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ABSTRACT 
The fundamental aim in this article is to elucidate cognitive factors that influence the 
development of mathematical structures and incipient generalizations in elementary 
school children on the basis of their work on patterns, including how they use various 
representational forms such as gestures, words, and arithmetical symbols to convey 
their expressions of generality. We describe approximate and exact pattern 
generalizations and three cognitive factors that mutually influence the emergence of 
mathematical structures, namely, competence with number relationships, competence 
with shape similarity, and competence with figural property construction, discernment, 
and justification. We also highlight various representational modes that elementary 
students use to capture their emergent structures and incipient generalizations, grade-
appropriate use and understanding of variables via the notions of intuited and tacit 
variables, and ways in which their structural incipient generalizations support their early 
understanding of functions. 

Keywords: pattern generalization, elementary students, abduction, induction, 
deductive closure, structural thinking in mathematics 

 

INTRODUCTION 
U.S. second grade student David (age 7 years) was asked to predict particular outcomes for each figural pattern 
shown in Figures 1 and 5 prior to any formal instruction on nonrepeating patterns. Looking at the incomplete 
pattern in Figure 1, he initially saw a house consisting of a triangle and two squares that increased according to 
stage number. In the case of the pattern shown in Figure 5, he saw squares that were enclosed by triangles (line 22). 
David’s processing of the two tasks in the same clinical interview session exemplifies how an individual learner’s 
assumptions, which we will call inferencing by abduction, tend to shape what he or she is able to generalize. 
Furthermore, and especially in this particular instance, several factors influenced David’s ability to generalize. At 
the very least, the Figure 5 pattern seemed more complex to him than the Figure 1 pattern. “The main difference 
between complex and simple sets,” Stavy and Babai (2008) point out, “is the amount of information [that] one has 
to process when comparing,” which is further magnified in situations when “two stimuli are incongruent” (p. 175). 
Where David appeared to be consistent with his generalizing approach across the two tasks was the manner in 
which he perceived the stages in each pattern, that is, he saw them as whole objects that were similar. In Figure 1, 
for example, he saw a whole unit (stage 1) that increased by stage number (Figure 2), which then enabled him to 
correctly apply an incipient generalization on a far task (Figure 4) after successfully generating stages 4 and 5 
(Figure 3) of his emerging pattern. In the case of the Figure 5 pattern, however, he began to experience difficulty 
coping with the exact nature of, and relationships between, the triangles and squares in stage 4 (Figure 6). When 
he constructed stages 4 and 5 with the blocks, he first built triangle borders and then added squares (lines 19 to 20). 
Consequently, David produced inconsistent stages that led to an incorrect generalization. 
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1 Interviewer:  David, will you show me what comes next? How does stage 4 look like with the blocks? 
2 David: There’s one of them (pointing to the whole figure in stage 1 of Figure 2). There’s two  
3  of them (pointing to the two full figures in stage 2). Now there’s three of them (pointing  
4  to the three full figures in stage 3). 
5 Interviewer:  OK, great. Can you show me what would come in stage 4? (David builds stage 4, as  
6  shown in Figure 3) What would come next? Stage 5, build that here. (See Figure 3)  

Contribution of this paper to the literature 

• This article provides a selective synthesis of empirical research studies on pattern generalization that have 
been conducted with elementary school students. We focus on studies that describe the role of various 
cognitive factors in explaining children’s pattern generalization processing involving numerical and figural 
patterns. To date, there is no singular or optimal path that would guarantee successful pattern 
generalization, leading to the possibility of multiple paths that largely depend on how they interpret various 
components of a given pattern (e.g., inferred shape, abduced relationships, expressed figural property, etc.). 

• This article elucidates three types of inferential reasoning that are involved in the construction and 
justification of pattern generalization at the elementary level, namely: abduction, induction, and deductive 
closure. The emergence of types depend on how elementary students process the numerical and/or figural 
components of patterns. In cases of figural patterns, approximate and exact forms of generalization depend 
on their ability to establish relationships between and among the shapes, numerical relationships, and 
figural properties that are inferred on patterns. 

• When appropriate, findings from pattern studies involving elementary school students are compared with 
findings drawn from patterns involving middle school students on similar tasks in order to demonstrate 
common and distinct ways of processing patterns, establishing structures, and forming generalizations. 

These are how our stages in a pattern look like. 

 

 

 

         Stage 1               Stage 2             Stage 3 

Figure 1. Building Houses Pattern 

 
Figure 2. David’s Initial Abductive Inference on the Figure 1 Pattern 
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8 Interviewer:  So what if we skip what comes next in stages 5, 6, 7, 8, and 9. We want to know what  
9    would come next in stage 10. Can you draw with little squares and triangles what  
10   stage 10 would look like? (David draws on paper stage 10; see Figure 4) 
11 I:   Very nice. 
 

12 Interviewer:  Will you show me what comes next? How does stage 4 look like with the blocks? 
13  (David gathers several pieces of triangles and squares and constructs stage 4; see  
14  Figure 6) 

 
Figure 3. David’s Constructed Stages 4 and 5 of the Figure 1 Pattern 

 
Figure 4. David’s Constructed Stage 10 of the Figure 1 Pattern 

Below are the stages in our pattern. 

 

 

 

 

 

   Stage 1       Stage 2                   Stage 3 

Figure 5. Triangular Pond Pattern 
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15 Interviewer: Okay. Can you show me what’s next? (David’s stage 5 is shown in Figure 6) 
16 Interviewer:  Now suppose we skip steps and build stage 10. How would it look like to you? 
17  (David draws his stage 10 on paper; see Figure 7) 
18 Interviewer: Okay can you explain to me how you knew what to do? 
19 David:  Because I kinda copy these (points to stage 3) because the triangles were like kinda   
20    surrounding these little squares so that I have these (referring to his stage 10). 
21 Interviewer: How’d you know how many squares to put there? 
22 David: Because I wanted them to fit in. 
23 Interviewer: Okay, great. 
David’s thinking about the Figure 5 pattern had a happy ending, of course. During the final clinical interview, 

which took place after an intervening teaching experiment on patterns, he once again dealt with the same two 
pattern generalization tasks. In the case of Figure 5, he initially employed gestures (Figure 8) when he pointed out 
what he interpreted to be three invariant parts that comprised every stage in his pattern (lines 25-28). Furthermore, 
because he applied the same set of gestures repeatedly over several more stages, which we will call action or 
reasoning by induction, it enabled him to produce a consistent pattern generalization for far stages 10, 25, and 100 
that he conveyed rhythmically in verbal form without needing to draw each one (lines 33-40). We will call this 
successful transfer on far stages reasoning by deductive closure. 

 
Figure 6. David’s Constructed Stages 4 and 5 of the Figure 5 Pattern 

 
Figure 7. David’s Constructed Stage 10 of the Figure 5 Pattern 
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24 Interviewer:  Okay how did you know what to draw? 
25 David:  Because here [stage 4], this one has 4 [squares], and 4 triangles [on top], and 2   
26   [triangles] on the sides, and 4 Figs. [bottom triangles]. And this one [stage 5], it’s  
27   supposed to have 5 triangles [top row], 2 [triangles] on the sides, and 5 [triangles]   
28   right here [bottom row]. (See Figure 8) 
29 Interviewer: And what did you put in the middle? 
30 David:  These are ducks. 
31 Interviewer: Oh, so are these squares? 
32 David:  Yeah. 
33 Interviewer: Okay, so what about stage 10. Can you explain what it would have? 
34 David:  It would have 10 triangles on the top and on the bottom, 2 triangles on the sides, and   
35   and 10 squares in the middle. 
36 Interviewer: Okay, and what about stage 25? 
37 David:  25 triangles on the top, 25 triangles on the bottom, 2 triangles on the sides, and 25   
38   squares in the middle. 
39 Interviewer: What about stage 100? 
40 David:  100 triangles on the top, 100 triangles on the bottom, 2 triangles on the sides, and 100   
41   squares in the middle. 
In this article, we focus on pattern generalization studies that have been conducted with elementary school 

children from Grades 1 through 5 (ages 6 through 10 years) in different contexts across different countries. We also 
draw quite significantly on the author’s longitudinal studies with intact classes of US Grades 2 and 3 students when 
we need to illustrate particular research findings. The fundamental aim in this article is to elucidate cognitive factors 
that influence the development of mathematical structures and incipient generalizations in elementary school 
children on the basis of their work on patterns, including how they use various representational forms such as 
gestures, words, and arithmetical symbols to convey their expressions of generality.  

In the next seven sections, we pursue different aspects of pattern generalization processing that matter to 
elementary school children. In section 1, we describe approximate and exact pattern generalizations. Sections 2 to 
4 describe three major cognitive factors that shape the emergence of mathematical structures, namely, competence 
with number relationships, competence with shape, and competence with figural property construction. These 
factors require different forms of abductive actions that elementary students need to coordinate successfully 
together in order to construct, induce, deductively close, and justify an algebraically useful exact generalization. In 
section 5, we focus on representational modes that elementary students oftentimes use to capture their emergent 
structures and incipient generalizations, which are based on their initial stipulated abductions about their patterns. 
These modes include gestural, pictorial, verbal, and numerical. In section 6, we address grade-level appropriate 
use and understanding of variables via the notions of intuited and tacit variables. In section 7, we analyze the 
relationship between elementary children’s structural incipient generalizations and the natural emergence of their 
understanding of functions, especially the central role of abduction in such an understanding. 

 
Figure 8. David’s Gesture-Driven Description of Stage 5 Relative to the Figure 5 Pattern 
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APPROXIMATE AND EXACT GENERALIZATIONS 
David’s stage 10 figures in Figures 4 and 7 exemplify explicit responses that model exact and approximate 

generalizations, respectively. In Figure 7, an approximate incipient generalization, he constructed and established 
stage 10 by inferring shapes that were similar in form. He abduced what he interpreted to be the pertinent figural 
characteristics across the given stages in order to inductively process stages 4, 5, and 10 of his emerging pattern. 
However, he inconsistently counted the number of squares and triangles from stage 4 and up. Approximate 
generalizations (AG) are fuzzy generalities of an emergent structure, that is, the three aspects of number, shape, and 
figural properties are not well coordinated in a harmonious and consistent or stable manner. 

