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Abstract 

This paper addresses the issue of the gap that exists between the mathematics studied in initial 

teacher training and the school mathematics that the in-service teacher must teach. We present 

empirical results on how pre-service teachers (PTs) activate and coordinate cognitive processes 

and epistemological aspects when solving a university mathematic task that can be solved in the 

calculus domain. This task can likewise be adapted to the school level. This study is based on the 

theory of mathematical working spaces (MWS). The results examine the differentiation of the 

MWS of the participants according to the dynamics present between the problem-solving 

processes used in the task. The study’s conclusion explores the possibilities offered by the task in 

terms of enriching the MWS of PTs and contributing to the shrinking of the mathematical gap 

that exists between the university and the school. 

Keywords: mathematical working spaces, initial teacher training, tasks design, calculus, university 

mathematics, school mathematics 

 

INTRODUCTION 

Diverse studies have reported the existence of a gap 
between the university mathematics that pre-service 
teachers (PTs) must learn and the school mathematics 
that they later need to teach (e.g., Wasserman et al., 2018; 
Weber et al., 2020; Winsløw & Grønbæk, 2014). In this 
respect, research indicates that there are both advantages 
and disadvantages to dedicating substantial space to 
advanced mathematics courses in initial teacher training 
(Weber et al., 2020). The present study considers the 
extensive mathematics education that students receive in 
initial teacher training in Chile according to the 
Standards for Programs in Mathematics Pedagogy 
(2021) and problematizes the need to find tasks that 
connect this knowledge with school mathematics.  

Some research in mathematics education addresses 
the advantages of advanced mathematics courses in 
terms of the amount that the PT must learn. These are 
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related to the encourage of abilities such as logical 
thinking, abstraction, generalization, and demonstration 
(Alfaro-Carvajal & Fonseca-Castro, 2018; Weber et al., 
2020), which, it is hoped, the future teacher will proceed 
to encourage in their future students in the school. 
Meanwhile, regarding the disadvantages, some studies 
have demonstrated that there is no clear correlation 
between the number of advanced mathematics courses 
taken by the PT in the university and the performance of 
their students in the school (Ubah & Bansilal, 2018; 
Wasserman et al., 2018). For this reason, dedicating the 
majority of the plan of studies to mathematics courses 
could detract from other important topics in teacher 
education, such as teaching methods for specific 
contents, educational policy, or neurodevelopment, 
among others.  

The study carried out by Ubah and Bansilal (2018), 
which involved 42 PTs, reports that despite the 
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participants taking various advanced mathematics 
courses, they showed difficulty in interpreting and 
solving school mathematics problems, specifically 
involving quadratic equations. Ubah and Bansilal (2018) 
attribute this problem, in part, to the way teacher 
education programs are structured. Furthermore, 
another study has shown that taking many advanced 
courses does not reduce difficulties in the development 
of recognized mathematical abilities, such as carrying 
out demonstrations (Stylianou et al., 2009). 

Particularly in the calculus domain, teacher 
education programs devote a significant portion of the 
plan of studies to addressing mathematical objects such 
as real numbers or continuous functions–objects specific 
to this domain–which allows an understanding of the 
structure of the object in question, putting it into use in 
hypotheses and solving problems related to it. However, 
multiple studies point to deficiencies in this domain, 
which are largely attributed to the tasks presented and 
how they are undertaken (Ubah & Bansilal, 2018; Weber 
et al., 2020). This issue is linked to the fact that 
historically, the teaching of analysis has placed greater 
importance on algebraic treatment–in the sense of Duval 
(2006)–through logical connectives, or the use of 
symbolic instruments, relegating solutions to those that 
come from processes associated with the perceptual or 
visual (Presmeg, 1986; Tall & Vinner, 1981; Vinner & 
Dreyfus, 1989). 

Learning Difficulties in the Calculus Domain 

For decades, many studies have indicated difficulties 
in learning in the calculus domain (e.g., Harel & Sowder, 
2005; Rupnow & Randazzo, 2023; Scheiner & Pinto, 2019; 
Weber et al., 2020). According to various research (e.g., 
Artigue, 1998; Harel & Sowder, 2005; Tall & Vinner, 
1981), initial learning in calculus involves both 
epistemological and cognitive challenges and often the 
previous ideas that students bring with them from 
school are not sufficient or, indeed, can lead to 
difficulties in the construction, definition, and use of 
calculus objects. Added to these issues, the teaching of 
this domain generally “leaves the necessary 
reorganization of conceptions to the private work of 
students” (Artigue, 1998, p. 47). 

