of the same textbook. 

Thus, in order to build on the few studies that have 
investigated the opportunity to learn provided by 
mathematics textbooks at the undergraduate level, the 
current study examined the opportunity to learn about 
univariate optimization problems (UOPs) provided by 
two textbooks commonly used in the teaching of 
calculus in the United States. According to Mkhatshwa 
(2022a), a UOP is an optimization problem where the 
objective function (i.e., the function whose maximum or 
minimum value(s) is to be found) is a real-valued 
function of a single variable. Our motivation to examine 
the opportunity to learn about optimization problems 
provided by calculus textbooks emanates from the fact 
that optimization problems form an integral part of the 

study of first-semester differential calculus at the 
undergraduate level in the United States.  

RELATED LITERATURE AND RESEARCH 
QUESTIONS 

The Role of Textbooks in Students’ Learning of 
Mathematics 

Without a doubt, textbooks play a significant role in 
students’ learning of mathematics. According to Reys et 
al. (2004), “the choice of textbooks often determines what 
teachers will teach, how they will teach it, and how their 
students will learn” (p. 61). Similar arguments were 
made by other researchers (cf. Alajmi, 2012; Kolovou et 
al., 2009). Findings by Begle (1973) indicate that “most 
student learning is directed by the text rather than the 
teacher” (p. 209). Begle’s (1973) findings are consistent 
with the findings of other researchers such as Törnroos 
(2005) and Wijaya et al. (2015). Remarking on the role of 
textbooks in the teaching and learning of mathematics, 
Charalambous et al. (2010) asserted that “textbooks 
afford probabilistic rather than deterministic 
opportunities to learn mathematics” (p. 118). That is, 
students’ opportunities to learn mathematics are not 
only limited to course textbooks as there may be other 
opportunities (e.g., course lectures) through which 
students could learn mathematics besides mathematics 
textbooks. 

Types of Context 

The term, context, has been defined in several ways 
by different researchers in mathematics education. 
According to White and Mitchelmore (1996), “in 
calculus, the context of an application problem may be a 
realistic or artificial “real-world” situation, or it may be 
an abstract, mathematical context at a lower level of 
abstraction than the calculus concept that is to be 
applied” (p. 81). White and Mitchelmore’s (1996) 
understanding of context is consistent with that of other 
researchers (cf. Gravemeijer & Doorman, 1999; van den 
Heuvel-Panhuizen, 2005). According to Wijaya et al. 
(2015), a mathematical problem (hereafter, problem) can 
have one of three types of context, namely relevant and 
essential, camouflage, or bare (only mathematical 

Contribution to the literature 

• While much research has reported on the opportunity to learn about various mathematical topics 
provided by K-12 mathematics textbooks, there is a paucity of similar research at the undergraduate level. 
A growing body of research has reported on students’ difficulties with solving optimization problems in 
introductory university calculus.  

• Among other things, the current study reports on the analysis of two commonly used undergraduate 
calculus textbooks in the United States with a focus on opportunities to learn about optimization problems.  

• Additionally, the current study compares the opportunities to learn about optimization problems 
provided by these textbooks with students’ difficulties with solving optimization problems previously 
reported in the research literature. 
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symbols). Alajmi (2012) refers to bare problems as 
problems that are situated in a “pure mathematics 
context” (p. 243). Problems with a camouflage context 
“are merely dressed up bare problems, which do not 
require modeling because the mathematical operations 
needed to solve the problem are obvious” (Wijaya et al., 
2015, p. 45). A relevant and essential context is also 
referred to as a realistic context in the research literature 
(e.g., de Lange, 1995; van den Heuvel-Panhuizen, 2005). 
Part of our investigation in this study consisted of 
examining different types of contexts in examples and 
practice problems on optimization problems provided in 
the two textbooks we analyzed in the current study. 

Types of Information 

Several researchers have identified three types of 
information a problem could have, namely matching, 
missing, or superfluous (cf. Maass, 2007, 2010; Wijaya et 
al., 2015). A problem is said to have matching 
information if all the information required to solve it is 
included in the problem statement. A problem has 
missing information if some of the information needed 
to solve the problem is not immediately available to the 
solver i.e., the solver has to deduce this information from 
the problem statement. A problem with superfluous 
information is one in which the problem statement 
contains the necessary information needed to solve it, in 
addition to extraneous or irrelevant information that is 
not helpful in solving the given problem. Wijaya et al. 
(2015) argued that: 

Providing more or less information than needed 
for solving a context-based task [problem] is a 
way to encourage students to consider the context 
used in the task [problem] and not just take 
numbers out of the context and process them 
mathematically in an automatic way (p. 45).  