Figure 4 exemplifies an exact incipient generalization. David abduced stage 10 to have 10 sets of the same figural 
unit (a triangle and two squares). He also inferred growth along the same horizontal direction consistent with the 
three given stages in the pattern. Exact generalizations (EG) are conceptually consistent generalities of an emergent 
structure, that is, the three aspects of number, shape, and figural properties are well coordinated in a harmonious 
and consistent or stable manner.  

Several recent pattern generalization studies conducted with elementary school students confirm the prevalence 
of the two types of incipient generalizations (e.g.: Blanton et al., 2015; Walkowiak, 2014; Wilkie, 2014; Wilkie & 
Clarke, 2016; Whitin, P. & Whitin, D., 2011). Furthermore, these studies demonstrate the following observations 
below.  

• Choosing between AG or EG seems to depend on task complexity, which means pattern generalizing relies 
on how individual learners perceive, interpret, and construct the structural complexity of a set of stages in 
a pattern. Pattern generalizing could also be task-induced, meaning it could be driven by the causal potency 
of the given stages. 

• Factors such as novelty of task, weak prior knowledge, and disposition at the moment of generalizing may 
influence the content of elementary students’ generalizations.  

• Different levels of AG exist, which can be distinguished according to conceptual competencies in the three 
aspects of number, shape, and figural property discernment. We discuss each aspect in detail in the 
following three sections below. 

COMPETENCE WITH NUMBERS AND NUMBER RELATIONSHIPS 
Typically developing elementary students have number sense. In fact, the most significant finding in 

neuroscientific research involving children’s natural numeric competence is the approximate nature in which they 
exhibit number sense early in their experiences (Dehaene, 1997), which under normal circumstances transition to 
(adult) exact understanding with more social and cultural learning. There is no permanent shift, of course, as adults 
in neuroimaging experiments still appear to activate the regions of their parietal lobe that are oftentimes associated 
with approximate number processing when they perform mental calculations (Pinel, Dehaene, Riviere, & LeBihan, 
2001). Changes in numeric processing from approximate to exact counting are primarily mediated by language, 
and developmental research has consistently documented young children’s initial difficulties in learning their 
correct meanings following adult practices (Condry & Spelke, 2008; Le Corre & Carey, 2007; Lipton & Spelke, 2005). 
Some children, for example, do not map the correct number word for a set of concrete objects, while other children 
can recite the number words rather proficiently but then fail to grasp their meanings.  

Considering the implications of the above findings on elementary children’s developing skills in exact 
numerical processing, Rivera (2010) assessed the nature of second grade students’ pre-instructional competence on 
the two numerical pattern generalization tasks shown in Figures 9 and 10. Twenty-one US Grade 2 students (ages 
7 to 8 years; 7 girls and 14 boys; 20 Hispanic-Americans and 1 African-American) each participated in two clinical 
interview sessions in which they dealt with the Figures 9 and 10 tasks two times. Each numerical patterning task 
involves five to six near generalization items (i.e. stages 1 through 6), one to two far generalization items (i.e. stages 
10 and 20), and an inversion problem (i.e. determine the stage number or input for a given total or output). The first 
clinical interviews took place six weeks after the start of classes, while the second interviews occurred six weeks 
after the first interviews. During the first interview, the students were provided with a construction pad and a 
number line of whole numbers from 0 to 100. Since the author anticipated that some students would exhibit 
conceptual difficulties with exact counting as noted in the above paragraph, the number line offered them 
additional support in case they needed to use it for counting-related purposes. During the second interview, both 
construction pad and number line were available. Furthermore, due to the students’ difficulties with the inversion 
problems during the first interview, sheets containing pictures of dog eyes and zebra legs were made available for 
them to use as well.  
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Tables 1 and 2 provide summaries of the results drawn from the first clinical interviews with respect to the two 
numerical pattern generalization tasks shown in Figures 9 and 10. More than half of the students initially engaged 
in perceptual subitizing (2 to 4 objects) in dealing with stage 1. Then a conceptual shift toward the use of a counting-
all strategy took place when the students obtained the total number of the objects in stage 2 for each pattern. 
Furthermore, the same counting-all strategy was more frequently used than the other arithmetical strategies when 
it came time to processing the remaining near generalization tasks (stages 3 through 6). As shown in the two tables, 
the other arithmetical strategies were counting on, skip counting by 2 and 4, and using the doubles facts (e.g. “2 + 
2 = 4, so 2 dogs have 4 eyes”). Also, less than half of the students found the number line on the table useful despite 
the consistent reminder from the interviewer that it could be used at all times.  

When the students dealt with the far generalization tasks (stages 10 and 20), at least two-thirds of them shifted 
to approximate processing, which explains the very low percentage of correct responses on the two tasks (about 
22% for the dog eyes pattern and about 10% in the case of the zebra legs pattern). Examples of students’ approximate 
values for stages 10 and 20 for the Figure 9 pattern are 24 and 32, respectively. For the Figure 10 pattern, 
approximate values for stages 10 and 20 are 30 and 42, respectively. Almost all of the students who suggested 
incorrect approximate values for the far stages offered numbers that they thought were reasonable. One student, 
for example, suggested 42 legs for far stage 20 of the zebra legs pattern and said, “I just know in my head that it is a 
lot.” There were also a handful of other incorrect responses that involve adding the sum of the last known total 
count on a near generalization task (stage 5 or 6) and the targeted far generalization stage number. For example, 
one student argued that since “there are 12 eyes that I counted for stage 6 [in Figure 9],” then “stage 10 has 22 eyes [since 
12 + 10 = 22].” Finally, the students found the inverse tasks very difficult to process with only one student on each 
task able to explicitly articulate a reasonable answer (“there are 8 and a half dogs,” “there are 5 zebras and another one 
with just one leg”). The primary source of difficulty was language with a majority of them confusing input numbers 
and output values. About one-third of them initially drew the required number of objects corresponding to the 
output value using sticks and circles. Unfortunately, they did not know how to proceed further (e.g., grouping the 
drawn figures by two or by four) and eventually gave up. 

Number of Dog Eyes 
Here is 1 dog puppet on the table. How many eyes does one dog have?   
Here are 2 dog puppets. How many eyes do 2 dogs have? How do you know? Can you explain it to me?  
Here are 3 dog puppets. How many eyes do 3 dogs have? How do you know? Can you explain it to me?  
We only have three dog puppets on the table. So you need to imagine more dogs in your head. 
A. How many eyes do 4 dogs have? How do you know for sure? Can you tell me how you’re thinking about it? 
B. How many eyes do 5 dogs have? Can you tell me how you’re thinking about it? 
C. How many eyes do 10 dogs have? Can you tell me or show me on paper how you’re thinking about it? 
D. How many eyes do 20 dogs have? Can you tell me or show me on paper how you’re thinking about it? 
E. A normal dog has two eyes. How many dogs are there with a total of 17 eyes? Can you tell me or show me on paper how you’re 
thinking about it? 
Figure 9. Number of Dog Ears Pattern Generalization Task for Grade 2 Students 

Number of Zebra Legs 
Here is 1 zebra toy. How many legs does one zebra have?  
Here are 2 zebra toys. How many legs do 2 zebras have? Can you show me how you know so?  
Here are 3 zebra toys. How many legs do 3 zebras have? How do you know?  
We only have three zebra toys on the table. So you need to imagine more zebras in your head. 
A. How many legs do 4 zebras have? How do you know for sure? Can you tell me how you’re thinking about it? 
B. How many legs do 5 zebras have? How do you know for sure? Can you tell me or show me on paper how you’re thinking about 
it? 
C. How many legs do 10 zebras have? How do you know for sure? Can you tell me or show me on paper how you’re thinking about 
it? 
D. How many legs do 20 zebras have? How do you know for sure? Can you tell me or show me on paper how you’re thinking about 
it? 
E. A normal zebra has four legs. How many zebras are there with a total of 21 legs? Can you tell me or show me on paper how you’re 
thinking about it? 

Figure 10. Number of Zebra Legs Pattern Generalization Task for Grade 2 Students 
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Tables 3 and 4 provide summaries of the results drawn from the second clinical interviews with respect to the 
two patterns shown in Figures 9 and 10. None of the students used the number line on the table to help them count. 
Perceptual subitizing was evident when the students initially attended to stage 1 in both patterns. In dealing with 
the near generalization tasks beyond stage 2, there was a noticeable use of other arithmetical strategies beyond 
counting all. Furthermore, about one-third of the students successfully dealt with the far generalization tasks. 
Sources of support on these tasks were the intensive classroom learning and instruction in exact number sense and 
the student-generated diagrams (i.e. sticks and circles) during the interview session that enabled them to count 
correctly and obtain the correct values. Figure 11 illustrates how two students drew diagrams to help them monitor 
their counting processes and remember the numbers that they already counted. Nikki on the left drew 10 pairs of 
circles corresponding to stage 10 of the Figure 9 pattern that enabled her to count to 20. Skype on the right obtained 
the same final value as Nikki but in his case he drew 10 circles and filled them one by one with numbers that 
corresponded to consecutive multiples of 2. Finally, while the inverse tasks continued to be difficult for most 
students despite the availability of drawn pictures of dog eyes and zebra legs, those who successfully processed 
them grouped each picture set either by 2 or by 4. Figure 12 shows two examples of student work on the inverse 
task involving the Figure 10 pattern. David on the left circled sets of 4 legs that enabled him to conclude that 7 
zebras had 28 legs in all. Manny on the right initially labeled all the square pictures with consecutive numbers from 
1 to 4. He then noted that since there were 7 groups of consecutive numbers from 1 to 4, there were 7 zebras with 
28 legs altogether. 