One of the main difficulties for students in calculus is 
the transition from an intuitive idea to a formal 
definition (Artigue, 1998; Vinner & Dreyfus, 1989). In 
this sense, it is possible that in the act of creating or 
utilizing a definition, the necessity exists to deploy a set 
of carefully connected processes consciously or 
unconsciously. Tall and Vinner (1981) refer to two types 
of definition: concept images, definitions that are specific 
to the individual, including images, examples, 
properties, and associated mental processes; and concept 
definitions, which relate to those definitions that have 
been institutionalized by the mathematical community 
(Harel, 2006). Regarding the same idea, Cornu (1981) 
uses the term spontaneous conceptions to refer to the 
conceptual images that the individual has acquired 
through their experience, including daily experience. In 
doing so, Cornu (1981)in question has problematized the 
disconnections that occur when solving a mathematical 
task.  

One line of research that utilizes this distinction 
(between concept and definition) details how students 
often reason based their own concept, even if they know 
or have had contact with the definition (e.g., Dahl, 2017; 
Elia et al., 2016; Sierpinska, 2000; Vinner & Dreyfus, 1989; 
Zandieh & Rasmussen, 2010). Therefore, the capacity of 
the PT to extract or select a definition to address a certain 
problem, and how this definition is put into action, 
emerges as a topic of interest.  

In the literature on the teaching or learning of 
continuous functions, difficulties are reported mainly in 
relation to the difference between the intuitive idea and 
the formal definition of the concept (Tall & Vinner, 1981). 
This can be observed in work involving graphs (Baker et 
al., 2002; Dahl, 2017) or in problems related to movement 
(Sokolowski, 2019). These phenomena are linked to 
historical epistemological aspects of the concept–in the 
intuitive definition of Newton and Leibniz, as well as 
that of Euler, the continuous function is described as a 
freely guided curve, implying movement, flow, and 
change over time (Núñez et al., 1999). 

Likewise, other studies establish difficulties with 
aspects of propositional logic in the use of open intervals 
in the definition of continuous functions (Ko & Knuth, 
2009; Messias & Brandemberg, 2015). As a consequence, 
this definition does not allow for the analysis of atypical 

Contribution to the literature 

• This study reveals the gap between the mathematics studied in initial teacher training and mathematics 
in secondary education, especially in the domain of calculus. 

• One contribution of this research is the design and implementation of tasks that can be adapted to different 
contexts and educational levels, allowing for the construction of bridges between school and university. 

• Another contribution of the study relates to the exhaustive analysis of the mathematical work of future 
teachers, considering epistemological and cognitive aspects, which can be extended to other mathematical 
domains of teacher training. This can contribute to improving specific aspects or making decisions 
regarding training. 
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cases (Shipman, 2012), which in turn influences the 
treatment of other concepts that depend on continuity 
(Rodríguez-Nieto et al., 2021). Recently, aspects of 
propositional logic have been associated with difficulties 
of a linguistic variety in the definitions of concepts 
(Schüler-Meyer, 2022). All of these studies indicate that 
the tasks proposed are in a formal area of mathematics 
where the functions appear explicit; it is not clear that 
these tasks could work in the school environment, that is 
to say, they correspond more to higher education.  

According to Weber et al. (2020), courses on analysis 
should be specifically designed for PTs, and the activities 
therein should meet the needs of mathematics teachers. 
Weber et al. (2020) propose activities that address 
trigonometric functions and trigonometric equations 
using theorems on continuity, injectivity, and monotony, 
considering that in mathematics teaching, these objects 
are treated algebraically and graphically, but without 
connecting the two approaches.  

Considering the above, proposing tasks in teacher 
education that connect university mathematics with 
school mathematics, in topics in the calculus domain, 
could contribute to the formulation of didactic 
transpositions that future teachers will utilize in their 
school classrooms.  

School Context in Chile 

In the Chilean school curriculum, the continuity of 
functions is seen in one elective course for eleventh and 
twelfth grades (students aged 16 and 17, primarily) 
called “limits, derivatives, and integrals” (Ministerio de 
Educación de Chile [MINEDUC], 2021). The property is 
presented as closely linked with the concept of limits. 
Specifically, the concept of the continuous function is 
developed within the learning objective “argumentation 
about the existence of limits of functions at infinity and 
at a point to determine convergence and continuity in 
contexts of mathematics, science, and daily life, both by 
hand and using digital technological tools” (MINEDUC, 
2021, p. 99). 