Maass (2010) recommends that students should be 
given problems that would enable them to deal with 
these three different types of information. Part of our 
investigation in this study consisted of examining 
different types of information in examples and practice 
problems on UOPs provided in the two textbooks we 
analyzed in the current study. 

Types of Cognitive Demand 

Much research has reported on three types of 
cognitive demands commonly found in tasks provided 
in mathematics textbooks, namely reproduction, 
connection, and reflection (cf. Charalambous et al., 2010; 
Kolovou et al., 2009; Mesa et al., 2012; Wijaya et al., 2015). 
Reproduction tasks are routine problems that require the 
lowest level of cognitive demand to solve. These 
problems can often be solved by recalling memorized 
mathematical algorithms. On the other hand, connection 
problems are non-routine in nature and may require 

flexibility with using multiple representations (i.e., 
algebraically, numerically, graphically, or verbally) to 
solve. In their investigation of the opportunity to learn 
provided by 10 college algebra textbooks in the United 
States, Mesa et al. (2012) reported that “textbooks, 
independent of the type of institution in which they are 
used, present examples that have low cognitive 
demands …” (p. 76). Reflection tasks require the highest 
level of cognitive demand to solve. According to Wijaya 
et al. (2015), reflection tasks “include complex problem 
situations in which it is not obvious in advance what 
mathematical procedures have to be carried out” (p. 46). 
Among other things, the current study examined 
different types of cognitive demands in examples and 
practice problems on UOPs provided by the two 
textbooks we analyzed in the study. 

Research on Students’ Understanding of UOPs 

Although the focus of the current study is on the 
opportunity to learn about UOPs provided by calculus 
textbooks, it is important to discuss the existing research 
literature on students’ understanding of UOPs for 
comparison. Specifically, we want to be able to make a 
comparison (if and when possible) between what 
students are able (or not able) to do when working with 
UOPs as documented in the research literature and the 
opportunities they have to learn about UOPs provided 
by calculus textbooks.  

A number of studies have found that setting up the 
objective function is particularly challenging for 
students when tasked with solving UOPs (cf. LaRue & 
Infante, 2015; Swanagan, 2012). Swanagan (2012) 
reported on a student who incorrectly used the equation 
of the parabola 𝑦 = 𝑥2 as the objective function in a UOP 
that was about finding a point on the parabola closest to 
the point (1, 0). In the same study, another student 
confused the objective function with a perimeter 
function in a UOP that was about finding the minimum 
cost to fence a rectangular plot of land.  

A related line of research has reported that setting up 
the objective function when tasked with solving UOPs 
that have real-world contexts tends to be difficult for 
students even if the objective function is simple and 
students are familiar with the context of the UOP (cf. 
LaRue & Infante, 2015). 

Evidence from research suggests that 
calculating/interpreting critical numbers or 
calculating/interpreting extrema when solving UOPs 
that have real-world contexts is problematic for students 
(cf. Brijlall & Ndlovu, 2013; Dominguez, 2010; 
Mkhatshwa, 2019; Swanagan, 2012). Two students in 
Swanagan’s (2012) study relied on guesswork to 
determine extrema in a cost minimization UOP. Most of 
the 94 students in Dominguez’s (2010) study struggled 
with interpreting extrema in a UOP situated in a profit 
maximization context. In another UOP situated in a 



Mkhatshwa / Opportunity to learn about optimization problems provided by undergraduate calculus textbooks 

 

4 / 12 

profit maximization context, Mkhatshwa (2019) reported 
on three students who confused extrema (i.e., maximum 
profit) with a critical number (i.e., the number of units 
that must be produced and sold to maximize profit). 
Brijlall and Ndlovu (2013) reported similar results in 
another UOP situated in a volume minimization context. 

Findings by Mkhatshwa (2019) and Borgen and 
Manu (2002) indicate that justifying/verifying extrema 
is challenging for students. Sixteen of the 24 students in 
Mkhatshwa’s (2019) had difficulty verifying extrema 
while reasoning about a UOP situated in a profit 
maximization context. Borgen and Manu (2002) reported 
on a student who correctly used calculus to calculate the 
minimum value of the quadratic function 𝑦 = 2𝑥2 − 𝑥 +

1. However, when the student was asked to explain how 
she knew the function has a minimum value and not a 
maximum value, she incorrectly stated that this was 
because the coefficient of the linear term of the function 
is negative. 

Research Aim 

Several studies have reported on difficulties typically 
exhibited by students when working with optimization 
problems. These difficulties include setting up the 
objective function, calculating and interpreting the 
objective function’s critical and extreme value(s), and 
verifying whether the objective function attains a 
maximum/minimum value at a particular critical value 
(cf. Borgen & Manu, 2002; LaRue & Infante, 2015; 
Mkhatshwa, 2019; Swanagan, 2012). It has long been 
established that the content students learn in 
mathematics classrooms and how they learn it is often 
directed by course textbooks (cf. Begle, 1973; Reys et al., 
2004; Wijaya et al., 2015).  