 

Table 1. Grade 2 Students’ First Round Interview Results on the Figure 9 Patterning Task (n = 21; *Drew 19 circles first.) 

Subtasks Perceptual 
Subitizing 

Counting All 
without 
Number 

Line 

Counting 
All with 
Number 

Line 

Counting 
On without 

Number 
Line 

Counting 
On with 
Number 

Line 

Skip Counting 
by 2 

without 
Number Line 

Skip Counting 
by 2 with 

Number Line 

Using 
Doubles 

Facts 

Could 
Not Do 

Initial 
Struggle 

Stage 

NG Stage 1 20 1         
NG Stage 2 2 12      7   
NG Stage 3  14  1  4  2   
NG Stage 4  7 5 2  2  2 3 2 
NG Stage 5  1 10 1  2 2 1 4 6 
NG Stage 6  3 1 1 5 3   8 2 
FG Stage 10    1  3 2 1 14 4 
FG Stage 20      1 1 1 18 1 
Inverse      1*   20  

 

Table 2. Grade 2 Students’ First Round Interview Results on the Figure 10 Patterning Task (n = 21) 

Subtasks Perceptual 
Subitizing 

Counting All 
without 

Number Line 

Counting On 
without 

Number Line 

Counting 
On with 
Number 

Line 

Skip Counting 
by 2 

without 
Number Line 

Combined Counting 
All and Counting On 
with Number Line 

Drew Sticks 
and 

Grouped by 
4 

Could 
Not Do 

Initial 
Struggle 

Stage 

NG Stage 1 12 8 1       
NG Stage 2  15 4  1   1 1 
NG Stage 3  13 5     3  
NG Stage 4  11 6 1    3 2 
NG Stage 5  8 4 1    8 5 
NG Stage 6          
FG Stage 10      2  19 2 
FG Stage 20        21  
Inverse       1 20  

 

Table 3. Grade 2 Students’ Second Round Interview Results on the Figure 9 Patterning Task (n = 19) 

Subtasks Perceptual 
Subitizing 

Counting All 
without 

Number Line 

Counting On 
without 

Number Line 

Skip Counting by 2 
without Number 

Line 

Using 
Doubles 

Facts 

Skip 
Counting 

by 10 

Grouped 
by 2 

Could 
Not Do 

Initial 
Struggle 

Stage 
NG Stage 1 17 2        
NG Stage 2 2 7 2 7 1     
NG Stage 3  7 2 9 1     
NG Stage 4  7 3 6 1   2 3 
NG Stage 5  9 3 6 1    1 
NG Stage 6          
FG Stage 10  1 2 8  1  7 6 
FG Stage 20    1 1   17  
Inverse       6 13  

 



 
 

EURASIA J Math Sci and Tech Ed 

 

9 / 31 
 

 
 

The development of different arithmetical strategies plays a significant role in students’ pattern generalization 
processing, in particular, at the upper elementary levels when numbers taken as input units need to be interpreted 
in the context of a mathematical relationship. For the numerical patterns shown in Figures 9 and 10, the prevalent 
use of a counting-all arithmetical strategy on both tasks in the two interview sessions distracted a majority of the 
second grade students from establishing more meaningful invariant structural relationships.  

Even with a noticeable shift toward the use of counting on, double facts, and skip counting strategies during 
the second interview, the students needed additional training in interpreting them as instantiating particular 
structural relationships within and across the given input units. For example, when Lina was asked to explain her 
double fact 3 + 3 = 6 that led her to conclude that 3 normal dogs had 6 eyes altogether, she said, “I first counted 3 
[eyes] here [pointing to the three left eyes] and then I counted 3 more [eyes] here [pointing to the right eyes].” In dealing with 

Table 4. Grade 2 Students’ Second Round Interview Results on the Figure 10 Patterning Task (n = 19) 

Subtasks Perceptual 
Subitizing 

Counting All 
without 

Number Line 

Counting On 
without 

Number Line 

Skip Counting by 4 
without Number 

Line 

Using 
Doubles 

Facts 

Skip 
Counting 

by 2 

Grouped 
by 4 

Could 
Not Do 

Initial 
Struggle 

Stage 
NG Stage 1 14 5        
NG Stage 2 2 6 7 2 2     
NG Stage 3  11 7 1      
NG Stage 4  9 8 1  1    
NG Stage 5  8 8 1    2 2 
NG Stage 6          
FG Stage 10  1 3 1   1 14 1 
FG Stage 20          
Inverse       5 14  

 

  
Figure 11. Second Grade Student-Generated Diagrams in Dealing with Far Generalization Tasks 

  
Figure 12. Second Grade Student-Generated Methods in Dealing with an Inverse Task 
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4, 5, and 10 dogs, however, she changed her arithmetical strategy and employed combinations of counting-all and 
count-on strategies that still enabled her to obtain the correct output values without needing to pay attention to 
possible mathematical relationships that she could have abduced from the strategies. In fact, none of the students 
employed the same arithmetical strategy consistently within and across the input units of the two patterns, which 
partly explains why they experienced considerable difficulty in dealing with the far generalization tasks. Also, the 
presence of several different choices, the lack of metacognitive strategies such as perceptual agility, and the need 
to stay consistent from subtask to subtask in arithmetical processing prevented them from establishing meaningful 
incipient generalizations that would have worked for all far generalization tasks. Lee (1996) poignantly surfaces 
the central role of perceptual agility in pattern generalization, which involves “see[ing] several patterns and [a] 
willing[ness] to abandon those that do not prove useful [i.e. those that do not lead to a direct formula]” (p. 95).  

Several recent research investigations that have been conducted with other groups of elementary (and middle) 
school students on number patterns have also articulated similar issues. Carpenter and Levi’s (2000) studies with 
small groups of first- and second-grade students on true-false number sentences and open number sentences 
assessed their ability to think about properties of number operations, including the evidence and rules they 
employed to justify their generalizations. They note how many of the students “experienced difficulty” in 
developing explanations “that went beyond examples, although a number of students did recognize the necessity 
of more generalizable justifications” (p. 16). Central to the noted difficulty was the lack of a more sophisticated 
understanding of the equal symbol (i.e. the relation/product issue) and appropriate notational systems for 
conveying, and rules for justifying, general explanations. Carraher, Schliemann, Brizuela, and Earnest’s (2006) work 
with third-grade students in relation to the additive comparison task shown in Figure 13 highlights the students’ 
conceptual difficulties with mathematical language. Several students, for example, confused between the terms 
“taller” and “tall” and “shorter” and “short.” It was only when the class as a whole unit reenacted the problem 
with three volunteers that the students came to understand the relational terms. Also, even when the students 
managed to generate correct values for the problem and illustrate their relationships with a diagram, there were 
still a few others who “remained hesitant about what region of their diagram corresponded to the values [4 inches 
and 6 inches]” (Carraher, Schliemann, & Brizuela, 1999, p. 2). Figure 14 illustrates samples of two students’ work 
on the Figure 13 task, which could be interpreted as a number pattern generalization task. Continuous engagement 
with particular instances (i.e. story situations) enabled the students to engage in mutual abduction and induction 
that eventually enabled them to establish a structural argument in the form of variable expressions (i.e., T, T – 4, 
and T + 2). 

 

 
Figure 13. Additive Comparison Task (Carraher, Schliemann, Brizuela, & Earnest, 2007, p. 72) 
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Schliemann, Carraher, and Brizuela’s (2007) work with third-grade students on function tables involving 
number relationships articulates the necessity of building meanings drawn from everyday contexts: “(W)hat makes 
everyday contexts powerful is not the concreteness of the objects or the realism of the situations dealt with in 
everyday life, but the meaning attached to the problems under consideration” (p. 103). For example, they used 
multiplication tables in introducing the students to functional understanding involving inputs and outputs. The 
students learned how to fill function tables such as the one shown on the left in Figure 15 in the context of a certain 
Mary who relied on an incomplete table with prices to help her sell cookies. Over the course of the classroom 
teaching experiment involving function tables, the students obtained different rules that related the output values 
with the input terms. Interestingly enough, the conversations shifted from the use of additive strategies (e.g. “add 
6 to 2,” “add 2, plus 2, plus 2” in the case of the table on the left in Figure 15) to multiplicative generalizations that 
conveyed direct proportional relationships (e.g. 3n or n x 3 in relation to the table on the left of Figure 15) to closed 
expressions that reflected the structure of a general linear function (e.g. n x 2 + 1 in the case of the table on the right 
in Figure 15). The problems also transitioned from everyday situations to more decontextualized contexts. 

Carpenter, Franke, and Levi’s (2003) work with elementary school children on numeric-based pattern 
generalization and arithmetical thinking underscore the significance of relational thinking beyond calculating 
results. For example, second-grade Emma in their study initially thought about adding 28 and 32 and then counting 
on from 27 in order to solve the number sentence 28 + 32 = 27 + ___. This computational process was consistent 
with her early experiences involving smaller numbers such as 7 + 6 = ___ + 5. However, her thinking transitioned 
relationally when she established a relationship between the two expressions, as follows: “I think maybe 33 [is the 
answer] … because 27 is one less than 28 and then 33 is one more than 32.” Numeric-based pattern generalizing that 

  
Figure 14. Samples of Student Work on the Figure 13 Problem (Carraher, Schliemann, Brizuela, & Earnest, 2007, pp. 74 & 76) 

(a) 
Boxes of Cookies Price 

1  
2 $6.00 
3 $9.00 
4 $12.00 
 $15.00 
 $18.00 
7 $21.00 
8  
9 $27.00 
10 $30.00 
N  

 
 
 
 
 

(b) 
X Y 
1  
2  
3  
4  
5  
  
7  
8  
9  
10  
20  
30  
100  
N  
  

 

Figure 15. Function Tables (Schliemann, Carraher, & Brizuela, 2007) 
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fosters relational thinking in Carpenter, Franke, and Levi’s sense further supports growth in structural thinking 
and justification. For example, when the second-grade students in Carpenter, Franke, and Levi’s (2003) study dealt 
with the Mouse-Cage Patterning Task shown in Figure 16, they initially solved them in a disorganized manner, 
naming pairs of numbers that summed to 7 without searching for patterns both at the level of answers and 
organization. While the students managed to calculate possible pairs of answers, unfortunately, they felt rather 
unsure about whether they had generated all the possible answers. They eventually settled the issue when Marsha 
suggested the list shown in Figure 17. Over the course of several sessions, they solved similar problems involving 
different numbers (e.g., 52 mice, 147 mice). Later in the year when they revisited the problem, “the students 
remember(ed) the problem, easily generate(d) the possibilities, and predict(ed) how many possibilities there would 
be for any given number of mice” (p. 69). 