The curriculum for this subject states, as a 
foundational idea, the necessity to develop work that 
provides opportunities to visualize concepts, make 
conjectures, experiment, and utilize software to learn 
mathematics (MINEDUC, 2021). This document also 
promotes working with various types of representations, 
along with indicating that it is advisable to present a 
structuring of the domains (such as algebra, geometry, 
or infinitesimal calculus). It also states that, beyond 
having students finish the course knowing all of the 
content, what is expected is for them to develop 
mathematical thinking, since the subject entails  

“their first approach to the explicit calculation of 
situations that involve reasoning about infinity 
[…] [and] symbolic calculation alone does not 

guarantee that they will improve their intuition in 
this sense, which is why the use of 
representations, diagrams, analogies, and 
metaphors is suggested” (p. 25). 

In general, the curricular documents in Chile offer 
examples of tasks and recommendations for teachers to 
address continuity (MINEDUC, 2021). In this regard, the 
tasks made available for the subject in question are 
varied and require a deep understanding of the calculus 
domain. This all suggests the need for a comprehensive 
preparation for the mathematics teacher, in order for 
them to be able to lead their future students to pose these 
questions and find answers by undertaking various 
types of work, from the visual or intuitive to the formal, 
articulating domains and planning work with digital 
tools.  

Based on the above, considering the difficulties 
associated with learning calculus and the necessity for 
study tasks that help connect university mathematics 
and school mathematics in teacher education, the 
objective of this study is to characterize the mathematical 
work of PTs when solving a task designed to connect school 
mathematics with university mathematics, referring to 
continuous functions.  

THEORETICAL FRAMEWORK 

To characterize the synergy of processes put into play 
in the mathematical activity of PTs and understand their 
dynamics, by means of an open task that can be solved 
in both a school and university context, the theory of 
mathematical working spaces (MWS) (Kuzniak et al., 
2016, 2022) is used as a basis. This theory identifies the 
conjunction of three processes (referred to as geneses in 
the theory): semiotic genesis, instrumental genesis, and 
discursive genesis.  

The theory establishes a differentiation of MWS’s 
according to the mathematical domain in which the 
work is framed. In this study, we focus on the MWS in 
the calculus domain, notwithstanding the possibility 
that work in other domains could appear in the analyses.  

Mathematical Working Spaces 

The MWS theory takes two aspects into 
consideration: an epistemological aspect that considers 
the objects and the signs with which they are 
represented, the artefacts used, and the mathematical 
model put into play; and a cognitive aspect that refers to 
the individual who visualizes, utilizes, and constructs 
discourses with available objects and tools. Thus, there 
are two planes defined as the basis for the MWS: the first 
plane–the epistemological plane–is composed of three 
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components: the representamen1, the artefacts, and the 
theoretical referential. The second plane–the cognitive 
plane–is formed by the following components: 
visualization, construction, and proof.  

The activation of a working space occurs by solving a 
task. We adopt the term task used by Kuzniak et al. 
(2022): “A ‘mathematical task’ refers to any type of 
mathematical exercise, question, or problem, with 
clearly formulated assumptions and questions, that is 
known to be solvable in a timely manner by students in 
a well-defined mathematical working space” (p. 8). 

Within this context, the MWS is conceived of as an 
environment organized by and for the person solving 
mathematical tasks, an activity in which the cognitive 
and epistemological aspects are clearly inseparable 
units. The geneses manifest in the MWS when the 
epistemological and cognitive planes interact, each being 
articulated in turn based on the work being done. Thus, 
the geneses are defined as follows: semiotic genesis, which 
joins the representamen with visualization; instrumental 
genesis, which joins the artefact with construction; and 
discursive genesis, which joins the theoretical referential 
with proof (Figure 1).  

In a mathematical activity, the geneses are not 
independent of each other, but rather are processes that 
influence one another mutually in an interrelation that 
can have varying degrees of closeness. A nutritive MWS 
in terms of the construction of knowledge or the 
confirmation that knowledge has been acquired is one in 
which all of the geneses converge, are joined with each 
other, and are each seen to have robust activity.  

Semiotic Genesis 

In the MWS theory, it is semiotic genesis that joins the 
representamen and visualization components. The 
representamen contains all class of signs and symbols 
belonging to a semiotic system (Duval, 2006). 

 
1 We retain the original word (representamen) so as not to confuse this component with that defined by Duval (1995)–
representative–in the records of semiotic representations, nor limit ourselves to the latter (which also has a cognitive component 
in its definition). 

Visualization comes into play when an individual 
interprets such signs.  