We are not aware of any study that has investigated 
opportunities to learn about optimization problems 
provided by first-semester calculus textbooks (where 
optimization problems are ordinarily covered at the 
undergraduate level), let alone how these opportunities 
may be related to students’ difficulties with solving 
optimization problems. The aim of the current study, a 
case study that examined opportunities to learn about 
optimization problems provided by two widely used 
calculus textbooks in the United States, is to address this 
knowledge deficiency. The current study investigated 
the following research questions: 

1. What types of context (relevant and essential, 
camouflage, no context), information (matching, 
missing, superfluous), and cognitive demands 

(reproduction, connection, reflection) are found in 
undergraduate calculus textbooks?  

2. How do reported students’ difficulties with 
solving optimization problems compare to the 
opportunities to learn about optimization 
problems provided by calculus textbooks? 

METHODOLOGY  

Calculus Textbooks Analyzed 

This qualitative study reports on opportunities to 
learn about optimization problems provided by two 
textbooks that are commonly used in the teaching of 
regular calculus (commonly known as engineering 
calculus) and applied calculus in the United States. 
Details about the textbooks are provided in Table 1. 

There are generally three flavors of calculus offered 
at the undergraduate level in the United States, namely 
regular calculus, business calculus, and life sciences 
calculus. In some institutions, a business calculus or life 
sciences calculus course may be referred to as an applied 
calculus course. After consulting with major calculus 
textbook publishers in the United States, we determined 
that the textbooks analyzed in the current study are 
among the most commonly used textbooks in the 
teaching of regular or applied calculus, hence their 
selection. Additionally, we selected these textbooks 
because their latest editions are recent, and they have 
many previous editions, suggesting that they have 
undergone several revisions over the years and may thus 
present better learning opportunities for students 
compared to similar textbooks with fewer editions. We 
remark that in the United States, regular calculus is 
typically taken by students pursuing STEM (science, 
technology, engineering, and mathematics) degrees, 
especially engineering, while applied calculus is 
generally taken by students pursuing non-STEM degrees 
such as economics. 

Data Sources and Method of Data Analysis  

To answer our research questions, we analyzed two 
sources of data. These sources of data are examples and 
practice problems on optimization problems given in 
each of the sections identified in Table 1. Table 2 
provides counts of the number of examples and practice 
problems we analyzed in each section identified in Table 

1. 

Table 1. Analyzed textbooks 

Textbook name Author(s) 
Textbook 

abbreviation 
Section(s) analyzed Textbook publisher 

Calculus: Early 
transcendentals (9th ed) 

Stewart, J., Clegg, D., & 
Watson, S. (2021) 

RC 4.7: Optimization problems Cengage Learning 

Applied calculus (6th ed) Hughes-Hallett et al. (2018) AC 4.3: Global maxima and minima Wiley 
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The data (optimization examples and practice 
problems) were analyzed in two stages. In the first stage 
of the analysis, we coded examples and practice 
problems on optimization problems given in each 
textbook using a textbook analytical framework 
proposed by Wijaya et al. (2015). 

The framework, reproduced in Table 3, has three 
dimensions of analysis, namely type of context, type of 
information, and type of cognitive demand. We coded a 
total of 157 tasks, consisting of all the examples and 
practices problems noted in Table 2. In particular, we 
coded 94 tasks from the RC textbook, consisting of six 
examples and 88 practice problems noted in Table 2. A 
total of 63 tasks from the AC textbook, consisting of the 
three examples and 60 practice problems noted in Table 

2 were coded. In analyzing the tasks, two independent 
researchers coded the tasks and compared their findings 
to ensure the reliability of the results. They discussed 
differences in coding until they reached agreement. 
Following is an illustration of our coding using three 
tasks that were selected from at least one of the textbooks 
analyzed in the current study. 

Example 1 (Hughes-Hallett et al., 2018, p. 188): 
Find the global maximum and minimum of 
𝑓(𝑥) = 𝑥3 − 9𝑥2 − 48𝑥 + 52 on the interval −5 ≤

𝑥 ≤ 14. 

Solution: We have calculated the points of this 
function previously using 

𝑓′(𝑥) = 3𝑥2 − 18𝑥 − 48 = 3(𝑥 + 2)(𝑥 − 8), 

so 𝑥 = −2 and 𝑥 = 8 are critical points. Since the 
global maxima and minima may occur at critical 
points or at endpoints of the interval, we evaluate 
𝑓 at these four points: 

𝑓(−5) = −58 

𝑓(−2) = 104 

𝑓(8) = −396 

𝑓(14) = 360 

Comparing these four values, we see that the 
global maximum is 360 and occurs at 𝑥 = 14, and 
that the global minimum is −396 and occurs at 
𝑥 = 8. 