 

Schweitzer’s (2006) interesting account of her longitudinal research in her combined first and second-grade class 
also highlights the value of relational thinking in her students’ developing understanding of numbers and 
operations. Throughout the two years of working with the same group of children, she emphasized a patterns 
approach to, or a structural way of, thinking about the commutative property of addition, addition and subtraction 
facts, and fundamental numerical propositions such as a + b = c implies a + (b + 1) = c + 1 (e.g. if 6 + 6 = 12, then 
what is 6 + 7 = ?) and a + b = (a – x) + (b + x) (e.g. 39 + 14 = (39 + 10) + (14 – 10) = 49 + 4 = 53), which made the 
resulting expressions easier and more reasonable to calculate than the original expressions. She also noted how 
models such as cubes and coupons (in the case of money) became tools that her students used to explain their 
reasoning and understanding.  

Moss and London McNab’s (2011) study with 42 Grade 2 students in the US and Canada investigated how they 
generalized rules for constructed (and not presented) function tables that had non-sequential pairs of inputs and 
outputs. In such cases, the students learned to focus on “the ‘across’ or function rule, rather than on the ‘down’ 
pattern or ‘what comes next’ strategy’ strategy identified as interfering with functional generalizations” (p. 282). 
Consequently, the form of their generalizations was more explicit than recursive and covariational (i.e. expressing 
a consistent relationship between input and output). 

COMPETENCE WITH SHAPES AND SIMILAR RELATIONSHIPS 
Shape is not an inherent but an abstract property of any object, mathematical or physical (Pizlo et al., 2010), 

which implies that recognizing a shape involves conceptually constructing it via processes of abduction and 
induction in a dynamic manner. Here we foreground the perceptually relative nature of construction in a 
phenomenological sense, that is, one that draws primarily on one’s personal experience(s) with an object (cf. Hill & 
Bennett, 2008). The emergence of shape, in other words, is relational and viewpoint dependent (ibid.). However, 
we also note how our (neural and psychological) perception of the shape of objects can change and be modified 
with [ongoing] experiences and support from the environment (Triadafillidis, 1995; Wallis & Bülthoff, 1999).  

Pattern-related issues surrounding shape basically deal with the concept of similarity and, especially, the fixed 
and steady role of similarity in an emerging shape organization relative to a pattern (i.e., in Duval’s (1999) sense of 
perceptual apprehension; Gal & Linchevski, 2010). Sequences of figural objects such as the growing squares pattern 
in Figure 18 are similar because they have the same shape but not the same size1. Furthermore, depending on the 

                                                                 
1 Mathematically, the pattern stages in Figure 18 represent dilations, that is, there is a fixed central point of projection. There is no 
research that deals with pattern stages that appear as a sequence of similitudes, that is, similar figures that involve both isometry 

Ricardo has 7 pet mice. He keeps them in two cages that are connected so that the mice can go back and forth between the cages. 
One of the cages is big and other one is small. Show all the ways that 7 mice can be in two cages. 
Figure 16. Mouse-Cage Patterning Task (Carpenter, Franke, & Levi, 2003) 

 

Big Cage Small Cage 
1 6 
2 5 
3 4 
4 3 
5 2 
6 1 
7 0 
0 7 

 

Figure 17. Second Grade Marsha’s List for the Figure 16 Pattern (Carpenter, Franke, & Levi, 2003) 
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nature of the sequence or pattern conveyed through the stages, similarity means the relevant corresponding angles 
across the stages have the same measure and the corresponding parts are proportional according to some (constant) 
rule. Sequences of figural objects that all have the same size and shape are congruent. The separate unit squares 
pattern in Figure 19, which is a typical pattern in many lower elementary mathematics textbooks, consists of 
congruent unit squares with the stage number determining the number of congruent unit squares that are 
constructed. In the case of Figure 19, the uniform shape conveys that other attributes of the pattern are more 
relevant to pattern generalization than the figures themselves. When such patterns are given to first grade students, 
they often provide useful contexts for, say, skip counting activity and in introducing them to functions. In this 
subsection, we dwell on issues surrounding the more complex figural patterning tasks such as the one shown in 
Figure 18. 

 

Basic object or shape recognition is a skill that is central to figural pattern generalization. What is oftentimes 
assessed in patterning activity is the consistency in which learners are able to conserve the same steady shape across 
the stages in a pattern. For example, the pattern stages in Figure 18 together convey the same shape of squares that 
have different dimensions. David’s work in Figures 3, 6, and 8 preserved the same shape that he initially abduced 
on stages 1, 2, and 3 of the presented figural patterns. Among elementary school children in the lower grades, their 
usual introduction to figural pattern generalizing involves having them copy the same shape(s) over several cycles 
(i.e. repeating patterns). Such activities basically target object or shape recognition and the construction of similarity 
relationships.  

But, how well do elementary students in the lower grades copy shapes of more complex figural objects? An 
interesting study by Mulligan, Prescott, and Mitchelmore (2003) conducted with 109 Year 1 Australian children 
(ages 5 to 7 years) assessed their ability to copy a given geometric shape. The children were briefly shown the 
triangle consisting of six circles in Figure 20. When then asked to draw what they saw on a separate sheet of paper, 
only about 20% of them produced the same triangle shown in Figure 20. Figure 21 shows several different responses 
that the authors categorized according to type of structure, that is, from having no structure to fully structural. 

Certainly, Mulligan, Prescott, and Mitchelmore’s (2003) findings can be interpreted in different ways. To begin 
with, copying a figural object requires the use of working memory. Just like the situation involving simple counting 
among young students, producing an exact copy (or count) means that they need to remember which aspect(s) of 
the figure (or items) have already been drawn (or counted). Feigenson (2011) notes that existing research findings 
claim that working memory is constrained by the “amount of information it can maintain at any given time” (p. 13) 
– that is, “observers of all ages appear able to concurrently represent three or four visual items in working memory 
but no more” (ibid, pp. 13-14; cf.: Alvarez & Cavanagh, 2004; Feigenson & Carey, 2003; Luck & Vogel, 1997). Of 
course, the stipulated limit of 3-4 items could refer to 3-4 individual objects, sets of objects, and ensembles of objects.  

                                                                 
and dilation. The squares in Figure 19 represent congruent figures that, by definition, can be established by applying at least one 
isometric action (Kay, 2001). 

Consider the growing pattern of squares below. How might stage 8 look? What is its area and perimeter? 
 

 
 

  
  
   Stage 1     Stage 2                 Stage 3          Stage 4  

Figure 18. Growing Squares Pattern 

Consider the pattern of unit squares below. How does stage 8 of the pattern appear to you? How many edges are there in all? 
 

  
  
        Stage 1           Stage 2            Stage 3           Stage 4  

Figure 19. Separate Unit Squares Pattern 



 
 
Rivera / Pattern Generalization Processing of Elementary Students 

 

14 / 31 
 

 

Cavanagh and He’s (2011) work on spatial attentional mechanisms involving explicit counting of objects in 
static pictures and dynamic displays might also explain the different constructed figures shown in Figure 21. The 
remaining 80% of the students in Mulligan, Prescott, and Mitchelmore’s study appear to have overcounted with a 
significant fraction of them unable to preserve the shape of the original figure. Cavanagh and He (2011) note that 
explicit counting in both static and dynamic displays necessitate the performance of at least four tasks, as follows: 
“select[ing] an uncounted item; increment[ing] the count; mark[ing] the just counted item; and stop[ping] when 
there are no more uncounted items (pp. 23-24).  

In the case of static pictures of figural objects such as the triangle shown in Figure 20, we add the task of forming 
the objects in some stipulated arrangement. Based on their experiment with a small number of adult participants, 
Cavanagh and He (2011) note that the view in which “attention cannot count – at least cannot count to more than 
four [objects]” (p. 24) does not appear to hold, which leads them to conclude that no such upper limit exists. Our 
concern in their study involves their claim that “attentional system is capable of indexing individual objects in 
visual space” (p. 30), including their view that items arranged “in a way that minimizes overcrowding” enable 
individuals to engage in attentional indexing with a larger number of items. Hence, among elementary students, 
psychological issues such as constraints in working memory and their developing spatial and attentional indexing 
mechanisms might influence the manner in which they deal with more complex figural object representing and 
pattern generalizing such as the ones shown in Figures 18 and 20. 