In terms of the activation of semiotic genesis in MWS, 
(Kuzniak & Richard, 2014) indicate that the process of 
visualization “can be considered as the process of 
structuring the information provided by diagrams and 
signs” (p. 4); semiotic genesis “gives meaning to the 
objects of the MWS and confers them their status as 
operational mathematical objects” (p. 5). Ultimately, 
different processes of treatment, conversion, or varied 
interpretations of signs indicate activations of semiotic 
genesis in MWS.  

Instrumental Genesis 

In MWS, instrumental genesis refers to the articulation 
between the artefact, from the epistemological plane, and 
the construction, from the cognitive plane, through an 
action. In MWS, a distinction is made between material 
artefacts (like a ruler or compass), digital artefacts (such as 
GeoGebra), and symbolic artefacts (e.g., an algorithm to 
solve an equation) (Flores Salazar et al., 2022). 

Flores Salazar et al. (2022) give special attention to 
digital artefacts. A digital artefact for the teaching and 
learning of mathematics is defined as a set of 
propositions characterized by being executable by an 
electronic machine that possesses historical intelligence 
and relative epistemological validity. The former is related 
to the idea that artefacts are designed in an attempt to 
reproduce definitions, properties, and theorems that are 
the result of human constructions accumulated over the 
course of history. In contrast, relative epistemological 
validity is related to the impossibility of software 
representing all mathematical ideas or concepts in a 
totally faithful manner.  

Discursive Genesis 

Discursive genesis refers to the articulation between 
the theoretical referential elements, such as axioms, 
definitions, properties and theorems, from the 
epistemological plane, with the proof, from the cognitive 
plane. In MWS, we consider the proof from partial 
argumentations–as long as they consider elements of the 
theoretical referential–to a mathematical proof (Kuzniak 
et al., 2022). 

Discursive genesis, as well as the other two MWS 
geneses, are not conceived in an independent manner; 
rather, in a mathematical activity, each genesis could be 
influenced by the other two. When it is not possible to 
distinguish which genesis is privileged, we refer to 
vertical planes: semiotic-instrumental [sem-ins], 
semiotic-discursive [sem-dis] and instrumental-
discursive [ins-dis] (Coutat & Richard, 2011). 

 
Figure 1. MWS diagram (Kuzniak et al., 2022, p. 61) 
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Mathematical Working Space Types 

Lastly, the MWS theory is differentiated into three 
types: the reference MWS (Montoya-Delgadillo & Reyes 
Avendaño, 2022); the idoine MWS (Henríquez-Rivas et 
al., 2022); and the personal MWS (Menares Espinoza & 
Vivier, 2022). The present study focuses on the personal 
MWS of future mathematics teachers when solving a task 
proposed to help connect school and university 
mathematics. Likewise, a distinction is made between 
their planned work, termed planned personal MWS, and 
their actual personal MWS, alluding to the distinction 
made by Henríquez-Rivas et al. (2022). 

METHODOLOGY 

With the aim of characterizing the personal MWS of 
PTs when solving a task that is possible to develop in the 
calculus domain, a qualitative study is proposed (Flick, 
2015). This is justified by the interest in analyzing and 
understanding how the mathematical work of the 
participants is carried out in order to solve a given task. 
Specifically, we undertook a collective instrumental case 
study (Stake, 2007), which considers as units of analysis 
the mathematical work and processes activated in the 
solving of a task (t) by PT from the pedagogy in 
mathematics undergraduate program at a public 
university in Chile.  

Participants and Case Selection 

PT correspond to six students who attended the 
module profile 1 evaluation workshop, a course in which 
aspects of mathematics and mathematics teaching that 
have failed in previous evaluations are covered. At the 
time of implementation, all of the PT students had 
passed the courses calculus I (where they initially cover 
contents including continuous functions, the 
intermediate value theorem (IVT), and Bolzano’s 
theorem), calculus II, and calculus III. In the latter two 
courses, continuous functions are used as hypotheses to 
demonstrate other theorems. The application context 
was developed during class time, without prior 
preparation. The participants answered the proposed 
tasks voluntarily.  

For the analysis, three instrumental cases (PT1, PT2, 
and PT3) were selected based on the fact that they are 
representative and revealing cases with respect to the 
mathematical content put into play and the processes 
activated (Yin, 2009). PT2 is representative of work that 
combines geometrics with the algebraic; PT3 represents 
a work of numerical approximations; and PT1 exhibits 
work closer to the calculus domain. These aspects, 
especially the representativeness regarding the use of 
certain content and the accessibility and clarity of the 
work displayed, supported the choice of cases.  

Data Collection and Analysis 

The techniques for data collection considered the 
written materials with the participants’ productions 
when answering t, and the video recording and their 
respective transcriptions. For solving the task, the PT 
students had a sheet with instructions, construction 
paper with different-colored sides, a ruler, scissors, and 
the geometric software GeoGebra for those who opted to 
use it to answer.  