We coded example 1  

(1) as having no context because the problem in the 
example is bare i.e., it neither has a camouflage 
context nor a realistic and essential context,  

(2) as having matching information because it 
contains the exact amount of information needed 
to solve it, and  

Table 2. Counts of expository sections, examples, and practice examples analyzed 

Textbook abbreviation Section Examples Practice problems 

RC 4.7 6 88 
AC 4.3 3 60 

 

Table 3. Analytical framework reproduced from Wijaya et al. (2015) 

Task characteristic Sub-category Explanation 

Type of context No context -Refers to only mathematical objects, symbols, or structures. 
Camouflage 

context 
-Experiences from everyday life or common sense reasoning are not needed. 

-The mathematical operations needed to solve the problems are already obvious. 
-The solution can be found by combining all numbers given in the text. 

Relevant & 
essential 
context 

-Common sense reasoning within context is needed to understand & solve problem. 
-The mathematical operation is not explicitly given. 

-Mathematical modeling is needed. 

Type of 
information 

Matching -The task contains the exact amount of information needed to find the solution. 
Missing -Task contains less information than needed so students need to find missing 

information. 
Superfluous -Task contains more information than needed so students need to select information. 

Type of cognitive 
demand 

Reproduction -Reproducing representations, definitions, or facts. 
-Interpreting simple and familiar representations. 

-Memorization or performing explicit routine computations/procedures. 
Connection -Integrating and connecting across content, situations, or representations. 

-Non-routine problem solving. 
-Interpretation of problem situations and mathematical statements. 

-Engaging in simple mathematical reasoning. 
Reflection -Reflecting on and gaining insight into mathematics. 

-Constructing original mathematical approaches. 
-Communicating complex arguments and complex reasoning. 
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(3) as a reproduction task because the strategy 
required to solve it requires performing an explicit 
routine procedure.  

Practice problem 34 (Hughes-Hallett et al., 2018, 
p. 192): A grapefruit is tossed straight up with an 
initial velocity 50 𝑓𝑡/𝑠𝑒𝑐. The grapefruit is five 
feet above the ground when it is released. It’s 
height, in feet, at time 𝑡 seconds is given by 𝑦 =

−16𝑡2 + 50𝑡 + 5. How high does it go before 
returning to the ground? 

We coded practice problem 34 

(1) as having a camouflage context because the 
operations needed to solve the problem are 
obvious and the context can be ignored when 
solving the problem,  

(2) as having matching information because it 
contains the exact amount of information needed 
to solve it, and  

(3) as a reproduction task because the strategies 
required to solve it requires performing explicit 
routine procedures. 

Practice problem 70 (Stewart et al., 2021, p. 346): 
A company operates 16 oil wells in a designated 
area. Each pump, on average, extracts 240 barrels 
of oil daily. The company can add more wells but 
every added well reduces the average daily 
output of each of the wells by eight barrels. How 
many wells should the company add in order to 
maximize daily production?  

We coded practice problem 70 

(1) as having a relevant and essential context because 
reasoning with the context of the task is needed to 
understand and solve the problem,  

(2) as having missing information because students 
will have to deduce some missing information 
such as an algebraic expression for the number of 
barrels that each well will produce before they can 
solve the problem posed in the question, and  

(3) as a reflection task because solving it requires 
engaging in complex reasoning. Specifically, 
finding the production function in terms of the 
number of wells is not straightforward i.e., 
requires students to engage in complex reasoning. 

In the second stage of the analysis, we used the 
themes from the literature on students’ understanding of 

optimization problems reviewed earlier. To reiterate, 
common themes from the literature are that setting up 
the objective function, finding and interpreting critical 
numbers/extrema, and verifying extrema is problematic 
for students when working with optimization problems 
(cf. Borgen & Manu, 2002; LaRue & Infante, 2015; 
Swanagan, 2012). We examined the nature of the 
opportunities provided in the two textbooks with regard 
to setting up the objective function. Specifically, we 
examined the nature (routine or non-routine) of the 
objective function in each example or practice problem, 
as well as whether or not the objective function has 
multiple critical numbers. In addition, we examined 
whether or not the textbooks place an emphasis on the 
need to interpret critical numbers/extrema, especially in 
examples or practice problems that have a camouflage or 
realistic and essential context. Finally, we examined 
whether or not the textbooks encourage verifying 
extrema such as using the second derivative test to verify 
the location of a relative maximum/minimum for a 
given objective function. 