In light of the preceding discussion on possible psychological constraints in recognizing shapes, including the 
representational modes that are employed to describe their parts (e.g., qualitative verbal descriptions or 
quantitative count of objects; continuous and approximate or discrete and exact diagrams), Rivera (2010) assessed 
a group of US second-grade students’ competence in extending several different kinds of increasing patterns prior 

 
Figure 20. Triangle Task (Mulligan, Prescott, & Mitchelmore, 2003, p. 24) 

 

 

 
Figure 21. Samples of Year 1 Students’ Work on the Figure 20 Triangle Task (Mulligan, Prescott, & Mitchelmore, 2003, pp. 25-
26) 
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to any formal intervention. We note that the students involved in this particular study were the same ones that we 
talked about in the preceding section on numbers. All in all, the students participated in a series of three clinical 
interviews each. In the first interview, they dealt with the two-stage semi-free (ambiguous) patterning task shown 
in Figure 22 in addition to the numerical patterns. In the second interview, a slight modification of the same 
ambiguous figural task was presented with three instead of two initial pattern stages. In the third interview, they 
dealt with the three 3-stage figural patterns shown in Figures 23, 24, and 25, which appeared to be more well-
defined and possessed greater causal potency than the pattern in Figure 22. 

 
 
 

2-Stage Ambiguous Task: Let us begin with a square and call it step 1. Now suppose step 2 looks like as shown. How many squares 
do you see? 
  
 
 
  
      Step 1            Step 2 
A. How might step 3 appear to you? Show me with the blocks.  
B. Show me steps 4 and 5. How many squares do you see? 
C. Pretend we do not have any more blocks and suppose we skip steps. If someone asks you how step 10 looks like, how might you 
respond? Can you describe or draw it for me?  
 
(In the second interview, we added step 3 as shown on the  
right. Students then constructed steps 4, 5, 8, and 10.)  
  
         
 
   
                Step 3 
Figure 22. A Semi-Free (Ambiguous) Pattern 

House Pattern: These are how our stages in a pattern look like.  
 
 
 
 
     
    Stage 1   Stage 2                Stage 3 
A. Can you show with the blocks what comes next? How might stage 4 might look like to you? How about stage 5?  
B. Let us skip stages. Can you draw or describe in words how stage 10 might look like? How do you know for sure?  

Figure 23. House Pattern Task 

Flower Pattern: Below are the stages in our pattern. 
 
 
 
  
     
        Stage 1           Stage 2              Stage 3 
A. Can you show with the blocks what comes next? How stage 4 might look like to you? How about stage 5?  
B. Let us skip stages. Can you draw or describe in words how stage 10 might look like? How do you know for sure?  
Figure 24. Flower Pattern Task 
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In this section, our discussion focuses on the shapes of their extensional (or far) generalizations that we basically 
assessed on type of similarity alone. That is, similarity performance in figural pattern generalization ranges in 
competence from having no similarity across the pattern stages to manifestations of partial similarity and then to 
evidence of full similarity. A figural pattern that is fully similar to a learner means that there is an interpreted 
consistent (steady) shape that is conserved and shared across the given stages and the constructed extensions of the 
pattern. A figural pattern that is partially similar means that there is at least one notable local inconsistency in any 
of the constructed shapes despite the manifestation of a common or shared shape across the stages of the pattern. 
Sources of inconsistency pertain to those factors that distort the abduced similarity relationships (e.g. careless 
attention paid to the relevant angles, drawn stages that have disproportionate features of the same shape). A figural 
pattern that has no similarity implies that there is no common, similar, and steady shape that binds and organizes 
any of the pattern stages together in some way. In developing the categories for types of similarity, we acknowledge 
the possible interactions of other factors such as the continuous and approximate versus discrete and exact senses 
in which young learners perceive objects and their shapes. Such interactions have been carefully monitored in both 
data collection and analysis phases of the study.  

Table 5 provides summaries of the students’ responses in relation to the semi-free task shown in Figure 22. 
Over the course of two interviews, about 80% of the students did not construct any meaningful similarity 
relationship across the given stages of the pattern. Increasing the known stages from two to three also did not help. 
Consequently, none of them managed to produce an incipient generalization. Figure 26 shows common extensions 
that are not similar. The students who constructed them simply added one circle to three circles and did not provide 
an explanation. Some students like Skype narrowly focused on stage 3. They counted 5 circles altogether and then 
constructed extensions that had 2 circles more than the stipulated stage number that, in fact, became the rule for 
their emerging pattern. Some other students like Katya initially recognized the sequence 1, 3, and 5, saw that the 
values increased by 2, and then simply used the blocks on the table to help them obtain the succeeding values 
without paying any attention to shape at all. 

Triangle Pattern: Let us form a pattern from circles. Stage 1 has one circle. Let me build stage 2. How many circles are there? Let 
me build stage 3. How many circles are there this time? 
 
 
 
    
                Stage 1           Stage 2     Stage 3  
A. Can you show with the circle chips how stage 4 might look like to you? How about stage 5?    
B. Let us skip stages. Can you draw or describe in words how stage 10 might look like? How do you know for sure?  

Figure 25. Growing Triangle Pattern Task 
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Figure 27 shows two students’ work that exhibited partial similarity. Lina abduced the same L-shaped figure 
across her pattern but was inconsistent in terms of the dimensions of the two legs. Gemiliano also abduced the 
same L-shaped figure and produced the following sequence: {1, 2 + 1, 3 + 2, 4 + 1, 5 + 2, 6 + 1, 7 + 2, 8 + 1}. Each 
stage in his pattern consisted of two columns of circles with the first column of circles corresponding to the stage 
number and the second column oscillating between 1 and 2 circles. Unfortunately, he was unable to deal with stage 
10 solely on the basis of his abduction. Further, he could not explain the role of stage 1 in his pattern. 

Table 5. Grade 2 Students’ Pattern Generalization Involving the Semi-Free Task Shown in Figure 22 
 
First Interview Results (n = 21) 
 
 
 
Given: 
 
 
 

 NS PS FS 
Near Stage 3 18 2 1 
Near Stage 4 18 2 1 
Near Stage 5 16 2 1 
Far Stage 10 2 0 0 

 

 
Second Interview Results (n = 19) 
 
 
 
Given:  
 
 
 

 NS PS FS 
Near Stage 4 16 2 0 
Near Stage 5 16 2 0 
Near Stage 8 14 2 0 
Far Stage 10 2 0 0 

 
 

 

Jana, Second Interview 

 

Selma, Second Interview 

 
Skype, Second Interview 

 

Katya, Scond Interview 

 
Figure 26. Examples of No Similarity Extensions of the Figure 22 Semi-Free Pattern 
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Table 6 provides summaries of the students’ responses for the figural patterns shown in Figures 23, 24, and 25. 
The Flower Pattern task in Figure 24 produced more fully similar figures than the House Pattern task in Figure 23, 
while the Triangle Pattern task in Figure 25 produced fewer fully and partially similar figures than either the Flower 
Pattern or the House Pattern task. Except for one student who consistently produced fully similar figures. In all 
three tasks, each remaining student’s overall performance during the same interview session exemplifies how 
similarity performance as it relates to pattern generalization is influenced by the nature and complexity of the task 
under consideration. Figures 28 and 29 show samples of underdeveloped or unsteady similar figures on the Flower 
Pattern and the House Pattern tasks. Among the partial similar responses in Figure 28, the most significant 
difficulty was how to account for the appropriate number of triangles that surround the middle squares. Some 
students either overcounted (Eddie and Jana) or undercounted (Jake). In Juan’s case, when he was asked if he saw 
anything that was interesting to him within and across the given stages, he claimed that he saw triangles and 
squares and nothing else. In the case of the House Pattern, Jana in Figure 29 also thought like Juan in Figure 28, 
while those students who produced partially similar figures once again either overcounted (Lina in Figure 29) or 
undercounted (Gemiliano in Figure 29) the number of squares under each triangle. 

 

Lina, Second Grade 

 

Gemiliano, Second Grade 

 
Figure 27. Examples of Partial Similarity Extensions of the Figure 22 Semi-Free Pattern 

Table 6. Summary of Grade 2 Students’ Responses on Figures 23-25 Figural Patterns (n = 20) 
Figure 23 House Pattern Data 

 

 

 NS PS FS 
Near Stage 4 3 5 12 
Near Stage 5 3 5 12 
Far Stage 10 3 5 12 

 

Figure 24 Flower Pattern Data 

 

 NS PS FS 
Near Stage 4 1 6 18 
Near Stage 5 1 6 18 
Far Stage 10 1 6 18 

 

 
Figure 25 Triangle Pattern Data 

 
 
  NS PS FS 

Near Stage 4 12 7 1 
Near Stage 5 12 7 1 
Far Stage 10 12 7 1 
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The Triangle Pattern in Figure 25 was an ambiguous task for most of the students. While the intent was not to 
suggest or impose a growing triangle that only one student inferred on the pattern (Joko in Figure 30, about 60% 
of the students produced different figures from stage to stage (Cesar, Lina, and Eddie in Figure 30), thus, indicating 
no similarity in their perceptions of the pattern stages. Among the no similar responses, a few of them justified their 
figures by appealing to the successor property of whole numbers (Cesar: “stage 3 has 6 circles, so stage 4 has 7 circles, 
stage 8 has 8 circles”), while a few others abduced that the number of circles at any given stage would be twice the 
stipulated stage number (Lina: “stage 3 has 6 circles, so stage 4 has 8 circles, and stage 5 has 10 circles”). But there were 
more students like Eddie than Cesar and Lina who simply added circles from stage to stage to indicate that they 
were seeing an increasing pattern and nothing else. Among those who produced partially similar figures, either 
they overcounted (David), or narrowly focused on one aspect of their Figs. (Alain), or narrowly specialized on a 
given stage (Drake). 