In order to characterize the MWS of the PT 
participants according to the proposed task t and to 
specify the categories of the deductive analysis process, 
the study utilized the technique of content analysis 
(Leavy, 2014) for data reduction. The analyses were 
developed in two phases, according to the distinction 
proposed by Henríquez Rivas and Kuzniak (2021): phase 
1, corresponding to the planned personal MWS, which 
refers to the study of the possible work of future teachers 
in relation to a given task; and phase 2, relating to the 
mathematical work on the activity produced by PT 
participants, corresponding to their actual personal MWS.  

These two phases allow for a discussion regarding 
the gap between what is expected and the results, as well 
as the depth and richness of certain theoretical 
considerations, for questions of education and research 
that will be addressed in a subsequent section. For the 
analysis of the planned personal MWS and the actual 
personal MWS of the PT participants, elements of a 
methodology that has been used in MWS-based research 
were considered (e.g., Kuzniak & Nechache, 2021; 
Nechache & Gómez-Chacón, 2022) in order to describe 
the main actions taken when carrying out the task. The 
actions included the following:  

1. Identification and description of work episodes 
(Es). The main Es of mathematical work were 
identified and described through a succession of 
mathematical actions carried out by the 
participant solving the problem.  

2. Analysis of circulation. Based on the descriptions 
of the Es, each was analyzed and interpreted in 
terms of the circulation of MWS. These analyses 
included the use of theoretical categories related 
to the components, geneses, and vertical planes of 
MWS (Table 1).  

Meanwhile, in relation to triangulation strategies 
(Denzin, 1978), triangulation of data was used based on 
the two-phased analyses described above. In addition, 
researcher triangulation was utilized, considering the 
experience and training of the authors (all of whom are 
PhDs in mathematics pedagogy specialized in the MWS 
framework with wide-ranging education and 
experience).  

Presentation of the Task (t) 

The proposed task can be developed using 
hypotheses related to continuous functions and the IVT, 
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Bolzano’s theorem, or corollaries of these. Selection and 
adaptation of tasks was based on the degree of flexibility 
allowed by their possible solutions, which involved a 
diversity of mathematical knowledge and processes that 
could have been activated (Menares Espinoza & Vivier, 
2022). In this context, this study is unique in presenting 
the possibility of connecting knowledge of school 
mathematics with university mathematics, and with the 
robust resources offered by the use of technological 
artefacts.  

The task (t) was presented in a geometric context and 
had been adapted from a problem proposed by Carlson 
and Bloom (2005), which has been used and 
reformulated in different contexts (Kuzniak et al., 2011, 
2013). Menares Espinoza (2016, 2019) proposes a new 
adaptation of t; the justification for this is based on the 
fact that the new formulation encourages answers in the 
calculus domain, in addition to the other resolution 
possibilities that t offers. In Menares Espinoza and Vivier 
(2022), a diversity of possible strategies is shown, as well 
as the problem’s resolution by in-service teachers. We 
emphasize that the mathematical objects involved in the 
formulation of t are seen at the school level in Chile 
(MINEDUC, 2019), including squares, triangles, area of 
polygons, vertices, and diagonals.  

 

Task (t) 

A square of paper with different-colored sides is 
folded, forming a triangle whose vertex is on the same 
diagonal as that of the square. Is there a way to fold the 
paper so that the visible portions of the two different 
colors are equal in area? Explain your answer (Figure 2).  

ANALYSIS OF THE TASK 

To analyze the planned personal MWS, which 
responds to phase 1 of this research, we considered five 
planned strategies. Some of these are reported in 
Menares Espinoza (2016, 2019) and Menares Espinoza 
and Vivier (2022), and others are original to this study, 
in particular those involving GeoGebra software.  

Phase 1. Study of the Planned Personal MWS 

Of the five planned strategies, the first three can be 
developed in two ways: in the first, the variable x is the 
height of the triangle FHG (segment DE); in the second, 
the variable x is a leg of the triangle FGH (segment FH) 
(Figure 3). 

We present strategies 1, 2, and 3 utilizing the height 
of the triangle FGH as the independent variable. The 

Table 1. Theoretical categories for the analysis of the MWS of PT participants (adapted from Henríquez-Rivas & Verdugo-
Hernández, 2023, p. 189) 

Category Components Descriptor 

Semiotic 
genesis 

Representamen Relates mathematical objects and their signifying elements and signs. 
Visualization Interprets and relates mathematical objects according to cognitive activities linked with 

the register of semiotic representations (identification, treatments, and conversions) and 
symbols. 