Transparency and replicability of the current study 
was considered through the lens of Aguinis and Solarino 
(2019) who proposed 12 criteria for ensuring 
transparency and thus the replicability of qualitative 
research studies. The criteria we consider to be 
applicable and thus used in the current study include 
specifying the qualitative methodology (case study) 
used in the study, specifying sampling procedures (i.e., 
how the textbooks were selected) and the unit of analysis 
(examples and practice problems), and explaining how 
the data were summarized, including a summary of how 
inter-rater reliability was established. 

RESULTS 

The results of coding optimization tasks using Wijaya 
et al.’s (2015) textbook analytical framework (Table 3) 
are summarized in Table 4. To reiterate, a total of 157 
tasks were coded. Of these tasks, 94 tasks are from the 
RC textbook, and 63 tasks are from the AC textbook.  

Types of Context Provided in Tasks  

As can be seen in Table 4, it is rather disappointing 
that a majority of the optimization tasks (38% in the RC 
textbook and 75% in the AC textbook) in both textbooks 
have no context. One would expect the AC textbook to 
have more tasks with either a camouflage context or 

Table 4. A summary of textbook analysis results 

Textbook abbreviation Type of context Type of information Type of cognitive demand 

RC No context: 36 (38%) Matching: 53 (56%) Reproduction: 51 (54%) 
Camouflage content: 26 (28%) Missing: 41 (44%) Connection: 34 (36%) 

Relevant & essential context: 32 (34%) Superfluous: 0 (0%) Reflection: 9 (10%) 

AC No context: 47 (75%) Matching: 61 (97%) Reproduction: 60 (95%) 
Camouflage content: 14 (22%) Missing: 2 (3%) Connection: 1 (2%) 

Relevant & essential context: 2 (3%) Superfluous: 0 (0%) Reflection: 2 (3%) 
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relevant and essential context by virtue of it being an 
applied calculus textbook.  

On the contrary, and as can be seen in Table 4, tasks 
with a relevant and essential context are almost 
nonexistent in the AC textbook. The RC textbook 
provides a substantial number of tasks with a relevant 
and essential context-this is much appreciated as it 
provides opportunities for students to make sense of 
mathematical ideas in real-world contexts, thereby 
demonstrating the importance of mathematics in real 
life.  

Types of Information Provided in Tasks  

Both textbooks are dominated by optimization tasks 
that have matching information. Specifically, 56% of the 
tasks in the AC textbook have matching information and 
97% of the task in the AC textbook have matching 
information. A notable number of tasks have missing 
information in the AC textbook. This is commendable as 
it provides opportunities for students to make sense of 
the context of the tasks in order to deduce missing 
information that is necessary to solve any optimization 
task with missing information. Similar opportunities are 
lacking in the AC textbook. Lastly, neither textbook has 
tasks with superfluous information. In other words, 
none of the two textbooks provide opportunities for 
students to make sense of the context of the tasks in order 
to distinguish between extraneous information and 
important information that is necessary to solve any 
optimization task with superfluous information. 

Types of Cognitive Demands Provided in Tasks  

The number of reflection tasks i.e., tasks with a high 
cognitive demand is extraordinarily low in both 
textbooks. Precisely, only 10% of the tasks in the RC 
textbook are reflection tasks and only 3% of the tasks in 
the AC textbook are reflection tasks. According Wijaya 
et al.’s (2015) framework, the shortage of reflection tasks 
indicates that the two textbooks do not provide 
opportunities to “… communicate complex arguments 
and complex reasoning” (p. 52). Sadly, a majority of the 
tasks in both textbooks (54% in the RC textbook and 95% 
in the AC textbook) are reproduction tasks i.e., they are 
tasks that only require “…memorization or performing 
explicit routine computations/procedures” (p. 52) to 
solve. 

Opportunities to Set Up Objective Functions in Tasks  

Previous research on students’ thinking about 
optimization problems indicates that setting up the 
objective function is often one of the stumbling blocks for 
students when tasked with solving optimization 
problems (cf. LaRue & Infante, 2015; Swanagan, 2012). 
Our analysis of the optimization problems in both 
textbooks revealed that a majority of the problems in 
both textbooks either provide the objective function (e.g., 

practice problem 34 reproduced before) or that setting 
up the objective function is straightforward such as 
finding the area function of a rectangular field when 
given its perimeter. In fact, only 5% of the 63 
optimization tasks provided in the AC textbook require 
setting up an objective function to solve. The 5% of tasks 
that require setting up an objective function are practice 
problem 50, practice problem 51, and practice problem 
52 on pages 192 and 193 in Hughes-Hallett et al. (2018). 
On the contrary, nearly 71% of the 94 optimization tasks 
in the RC textbook require setting up an objective 
function to solve. The objective functions are however 
routine and setting them up (or recalling them) is 
straightforward. Following is a reproduction of two 
tasks from the RC textbook that require setting up an 
objective function to solve: 

Practice problem 3 (Stewart et al., 2021, p. 342): 
Find two positive numbers whose product is 100 
and whose sum is a minimum. 