Juan, Second Grade 

 

Eddie, Second Grade 

 
Jana, Second Grade 

 

Jake, Second Grade 

 
Figure 28. Samples of Underdeveloped Similar Figs. for the Flower Pattern in Figure 24 

Lina, Second Grade 

 

Gemiliano, Second Grade 

 

Jana, Second Grade 

 
Figure 29. Partially Similar Responses on the House Pattern in Figure 23 
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COMPETENCE WITH FIGURAL PROPERTY DISCERNMENT, CONSTRUCTION, 
AND JUSTIFICATION 

While shape similarity in the preceding section is a perceptual apprehension phenomenon, figural property 
discernment requires operative apprehension (Duval, 1999). An operative apprehension of an object involves an 
interpretive generation and construction of properties involving units, parts, features, components, or 
configurations that characterize and organize an emerging structure relative to the perceived object. It is both innate 
and learned depending on factors that influence its emergence. In (exact) patterning activity, the primary issue 

Joko, Second Grade 

 

Cesar, Second Grade 

 
Lina, Second Grade 

 

Eddie, Second Grade 

 
David, Second Grade 

 

Alain, Second Grade 

 
Drake, Second Grade 

 
Figure 30. Student Responses on the Triangle Pattern in Figure 25 
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involves the extent to which individual learners are capable of discerning properties that produce structures of a 
particular kind.  

Elementary school children with no formal experiences in patterning are likely to establish properties that rely 
on similarity obtained through (surface) appearances. With more formal training, however, they will learn to 
perceive such properties in terms of (function) rules that emerge as a result of coordinating their inferential 
processes of abduction, induction, and deductive closure. For example, David in Figure 2 initially abduced houses 
consisting of triangles and squares that increased by the stage number. He then induced his structure on his fourth 
and the fifth step (Figure 3). His drawn stage 10 in Figure 4 could be interpreted as a consequence of implementing 
a deductive argument, which involves using both his abduction (general rule) and the available instances on the 
table (the stages) as his hypotheses that enabled him to necessarily conclude that stage 10 would have the same 
structure of triangles and squares. Hence, a mathematically valid figural property discernment in pattern 
generalization activity involves the construction (abduction and induction) and justification (deduction) of rules 
that apply within and across the pattern stages. In Duval’s (1998) terms, the construction phase recruits both 
perceptual and operative apprehension mechanisms, while the justification phase employs discursive 
apprehension in which case the necessary figural properties that apply to the stages in a pattern are causally 
explained relative to an interpreted structure that produced them in the first place. Discursive reasoning from near 
to far generalization consequently shifts in context from describing the necessary steps (i.e., properties) in 
constructing the known stages in the pattern to being entirely independent of the operative dimension, where the 
structure is necessarily imposed (i.e., structurally argued) on the projected far stages of the pattern.  

However, the emergence of such rules among elementary school children is fraught with a few conceptual 
difficulties. Especially in the case of growing patterns, first-grade students’ initial patterning experiences oftentimes 
involve establishing recursively additive generalizations (Blanton & Kaput, 2004; Taylor-Cox, 2003). For example, 
a rule for the pattern in Figure 19 would have them constructing the rule “add 4 sticks at each stage to form a new 
square,” which is not an algebraically useful generalization. Thus, pattern generalizing would need to take into 
account the possibility that such prior knowledge is likely going to manifest itself in their emerging generalizations. 
The dilemma, of course, is that discerning the property of adding 4 each time to generate a new square from one 
stage to the next does not appear to be as essential as perceiving the pattern in terms of sides that increase by 
multiples of 4, which is an algebraically useful generalization. When an emergent generalization has the property 
of algebraic usefulness, any far generalization task could then be induced without having to construct the preceding 
stages, which is a rather inefficient strategy that is performed in any case of recursively additive generalizations. 
The figure on the right of Figure 31 shows a US third-grade student’s long process for generating the total number 
of squares in stage 10 in relation to the figural pattern on the left. Nikki initially saw that the pattern was increasing 
by 2 squares at every stage. She then constructed stages 4 and 5 with circle counters following her recursive rule. 
In dealing with stage 10, she transitioned numerically from the figural cues and patiently added 2 until she obtained 
23 squares total. Tanisli and Özdas (2009) also report similar findings concerning the prevalent use of recursive 
formulas among Grade 5 students (mean age of 10 years) in Turkey when they established generalizations for linear 
and quadratic figural patterns. 

Hence, figural property discernment involves the construction and justification of algebraically useful 
configurations. Following Duval (1999), such discernment fundamentally involves cognitive actions of processing 
and conversion beyond mere visual perception2, where processing involves implementing figural operations such 
as making figural transformations or reconfigurations on the pattern stages in order to see an emerging structure 
better and conversion involves translating one representational context into another (e.g., Nikki’s combined verbal 
and pictorial description that transitioned to numerical sentences in Figure 31). Figure 32 exemplifies figural 
processing strategies that have been drawn from the work of three Australian Year 5 students (ages 9 to 10 years) 
in Cooper and Warren’s (2011) study who processed the stages in the given pattern using different but equivalent 
ways. Their converted representations reflect the processing they imposed on the stages. All three of them 
operatively apprehended growing twin towers of blocks. Ron saw one tower with height (n + 1) and another tower 
with height n. For Sue, the tower consisted of two equal columns of blocks with an extra block on the top left 
column. Jane initially imagined a full two-column tower of blocks that enabled her to calculate its height, 2 x (n + 
1). She then subtracted 1 from the total height in order to convey that she was taking away the unnecessary block 
that was initially added. 

                                                                 
2 For Duval (1999), visualization is an “intrinsically semiotic” (i.e., neither mental nor physical) cognitive activity. He distinguishes 
between visual perception (vision), which is primitive, and visualization, which has both epistemological and synoptic functions. 
Vision primarily engenders direct access and intuition of objects, while visualization involves the construction of a (semiotic) 
representation (epistemological function). In any semiotic representation, “relations or, better, organization of relations between 
representational units” are noted, including and especially those that are not at “all that accessible to vision” (Duval, 1999, p. 13). 
Also, while vision initially apprehends objects and their totality, it is never a “complete apprehension” (ibid.) unlike visualization 
that engenders discourse and deductive actions such as acts of focusing and noticing (synoptic function). 
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What is apparently complex among learners when both cognitive actions of processing and conversion are 
performed deals with matters that pertain to their coordination, especially “between the registers of representation” 
in the conversion phase (Duval, 1999, p. 11). Of specific concern to figural processing of patterns deals with what 
Lee (1996) refers to as perceptual agility, which pertains to the acquired ability of “seeing several patterns and a 
willingness to abandon those that do not prove algebraically useful” (p.95). If a figural processing is not likely to 
yield an algebraically useful conversion, the task of changing in register from, say, the verbal to the algebraic is 
expected to be a difficult and an almost impossible undertaking. Nikki in Figure 31, for example, figurally processed 
a nonalgebaically useful recursive structure that she verbally described in clear terms. However, she was unable to 
apply it when she had to deal with stage 100 of the pattern. Duval (1999) notes that learners need to learn how to 
select the relevant configurations that “could cause the anticipation of the kind of” (p. 17) meaningful conversions 
that are congruent, an “essential condition” that brings forth a sufficient “transparency” and, thus, enables an “easy 
translation” from the “starting register to the target register” (ibid, p. 10). For figural patterns, like geometrical 
objects, “have not one but many possible configurations or subconfigurations” (ibid, p. 17). 

Since (exact) figural processing that yields algebraically useful structures appears to be necessary, its emergence 
and development effectively take place in socially objectifying situations and activities. The term socially objectifying 
is used in Radford’s (2010) sense in which students in joint activity with one another “become acquainted with 
historically constituted cultural meanings and forms of reasoning and action” (p. 3).  

 
 
  

  
  
             Stage 1          Stage 2  
  
  
 
  
  
      Stage 3  
 
 
 
 
  
      Stage 4 

 
Figure 31. US Third Grade Student’s Pattern Generalization of the Two-Row Patterning Task 

 
  
 
 
 
  
 

           Step 1        Step 2               Step 3 
 Ron Sue Jane 

 
 
 
 

 
 
  
    

             (n + 1) + n                 2 x n + 1      2 x (n + 1) – 1 
Figure 32. Year 5 Students’ Algebraically Useful Structures for the Tower Pattern (Cooper and Warren, 2011, p. 198) 
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For example, a classroom mathematical activity is seen as the site of a relational-driven communal zone of 
proximal development, where “instruction leads the course of development and that such a course depends on the 
kind of relationship that is created between [a] student and her context” (ibid). Radford (2010) illustrates a socially 
objectifying figural processing in the context of his work with a class of Grade 2 Canadian students (ages 7 to 8 
years). When the students began to investigate the pattern on the left in Figure 31, one group of students initially 
abduced the common difference of 2 squares between two consecutive dependent terms and appeared oblivious to 
possible spatial configurations that could be interpreted from the pattern stages. Realizing this, the teacher, 
Natasha, stepped in and collaborated with them in constructing an algebraically useful structure that consists of a 
bottom row with n squares and a top row with (n + 1) squares. In the joint activity phase, Teacher Natasha implicitly 
conveyed to the group an intentional abduction that then became their basis for further induction. Certainly the 
abductive structure became explicitly known to the group via pointing gestures, words, and rhythm, which could 
be considered as grade-level appropriate semiotic means of objectification. We should also note that in the reported 
classroom study, Teacher Natasha shared with the entire class another group-generated algebraically useful 
structure – that is, two equal rows of white squares and a dark square – that enabled the students to deal with two 
additional far generalization tasks.  

In closing the patterning activity analysis with the students and their teacher, Radford (2010) points out that an 
(exact) figural conversion of the students’ structures did not involve transformations in representational forms from 
the verbal to the algebraic consisting of variables, terms, and operations. Rather, their converted generalizations 
reflected the use of “embodied formulas” that “instead of being expressed through letters [are] expressed through 
actions unfolding in space and time” (p. 7).  

A further analysis of Radford’s (2010) study highlights the significant role of the teacher in the social 
objectification of exact figural processing, which involves coordinating shape, numerical count, and figural 
configurations around mathematical conditions of consistency and stability in pattern generalization (cf. Carraher, 
Martinez, & Schliemann, 2008; Warren & Cooper, 2007) For example, in a series of inductive actions with her 
students on the pattern shown in Figure 31, the teacher (Natasha) initially asked them to “look at the squares at the 
bottom … just the squares at the bottom” (p. 4). She then engaged them in a series of verification steps, as follows: 
“In Term 1, how many?” “Term 2?” “Term 3?” “Term 5?” “Term 6?” “Term 7?” “Term 8?” She employed the same 
rhythmic pointing gestures for the top row squares.  