Instrumental 
genesis 

Artefact Utilizes material or symbolic artefacts, including algorithms or formulas, or 
technological artefacts. 

Construction Based on the processes resulting from the actions triggered by the artefacts used and the 
associated usage techniques. 

Discursive 
genesis 

Referential Utilizes definitions, properties, or theorems. 
Proof Discursive reasoning is based on different forms of justification, argumentation, 

demonstrations, or types of proof. 

Vertical plane 
and directed 
plane 

[sem-ins] Joins semiotic genesis with instrumental genesis in task-solving processes. 
[ins-dis] Joins instrumental genesis with discursive genesis in task-solving processes. 
[sem-dis] Joins semiotic genesis with discursive genesis in task-solving processes. 

 

 
Figure 2. Task proposed to PTs (Source: Authors’ own 
elaboration) 

 
Figure 3. Geometric writing of the problem (Source: 
Authors’ own elaboration) 
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procedures are analogous if we consider the segment FH 
as the independent variable.  

Planned strategy 1. Analytical 

This strategy entails five Es in the planned 
mathematical work. 

E1. Identify the objects in the situation: This leads one to 
consider l on the side of the white square, then to 

consider two functions 𝑓: [0,
√2𝑙

2
] → [0,

𝑙2

2
] and 𝑔: [0,

√2𝑙

2
] →

[0, 𝑙2] that model the two areas of the different colors as 
the paper is folded. That is, f is the function that models 
the area of triangle FGH and g is the function that models 
the area of the polygon that joins the points A, B, C, F, H, 
and G. Thus, the functions are determined by 𝑓(𝑥) = 𝑥2 
and 𝑔(𝑥) = 𝑙2 − 2𝑥2 

E2. Consider the restrictions of the functions: The 
variable where both functions are evaluated corresponds 
to the height of the blue triangle. The area of the triangle 
is formed by folding over the diagonal and the 
remaining area are called the blue area and the white 
area, respectively.  

E3. Identify the continuity of the functions on an interval: 
It should be noted that both functions are continuous on 

[0,
√2𝑙

2
], as they are polynomial functions.  

E4. Analyze functions within the geometric context: 
Additionally, note that, when not folding anything: 
𝑓(0) = 0 and 𝑔(0) = 𝑙2, so 𝑓(0) < 𝑔(0), and when the 

paper is completely folded: 𝑓 (
√2𝑙

2
) =

𝑙2

2
 and 𝑔 (

√2𝑙

2
) = 0, 

so 𝑓 (
√2𝑙

2
) > 𝑔 (

√2𝑙

2
).  

E5. Propose a conclusion based on analysis: Through the 

corollary of the IVT, there exists 𝑥0𝜖 (0,
√2𝑙

2
) such that 

𝑓(𝑥0) = 𝑔(𝑥0), that is, there exists a folding point at 
which the vertex is on the diagonal of the square, such 
that the two areas have the same value.  

Planned strategy 2. Algebraic 

This strategy considers three Es in the planned 
mathematical work.  

E1. Set up an equation: An equation is formulated that 
makes the areas equal. With 𝐴𝑇 = 𝑥2 being the area of 
the blue triangle, and 𝐴𝑅 = 𝑙2 − 2𝑥2 the remaining white 
area, the following equation is established: 𝑥2 = 𝑙2 −

2𝑥2. 

E2. Solve the equation: By performing treatments on the 

equation, the solutions obtained are 𝑥1 =
√3𝑙

3
 and 𝑥2 =

−
√3𝑙

3
.  

E3. Establish a solution: Considering the context of t, 
the negative value is discarded, so the solution is found 

when the height of the triangle is 
√3𝑙

3
. 

Planned strategy 3. Dynamic graph 

This strategy is centered on the use of GeoGebra and 
includes three Es. 

E1. Establish the functions that are in play: Both 
functions that model the areas involved are formulated, 
as shown in planned strategy 1.  

E2. Graph the functions: Both functions are graphed in 
GeoGebra using different colors (Figure 4), and the 
points of intersection with the x and y axes are 
established, along with their respective images, in terms 
of l.  

E3. Draw a conclusion based on what is observed: In the 
graph in Figure 4, a point can be observed where the 
graphs of the functions intersect; therefore, there is a 
point where the functions are equal.  

Planned strategy 4. Dynamic geometry: Independent 
variable is segment FH 

This strategy once again entails the use of GeoGebra, 
but in a different manner than in planned strategy 3. 
Three Es are included in the development of this 
strategy.  