Practice problem 18 (Stewart et al., 2021, p. 343): 
A box with a square base and open top must have 
a volume of 32,000 𝑐𝑚3. Find the dimensions of 
the box that minimize the amount of material 
used. 

Finding the objective function in practice problem 3 
is straightforward, while the objective function in 
practice problem 18 can simply be found by recalling the 
formula for calculating the volume of a rectangular 
prism. Taken together, opportunities for students to 
make sense of realistic problem situations and to set up 
complex objective functions are minimal in both 
textbooks.  

Opportunities to Interpret Critical Numbers and 
Extrema 

As previously noted, a substantial number of the 
optimization tasks in both textbooks have no context, 
and hence do not provide opportunities to interpret 
critical numbers or extrema in either a camouflage or 
relevant and essential context. We note, however, that all 
the other tasks that either have a camouflage or relevant 
and essential context provide ample opportunities for 
students to interpret critical numbers or extrema. 
Following is a reproduction of one such tasks: 

Practice problem 57 (Hughes-Hallett et al., 2018, 
p. 193): The quantity of a drug in bloodstream 𝑡 
hours after a tablet is swallowed is given, in mg, 
by 

𝑞(𝑡) = 20(𝑒−𝑡 − 𝑒−2𝑡). 

(a) How much of the drug is in the bloodstream at 

time 𝑡 = 0? 
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(b) When is the maximum quantity of the drug in 
the bloodstream? What is that maximum? 

(c) In the long run, what happens to the quantity? 

The prompt “when is the maximum quantity of the 
drug in the blood stream” in part (b) is a direct 
instruction that emphasizes the need to interpret a 
critical number i.e., the amount of time it would take for 
the quantity of the drug to be maximized in the 
bloodstream. Similarly, the prompt “What is that 
maximum” in part (b) is another direct instruction that 
promotes the need to interpret extrema i.e., the 
maximum quantity of the drug in the bloodstream. 

Opportunities to Verify/Justify Extrema  

Motivated by research on students’ thinking about 
optimization problems that shows that 
verifying/justifying extrema (i.e., showing that a critical 
number(s) of the objective function gives a 
maximum/minimum value of the objective function) is 
problematic for students, we examined opportunities to 
verify/justify extrema provided in the two textbooks. 
Our examination revealed that that of the 94 
optimization tasks in the RC textbook, consisting of 88 
practice problems and six examples, verifying/justifying 
extrema using the first derivative test, second derivative 
test, or the closed interval method (Stewart et al., 2021) 
was encouraged in five of the examples, but was not 
encouraged in any of the practice problems. Following is 
a reproduction of one of the examples, where extrema 
was justified: 

Example 6 (Stewart et al., 2021, p. 341): A store has 
been selling 200 TV monitors a week at $350 each. 
A market survey indicates that for each $10 rebate 
offered to buyers, the number of monitors sold 
will increase by 20 a week. Find the demand 
function and the revenue function. How large a 
rebate should the store offer to maximize 
revenue?  

Solution: If 𝑥 is the number of monitors sold per 
week, then the weekly increase in sales is 𝑥 − 200. 
For each increase of 20 units, the price is decreased 
by $10. So for each additional unit sold, the 

decrease in price will be 
1

20
∗ 10 and the demand 

function is  

𝑝(𝑥) = 350 −
10

20
(𝑥 − 200) = 450 −

1

2
𝑥 

The revenue function is  

𝑅(𝑥) = 𝑥𝑝(𝑥) = 450𝑥 −
1

2
𝑥2 

Since 𝑅’(𝑥) = 450 − 𝑥, we see that 𝑅’(𝑥) = 0 when 
𝑥 = 450. This value of 𝑥 gives an absolute 

maximum by the first derivative test (or simply by 
observing that the graph of 𝑅 is a parabola that 
opens downward). The corresponding price is 

𝑝(450) = 450 −
1

2
(450) = 225 

and the rebate is 350 − 225 = 125. Therefore, to 
maximize revenue, the store should offer a rebate 
of $125. 