Warren and Cooper (2007) also note the effective use of teacher-mediated figural parsing in the context of their 
patterning work with Australian Year 4 students (mean age of 9 years). They point out that their students began to 
perceive patterns in terms of having a structure with invariant parts as a consequence of the joint activity that took 
place between them and their teacher. We contrast this particular finding with inexact and approximate figural 
processing of patterns that many elementary students have been documented to manifest in some cases of 
patterning tasks in the absence of any formal instruction or intervention from their teachers. Some students, like 
David in Figure 7, Lina in Figure 27, and the children in Figure 28, could figurally process stages into parts. 
However, the parts themselves do not reflect a consistent and stable structure across the pattern stages. Some other 
students, like Gemiliano in Figure 27 and Drake in Figure 30, could also figurally process stages into parts. 
However, they tend to ignore the initial stages in a pattern and instead narrowly specialize on the last given stage 
of the pattern. Consequently, while their extended stages may appear to be consistent and stable, the stages 
altogether fail to be an unambiguous and a well-defined pattern.  

(Exact) Figural processing that yields algebraically useful structures may also occur in objectifying situations 
and activities that are not fully social, that is, without assistance from, say, a teacher. This happens in cases of 
patterning tasks that either have figural goodness or are causally potent, which makes the task of figural processing 
easy to accomplish. In such cases of patterns, they possess an arrangement that has evident structural features such 
as symmetry and repetitiveness and could, thus, be figurally parsed without much effort (Pothos & Ward, 2000; 
Rivera, 2011). For example, in Table 6, roughly 15 out of 20 second-graders in Rivera’s (2010) study obtained correct 
far generalizations on the Figures 23 and 24 patterns in the absence of formal instruction. Their constructed near 
and far generalizations reflect a consistent and stable interpreted structure across the given and extended pattern 
stages. However, we underscore difficulties in (exact) figural conversion, in particular, in third grade (i.e. the 
following school year) when those same second grade students were asked to transform their verbally-based 
structures into an arithmetical expression involving both addition and multiplication operations3.  

                                                                 
3 Context of the clinical interviews in third grade: The interviews took place toward the end of the school year without any 
intervening teaching experiment on patterns. Lack of instructional time prevented the third-grade class from exploring patterning 
activity. However, the author worked with the third grade teacher in ensuring that the entire third grade mathematics curriculum 
fostered structural and multiplicative thinking within and across the strands (i.e. number sense, algebra, statistics, data analysis, 
and probability, and geometry and measurement). Like in the previous year, individual students were clinically interviewed on 
the five figural patterning tasks shown in Figure 33. In each task, they were asked to: (1) construct stages 4 and 5 based on their 
initial interpretation of the given stages; (2) verbally describe stage 10; (3) try to transform their verbal description in arithmetical 
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Table 7 provides a summary of the third grade students’ pattern generalization performance on the five tasks 
shown in Figure 33. Less than 58% of the 19 students interviewed were successful in transitioning from the 
specificity of their constructed stages and verbal-based structural descriptions to an arithmetical direct expression. 
Among those who were unable to perform a conversion, they experienced considerable difficulty in bringing 
together and coordinating two different registers of representations for the same object (i.e. patterns) resulting in a 
conversion split. Among those who were successful in converting, however, both their verbally induced structures 
and arithmetical expressions were congruent. 

 

                                                                 
form involving whole numbers and the operations of multiplication and addition; and (4) state the total number of objects in stage 
100 by using the arithmetical formula they established in (3). Concrete blocks were provided throughout the interview. Drawn 
pictures of the pattern stages were shown one by one. The students then had the option of using the blocks to reconstruct the 
stages, however, we asked them to draw all the extended stages on paper. 

  Cross Pattern                             Two-Row Pattern 

 

 

 

 

    

       Flower Pattern                       Semi-Free Task 

 

 

 

 

 L-Shaped Pattern 

Figure 33. Patterning Tasks for Third Graders 
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Figure 34 illustrates three different algebraically useful structures for the Two-Row patterning task in Figure 
33. In all three cases, the students successfully coordinated their figural processing and conversion in a single action. 
Stan’s generalization was the most frequent response. He immediately saw “two rows of circles and a dark circle” 
that he then conveyed arithmetically in that order, “[stage 100} there are two rows of 100 circles, 2 x 100, plus 1 for 
the [dark] circle at the end.” The responses of Kirk and Joko reflect the manner in which they understood the 
concept of multiplication of whole numbers, which explains the evident use of circling groups of two objects that 
led them to their respective generalizations. 

Table 7. Third Grade Students’ Performance on the Pattern Generalization Tasks Shown in Figure 33 (n = 19) 
 NStage 4 NStage 5 FStage 10 Far Generalization Expressions 

Cross 
Pattern 17 17 14 

100 x 4 + 1 or 4 x 100 + 1: 11 responses (“4 groups of 100 squares plus 1 
square in the middle”) 
Constructed stage 10 correctly but could not state a direct formula: 5 responses 
No structure: 2 responses 

Two-Row 
Pattern 17 17 6 

2 x 100 + 1: 6 responses (“2 groups of 100 squares plus the shaded square”) 
100 x 2 + 1: 1 response (“100 groups of 2 squares plus the shaded square”) 
100 x 2 + 1: 2 responses (“100 top-bottom pairs of 2 squares plus the shaded 
square”) 
Stage 10: 19 + 2 = 21: 1 response (“Keep adding 2, see Figure 5.22)  
No structure: 2 responses 

Flower 
Pattern 15 15 10 

2 x 100 + 102: 1 response (“100 triangles each on first and third rows and 102 
squares in the middle row”) 
100 x 3 + 2: 2 responses (3 rows of 100 (squares and triangles) plus the 2 side 
triangles”) 
2 x 101 + 100: 1 response (“2 groups of 101 triangles and the 100 squares in 
the middle”) 
Constructed stage 10 correctly but could not state a direct formula: 10 
responses 

Semi-Free 
Task 4 4 2 

99 x 2 + 1: 2 responses 
100 + 1: 1 response 
No structure: 15 responses 

L-Shaped 
Task 11 11 5 

2 x 99 + 1 or 99 x 2 + 1: 8 responses (“2 groups of 99 squares plus the corner 
square”) 
Constructed stage 10 correctly but could not state a direct formula: 3 responses 
100 + 99: 1 response (“100 squares down and 99 squares across”) 
No structure: 8 responses 

 

Kirk 
4 groups of 2 plus 1 to 

100 x 2 + 1 

 

Stan 
2 rows of 6 plus 1 to 

2 x 100 + 1 

 

Joko 
5 pairs plus 1 to 

100 x 2 + 1 

 

Figure 34. Three Different Structures for the Two-Row Patterning Task in Figure 33 
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IMPLICATIONS FOR MATHEMATICS LEARNING: ELEMENTARY STUDENTS’ 
EMBODIED GENERALIZATIONS ON PATTERN GENERALIZATION TASKS 

RANGE IN TYPE, FORM, AND CONTENT 
Based on the foregoing discussion, elementary students are naturally drawn to expressing their incipient 

generalizations in several different ways, and their competence depends, at the very least, on the nature and level 
of complexity of the patterning task that is presented to them. What is amazing regarding children who have not 
been exposed to formal experiences in patterning is their disposition to choose representations that they consider 
meaningful, which conveys the embodied nature of their generalizations that are all directly tied to their perceptual 
apprehensions, operative assumptions and expectations, and sensorimotor actions with the patterns. Hence, their 
representations take shape in many forms through the use of gestures, pictures, words, numbers, and combinations 
of forms depending on their prior and ongoing experiences and context. Also, while their constructed expressions 
of generality oftentimes involve pictures, words, and numbers, their justifications tend to be primarily gestural in 
nature at least prior to formal instruction. For example, David in Figure 2 employed the same steady gesture as a 
way of expressing how he was apprehending the general shape of the given pattern stages.  

One consequence of formal instruction in patterning involves gesture fading in which case gestures are 
converted to diagrams in the form of external grouping processes such as the circling method in Figure 34. The 
diagrams then become the basis for converting to, and explaining, the corresponding arithmetical expressions. 
Suffice it to say, the quality and content of elementary students’ pattern generalizations over time could be 
explained by their reliance in using their actual (physical) actions with patterns and the learned context in which 
they begin to abduce (conceptual) relations that they extract from their actions.  

While Radford (2010) in the preceding section has referred to elementary students’ generalizations in patterning 
activity as exemplifying instances of embodied formulas, they, in fact, produce at least three different kinds of 
abductively-driven generalization, namely, structurally iconic, indexical, and symbolic generalizations (Rivera, 2011). 
In the initial phase, their structurally iconic and indexical direct expressions resemble quite faithfully the structural 
contexts of their emergence – that is, their meanings are linked to how they are apprehended both perceptually and 
operatively by individual learners. The numerical terms convey how many objects are seen (a perceived similarity 
between sign and object, hence, iconic), while the overall verbal, gestural, and/or arithmetical expression with 
either the indicated or implicitly stated operations show how the objects are concretely and physically seen (an 
inferred relationship between sign and object, hence, indexical). Later, during the deductive closure phase of 
generalizing, where both the rule (established by abduction and induction) and the known instances (both given 
and extended stages) are used as hypotheses to justify a conclusion (an inferred structure for the projected stages), 
the expressions further evolve into structurally symbolic generalizations. At this point, the focus of cognitive 
attention is the rule itself. When this situation occurs, students conceptually disregard the objects that comprise the 
stages in favor of the rule, which is determined by some (learned or social) convention, rule, code, agreement, or 
causality. For example, the circling process and the use of the term “m groups of n” in Figure 34 have to be 
understood in terms of how the students interpret the meaning of multiplication.  