E1. Construction of the figure: Using the GeoGebra 
tools regular polygon (to construct a square), segment (to 
construct the diagonal), point (to determine a point on 
the diagonal), and line parallel to another that passes 
through a point, the figure is built.  

E2. Calculation of areas: In the GeoGebra sidebar, the 
Area command (Point, …, Point) is used to determine the 
area of the triangle and remaining spaces.  

E3. Use of slider to generate changes in the areas: The 
slider is used to move the point on the diagonal and 
observe the resulting changes in the areas. In this 
manner, one can determine whether there is a point 
where the areas coincide (Figure 5).  

 
Figure 4. Graph of the functions associated with the 
functions from planned strategy 3 (Source: Authors’ own 
elaboration) 
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In this case, depending on the dimensions of the 
square, GeoGebra may not display a point where the 
areas are the same (it may differ by some decimal 
places), and if so, the student might respond that the 
point where the areas are equal does not exist.  

Planned strategy 5. Analytical and graphical: 
Independent variable is the segment FH 

This strategy involves three Es in the planned 
mathematical work.  

E1. Determination of extreme points: Any two functions 
(f and g) are evaluated at the extreme points, according 
to the advancement of the diagonal of the square. It 
should be noted that in this strategy, functions are not 

explicitly established: 𝑓(0) = 0, 𝑓(√2𝑙) =
𝑙2

2
 , 𝑔(0) = 𝑙2, 

𝑔(√2𝑙) = 0. 

E2. Graphing the points and plotting the functions: With 
pencil and paper, the extreme points are graphed. Two 
functions are plotted freehand without following a given 
formula. In order to do this, it is important that the paper 
remains in place to avoid lifting the pencil. This step 
involves visual perception and is based on senses of 
physical movement in space.  

E3. Establishing a conclusion: It is concluded that since 
the functions can be drawn without lifting the pencil, the 
graphs must intersect at a point, and therefore, there is a 
folding point at which the areas will be equal.  

Circulations in the planned mathematical work 

Considering the planned strategies presented, it can 
be said that the task in question generates a nutritive 
scenario for the development of the personal MWS, as it 
allows the problem to be solved using various tools, 
representations, and discursive reasoning, which is a 
first indicator of the activation and articulation of the 
MWS geneses.  

In a more specific analysis, in the planned MWS for 
strategy 1 and strategy 2, we identify, firstly, an 
activation of the semiotic and instrumental geneses–the 

semiotic when moving from the figure to the algebraic 
statement of functions and equations; and the 
instrumental when the functions and equations are used 
as symbolic artefacts for the development of the task. 
Subsequently, planned strategy 1 displays a strong 
activation of discursive genesis, with the hypothesis of 
continuity, values of the functions at the extremes of the 
intervals, and the resulting use of a theorem from the 
analysis domain. The work for strategy 1 represents 
demonstration. Planned strategy 2, on the other hand, 
puts emphasis on instrumental genesis, solving the 
equation and establishing a conclusion based on this.  

Planned strategy 3 and strategy 4 involve the use of 
GeoGebra as a technological artefact. However, the 
outlook for the mathematical work is conspicuously 
different. In planned strategy 3, the technological 
artefact is used to graph functions previously established 
algebraically, which implies semiotic-instrumental 
work. Once the functions have been graphed, the point 
of intersection can be found, which allows conclusions to 
be drawn and, thusly, activation of semiotic and 
discursive geneses. In planned strategy 4, on the other 
hand, GeoGebra is used as a sign and as a medium. By 
moving the points along the geometric figure, the point 
representing co-variation is moved. This shows the form 
of the function without knowing its algebraic expression 
a priori, activating the semiotic-instrumental plane, but 
in a different way than in planned strategy 3.  

Finally, in planned strategy 5, primarily semiotic 
work is exhibited since visualization is predominant. 
This is combined with discursive genesis when notions 
of continuity are utilized, although the arguments come 
from experience and a physical sense of the problem, not 
necessarily from the theoretical referential. Here, the 
connected semiotic and discursive geneses can be 
identified; therefore, there is an activation of the [sem-
dis] vertical plane.  

 
Figure 5. Strategy using GeoGebra (Source: Authors’ own elaboration) 
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RESULTS 

Below are the results of the implementation of the 
task (t) with the PTs.  

Phase 2: Personal MWS of Pre-Service Teachers 

As indicated in the methodology section, we selected 
the work of three cases (PT1, PT2, and PT3). 