In the preceding solution to example 6, Stewart et al. 
(2021) specifically mentioned using the first derivative 
test to justify extrema through the comment: “This value 
of 𝑥 [450]gives an absolute maximum by the first 
derivative test …” (p. 341). Stewart et al. (2021) further 
noted that an informal graphical approach i.e., observing 
that the graph of the objective function [revenue 
function] is a parabola that opens downward could be 
used to justify that the objective function attains its 
maximum value at the critical number 𝑥 = 450. Analysis 
of the 63 optimization tasks in the AC textbook, 
consisting of 60 practice problems and three examples, 
revealed that verifying/justifying extrema using the 
second derivative test or the closed interval method was 
encouraged in two of the examples, but was not 
encouraged in any of the practice problems. The solution 
to example 1 presented in the Data Sources and Method 
of Data Analysis section shows how, for instance, 
Hughes-Hallettt et al. (2018) used the closed interval 
method to verify/justify extrema in this example. 

DISCUSSION AND CONCLUSIONS 

There are six findings from this study. Following is a 
discussion of each of these findings in light of the themes 
from the literature review. First, 66% of the tasks in the 
RC textbook either have no context or they have a 
camouflage context. 97% of the tasks in the AC textbook 
either have no context or they have a camouflage 
context. In other words, both textbooks provide limited 
opportunities for students to make sense of 
mathematical ideas in relevant and essential contexts. 
We especially note that although tasks with a 
camouflage context are typically preferred over tasks 
with no context at all, camouflage contexts are not 
viewed as authentic because, while they dress up the 
mathematical operations, they do not really require deep 
thought about the context and the relationship to the 
mathematics involved. 

Second, all the tasks in both textbooks either have 
matching information or they have missing information. 
In fact, Mass (2010) argued that it is important for 
students to be exposed to tasks with all types of 
information, namely missing, matching, and 
superfluous. While tasks with matching information are 
easy to solve in that all the information needed to solve 
them is provided, Wijaya et al. (2015) remarked on the 
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benefits of providing opportunities for students to work 
on tasks that either having missing information or 
superfluous information: 

Providing more or less information than needed 
for solving a context-based task [problem] is a 
way to encourage students to consider the context 
used in the task [problem] and not just take 
numbers out of the context and process them 
mathematically in an automatic way (p. 45).  

The absence of tasks with superfluous information in 
both textbooks is concerning. Specifically, the absence of 
these type of tasks suggests that opportunities meant to 
encourage students to consider the context in order to 
determine what information is useful and what is not 
when solving optimization are absent in both textbooks. 

Third, less than 10% of the tasks in both textbooks 
combined are reflection tasks, that is, higher-order, non-
routine tasks that require a high cognitive demand to 
solve. A majority of the tasks in both textbooks are 
reproduction tasks i.e., tasks with a low cognitive 
demand. These tasks only require memorization or 
performing explicit routine computations/procedures to 
solve. Consequently, there are limited opportunities for 
students to engage in “communicating complex 
arguments and complex reasoning” (Wijaya et al., 2015), 
which can only be found in reflection tasks. We note that 
the RC textbook has a considerable amount (36% of the 
94 tasks in the textbook) of connection tasks i.e., tasks 
that require a higher level of cognitive demand to solve 
compared to reproduction tasks in that they are non-
routine and may require multiple representations. 

Fourth, findings from research on students’ 
understanding of optimization problems indicates that 
among other things, setting up the objective function is 
a difficult step for students when tasked with solving 
optimization problems (cf. LaRue & Infante, 2015; 
Mkhatshwa, 2019; Swanagan, 2012). This is especially 
true when setting up of the objective function requires 
complex reasoning and making sense of the problem. It 
would seem that some of the students’ struggles with 
setting up non-routine objective functions observed in 
the literature may be related to the opportunities to set 
up such objective functions provided in the two 
textbooks. Precisely, analysis of the optimization 
problems in both textbooks revealed that either the 
objective function is provided or that setting up the is 
straightforward such as finding the area function of a 
rectangular field when given its perimeter in a majority 
of the problems found in both textbooks. In fact, only 5% 
of the 63 optimization tasks provided in the AC textbook 
require setting up an objective function to solve. While 
71% of the 94 optimization tasks require setting up an 
objective function, setting up these objective functions is 
straightforward, and often involves recalling geometric 
formulas such as the formula for calculating the area of 
a circle. 

Fifth, all the tasks that either have a camouflage or 
relevant and essential context provide ample 
opportunities for students to interpret critical numbers 
or extrema. To reiterate, 61% of the optimization tasks in 
the RC textbook either have a camouflage or relevant 
and essential context. Twenty-five percent of the tasks in 
the AC textbook have a camouflage or relevant and 
essential context. Given that both textbooks provide an 
adequate number of opportunities to interpret critical 
numbers and extrema in context, an argument could be 
made that students’ reported difficulties with 
interpreting critical numbers or extrema likely do no 
stem from the lack of such opportunities in calculus 
textbooks (cf. Brijlall & Ndlovu, 2013; Dominguez, 2010; 
Mkhatshwa, 2019; Swanagan, 2012).  