Hence, among elementary students, their generalizations can be assessed on the following points that are not 
necessarily mutually exclusive but related: 

• (Type of relationship being Inferred) Are the generalizations iconic and indexical or symbolic? 
• (Type and complexity of apprehension being manifested) What factors support and hinder the development of 

iconic and indexical generalizations? 
• (Context of rule being inferred) What factors support and hinder the development of symbolic generalizations?  
Figure 35 captures the sense in which pattern generalization competence emerges among elementary students. 

Following Deacon (1997), there is a bidirectional relationship among iconic, indexical, and symbolic generalizations 
with the symbolic ones drawing and operating on the relevant iconic and indexical forms that comprise them. Iconic 
representations are oftentimes the first to emerge. They are perceptually apprehended and are influenced by 
similarity of forms (numerical, figural, or both). Indexical representations emerge with operative apprehension via 
the spatial and numerical relationships that are inferred on the objects. Symbolic representations emerge as a logical 
consequence of seeing that a relationship between a particular sign and its object “is a function of the relationship it 
has” (Deacon, 1997, p. 86) with all the given and the projected stages in a pattern. 
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IMPLICATIONS FOR MATHEMATICS TEACHING: HELPING ELEMENTARY 
STUDENTS SEE ARITHMETICAL NUMBERS AS INTUITED AND TACIT 

VARIABLES SUPPORTS GROWTH IN ALGEBRAIC THINKING 
Another significant finding that could be drawn from elementary students’ ability to construct and justify 

incipient generalizations on certain patterns concerns the manner in which they treat arithmetical numbers in such 
contexts. That is, when appropriate patterning tasks are presented to them, they tend to manifest an implicit 
understanding and correct use of variables through arithmetical numbers. Certainly, having an inferred 
algebraically useful structure is a prerequisite. For example, the three students in Figure 34 were clearly cognizant 
of their abduced structures, hence, the use of arithmetical numbers emerged naturally during the process of 
induction. This situation resembles the static geometric-solving phase (Katz, 2007) in the history of algebra when Al-
Khwarizmi’s famous rhetorical-driven (i.e. verbal-based) manual for solving arithmetical problems primarily 
employed concrete numbers as his way of demonstrating the manner in which “he grasp[ed] the procedure of [a] 
solution in its entire universality” (Kvasz, 2006, p 292). Concrete numbers to him and to those who were still 
oblivious to the use of variables used concrete numbers for illustrative purposes.  

Referring once again to Radford’s (2010) work with a small group of 3 Grade 2 Canadian students on the figural 
pattern shown on the left in Figure 31, they initially abduced an invariant structure for the pattern (i.e. two 
horizontal rows of squares determined by the stage number and the dark corner square) prior to performing 
induction involving stages 25, 50, and 500. For Radford, their emergent in-action formulas implicitly employ an 
intuited variable. Further, such formulas evolve into a “more sophisticated form of algebraic thinking” (Radford, 
2010, p. 80) when the intuited variable transitions into a tacit variable. In Radford’s (2010) study, this transition 
occurred when the teacher pulled out several cards with labels corresponding to stage number (e.g. 5, 15, 100, 104, 
etc.) that prodded the students to obtain and verbally articulate a generalization on the basis of the stipulated stage 
number. Rivera’s (2010) work with US second grade students also produced findings that were similar to Radford 
(2010). Prior to any formal intervention and within the context of a clinical interview, Rivera asked 20 Grade 2 US 
students to obtain generalizations for the three figural patterns shown in Figures 23, 24, and 25. As shown in Table 
6, between 12 to 18 of the 20 students obtained correct far generalizations for the Figures 23 and 24 patterns and 
only 1 student provided a correct far generalization in the case of the Figure 25 pattern.  

 
 

 
Figure 35. Emergent Models of Pattern Generalization Structures Among Elementary Students (Adapted from Deacon, 1997, pp. 
75 and 79) 
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Hence, having an algebraically useful structure - and not just any structure for that matter - supports the 
emergence of arithmetical numbers as concrete variables. Where Radford and Rivera differed in their finding deals 
with the modality in which their students expressed their tacit variable based generalizations. In Rivera’s study, 
the students successfully generated tacit variable based generalizations in closed forms that they conveyed initially 
in a gestural-concrete mode and much later in pictorial form. The gestural-concrete mode enabled them to exhibit 
in-action formulas. In the pictorial mode, the students were initially shown a card with a label corresponding to the 
stage number. They then used a construction paper to draw the correct outcome for any far stage in the pattern 
that, following Radford (2010), is an indication of tacit variable based generalizing. 

IMPLICATIONS FOR MATHEMATICS LEARNING AND TEACHING: 
ENGAGING ELEMENTARY STUDENTS IN FIGURAL PATTERN 

GENERALIZATION PROCESSING FACILITIES GROWTH IN EARLY FUNCTION 
UNDERSTANDING 

In this final section, we focus on elementary students’ understanding of functions in pattern generalization 
contexts. Recent research results drawn from classroom teaching experiments have shown younger children’s 
natural capacity toward constructing and understanding functions in context. Based on their work with 
prekindergarten to Grade 1 students, Blanton and Kaput (2011) note that table-based functions help students 
organize covarying data, which then enable them to transform the collected information from opaque (i.e. merely 
as a storage for ordered pairs of numbers) to transparent (i.e. “looking through to see new relationships” (p. 11)). 
Cooper and Warren’s (2011) study with Australian Year 5 students (ages 9 to 10 years) also indicate their ability to 
“understand the workings of function machines in terms of numbers” (p. 200). Moss and London McNab’s (2011) 
work with 7- and 8-year-old students in Canada and the USA on function machines exemplifies natural connections 
that students make between such machines and their understanding of multiplication that enabled them to 
establish and construct rules for the numbers in the machines. The authors also point out the value of designing 
function tables that consist of cues appearing in a non-sequential order so that students’ attention are focused on 
covarying (versus correspondence) relationships, which would then encourage them to generate explicit (versus 
recursive) rules. The studies of Carraher, Martinez, and Schliemann (2008) and Vale and Pimentel (2010) conducted 
with Grade 3 students (ages 8 to 9 years) in the USA and Portugal, respectively, also employed function tables that 
had sequential cues. However, the dependent column consisted of arithmetical expressions instead of mere outputs 
that reflected an emerging structure for the pattern.  

For example, in Carraher, Martinez, and Schliemann’s case, the pattern generalization task had the students 
obtaining the maximum number of people that could sit in n number of detached square tables (one on each side). 
In the table provided to them, the dependent column contained the expressions 1 x 4 and 2 x 4 that encouraged the 
students to obtain an explicit rule for the pattern. In Vale and Pimentel’s case, the pattern generalization task 
involves finding the total number of objects that comprised a growing regular hexagon with a pair of triangular 
tails growing on opposite sides of the hexagon and increasing by the stage number. The function table also had 
cues appearing in a sequential manner, however, the dependent terms reflected the students’ emerging structure 
for the pattern, which took the form 1 + n + n + or 1 + 2 x n, where n represents the stage number. In terms of 
curriculum development, Cai, Ng, and Moyer (2011) note the value accorded to functions as a big idea in the 
Singapore mathematics curriculum, which is introduced in Grade 2 (mean age of 8 years). At that level, the students 
explore functional relationships in familiar numerical and figural contexts as an application of learning their 
multiplication facts and solving relevant multiplication problems.  

Rivera’s (2010) work with US Grade 2 students prior to formal instruction on patterns and functions also shows 
that some students have the ability to construct functional relationships. In Table 6, those students who were 
successful in constructing their far stages clearly saw and pictorially conveyed a relationship between stage number 
(as an input) and outcome in the absence of a function table. In other words, having an algebraically useful structure 
appears to be a minimal indicator that young children are capable of functional understanding. But, how deep is 
the content of their understanding of functions? Rivera assessed this issue in a clinical interview setting with the 
same second-grade cohort in a follow up study that took place the following year when the students were in third 
grade. He employed the same definition of a function that Carraher, Martinez, and Schliemann (2008) used in the 
context of their work with third grade students. For them, two ordered pairs (a, b) and (a, c) in a function imply b 
= c, that is, 

[a] function is a relation that uniquely associates members of one set with members of another set. More 
formally, a function from A to B is an object f such that every is uniquely associated with an object. A 
function is therefore a many-to-one (or sometimes one-to-one) relation. (Weistein quoted in Carraher, 
Martinez, and Schliemann, 2008, p. 10) 
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The 11 students who were successful in constructing and justifying a direct rule for the Cross Pattern in Figure 
33 (see Table 7) were all asked if it was possible to generate different outcomes for the same inferred rule. 
Interestingly enough, all 11 students initially drew or constructed figures that merely changed the orientation of 
the original figures by rotation (resulting in figures that reflect similitudes; see footnote 1). Hence, in this particular 
figural patterning context, while the numerical outcomes for both the original and rotated figures were the same, 
the students saw the figures as conveying two different outcomes (i.e., a constructed stage resulting from a dilation 
appeared to be different from a constructed stage resulting from a similitude).  

Pattern generalization studies that have been conducted with middle school students (ages 11 and above) show 
that they tend to process patterns using a variety of numerical and additively recursive strategies. Among adults, 
for example, numerical generalizing strategies appear to be more frequently used over strategies that elementary 
school children have been documented to exhibit. For example, a majority of young children’s correct incipient 
structural generalizations do not appear to be additively recursive but additively and multiplicatively functional. 
In other words, their use of visually drawn strategies naturally supports structural generalizations of the algebraic 
kind, unlike older individuals who, perhaps as a consequence of many years of training, tend to choose numerical 
strategies that could lead to correct variable-based generalizations. Unfortunately, many of those reported cases 
also demonstrate their inability to explain them because of weak to no abductions that could support their 
justifications. 
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