Sixth, verifying/justifying extrema does not receive 
much attention in both textbooks. Specifically, of the 94 
optimization tasks in the RC textbook, consisting of 88 
practice problems and six examples, verifying/justifying 
extrema using the first derivative test, second derivative 
test, or the closed interval method (Stewart et al., 2021) 
was encouraged in five of the examples, but was not 
encouraged in any of the practice problems. 
Furthermore, of the 63 optimization tasks in the AC 
textbook, consisting of 60 practice problems and three 
examples, verifying/justifying extrema using the second 
derivative test, or the closed interval method was 
encouraged in two of the examples, but was not 
encouraged in any of the practice problems. Evidence 
from research shows that verifying/justifying extrema is 
problematic for students when tasked with solving 
optimization problems (cf. Borgen & Manu, 2002; 
Mkhatshwa, 2019). 

The results of this study have some implications for 
different stakeholders, namely textbook authors, 
textbook selection committees, and instructors. Calculus 
textbook authors need to include a much broader range 
of optimization examples and practice problems in terms 
of types of context, types of information, and types of 
cognitive demands to maximize the learning 
opportunities provided by their textbooks. Calculus 
textbook selection committees need to select textbooks 
that contain a balance of optimization tasks in terms of 
types of context, types of information, and types of 
cognitive demands to avoid limiting students’ 
opportunity to learn about optimization problems to 
tasks with matching information, no context, and tasks 
of low cognitive demand (i.e., reproduction tasks), 
which are dominant in the two textbooks analyzed in 
this study. According to Reys et al. (2004), “the choice of 
textbooks often determines what teachers will teach, 
how they will teach it, and how their students will learn” 
(p. 61). Calculus instructors would find it beneficial for 
students to supplement the examples and practice 
problems given in calculus textbooks to include tasks 
with superfluous information and/or tasks with higher 
cognitive demands in order to maximize students’ 
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opportunity to learn from such tasks, which are extra 
ordinarily low or absent in the textbooks we analyzed. 

We caution the reader of this paper to interpret our 
findings in light of the limitations of the study. We only 
analyzed opportunities to learn about optimization 
problems provided by two calculus textbooks. Although 
these textbooks are two of the most commonly used 
textbooks for calculus instruction in the United States, it 
is possible that the opportunities to learn about 
optimization problems presented in these textbooks are 
not representative of the opportunities to learn about 
optimization problems provided by all regular and 
applied calculus textbooks. Findings from this study 
provide an insight on the need to consider, among other 
things, opportunities to work with reflection 
optimization tasks (i.e., tasks that require a higher 
cognitive demand to solve) and tasks that have 
superfluous information when making important 
decisions such as 

(1) when writing a calculus textbook (in the case of 
textbook authors),  

(2) when deciding on what calculus textbook to adopt 
for a particular course (in the case of textbook 
selection committees), and  

(3) whether or not there is a need to supplement 
examples and practice problems provided in 
calculus textbooks (in the case of calculus 
instructors).  

Given the importance of mathematics textbooks in 
students’ learning at all levels, there is a need for more 
research that examines other opportunities to learn 
about a wide range of mathematics concepts provided 
by undergraduate mathematics textbooks.  

In light of the findings reported in the current study, 
we suggest the following as potential approaches for 
future research on the opportunity to learn about 
optimization problems. First, it might be helpful for 
future research to consider analyzing a much larger 
sample of textbooks, including possibly an analysis of 
calculus textbooks from other countries (in addition to 
the United States), in order to gain a global perspective 
regarding the opportunities to learn about optimization 
problems provided by calculus textbooks. This is 
because textbooks from other countries may differ, 
compared to textbooks used in the United States, in how 
they present optimization problems. Second, the current 
study only analyzed examples and practice problems on 
optimization problems. It would be helpful if future 
research on the opportunity to learn about optimization 
problems provided by calculus textbooks would extend 
beyond analyzing examples and practices problems, and 
also consider examining learning opportunities 
provided in the narrative/expository sections of these 
textbooks. This might provide a perspective of how ideas 
related to optimization problems are developed in 
calculus textbooks. Third, taking into consideration 

Charalambos et al.’s (2010) argument that “textbooks 
afford probabilistic rather than deterministic 
opportunities to learn mathematics” (p. 118), future 
research might investigate learning opportunities on 
optimization problems provided during classroom 
instruction in different countries, in addition to 
comparing how these learning opportunities compare to 
learning opportunities on optimization problems 
provided by calculus textbooks used in these countries. 
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