Case 1 (PT1) 

The strategy developed by PT1 is similar to the 
second way of approaching strategy 1, that of the 
planned analysis. PT1 begins by making a sketch, but it 
does not indicate which variables to consider (Figure 6). 
It can be inferred that they consider x to the be sides of 
the triangle, and l to be the sides of the initial square. 

Thus, they formulate two functions: 𝑓1(𝑥) =
𝑥2

2
, which 

we assume is the area of the triangle, and 𝑓2(𝑥) = −𝑥2 +

𝑙2, which would represent the remaining area.  

They then state the following: 

● 𝑓1 and 𝑓2, being polynomial functions, are 
continuous. 

● They intersect at a point on [0, +∞[. 

Then, PT1 evaluates for 0 and for l, resulting in the 

following: 𝑓1(0) = 0 , 𝑓1(𝑙) =
𝑙2

2
 and 𝑓2(0) = 𝑙2, 𝑓2(𝑙) = 0. 

They then write the phrase, “through the IVT,” which 
we interpret as meaning that with this theorem, it can be 
determined that there is a fold that makes the areas 
equal. This is supported by a graph that they construct. 
It is not clear if they construct the graph first and then 
draw this conclusion or vice versa. In any case, the graph 
can offer support to obtain the solution.  

From the MWS perspective, an articulation of the 
three MWS geneses can be identified in this work. First, 
there is activation of instrumental genesis when the 
functions are formulated, acting as symbolic artefacts. 
From here, work is carried out using hypotheses 
(continuous functions and values of the function at key 
points), which demonstrates the activation of discursive 

genesis. However, the hypothesis of the inequalities of 
the values of the functions is not expressed, and it is 
initially established that the functions intersect at a point 
on [0, +∞[, which is not false, but does lie outside the 
interval in question. Thus far, the work has a 
demonstrative character, but with certain inaccuracies, 
such as the mixing of hypotheses with theses and the 
absence of certain hypotheses.  

In order to use the IVT, the hypothesis of inequality 
is represented in the graph, which shows coordination 
with semiotic genesis, but weakness in discursive 
genesis, given that the character of the demonstration is 
changed to a more pragmatic argument. Additionally, 
PT1 indicates the point in the graph where “the area is 
equal,” which indicates a strong visualization 
component.  

In conclusion, in the work exhibited by PT1, the 
activation of instrumental genesis is identified initially, 
and later the [sem-dis] plane, since the semiotic and 
instrumental geneses appear to be coordinated.  

Case 2 (PT2) 

PT2 names the variables and makes them depend on 
each other. To explain this dependence, they utilize a 
reconfiguration (Figure 7).  

Then, they consider a as the side of the initial square 
and b as the part of the side of the square that remains 
after folding the paper. This configuration indicates 
work in semiotic genesis, as there is a strong 
visualization component. They calculate the white area 
considering the areas of two rectangles formed when 
folding the paper.  

For the area of the other color (“red triangle”), the 
same letters (a and b) are maintained. PT2 indicates that 
“we must obtain its base and height,” alluding to the 
calculation of the area of the triangle (Figure 8).  

PT2 then indicates that they examine the diagram and 
redraw it, which shows support in the figure for 
visualizing the sides of the triangle.  

 
Figure 6. Excerpt of the work of PT1 (Source: Authors’ own 
elaboration)  

Figure 7. Excerpt 1 of the work of PT2 (Source: Authors’ 
own elaboration) 
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To obtain both areas, they utilize the formulas for the 
areas of rectangles and triangles. Then they make both 
areas equal, expressed with a and b, and consider a as 
the unknown they want to find. This indicates a problem 
in the theoretical referential, because according to PT2’s 
configuration, a denotes a side of the initial square, 
which has a fixed length.  

PT2 solves the equation using a formula for finding 
solutions to quadratic equations, so we can identify the 
use of a symbolic artefact. Ultimately, they obtain two 
possible values for a that depend on b, but they do not 
interpret the results, nor do they question the origin of a 
as the side of the initial square.  

In PT2’s work, we can identify activation of primarily 
semiotic and instrumental geneses. Semiotic genesis is 
identified by the initial treatment that they carry out on 
the figure to determine the unknowns that they are 
going to utilize. In addition, there is strong support in 
the figures for formulating the equations.  

Throughout the work, fixed values are considered; 
therefore, this is presented as a static work. The rest of 
the work is mainly algebraic, with the use of symbolic 
artefacts. In this case, there is a problem with the 
theoretical referential because once the equation is 
formulated, it is solved considering the side of the initial 
square–a known value–as an unknown. The lack of 
questioning by PT2, along with the lack of interpretation 

of the results, indicates that discursive genesis is either 
not present in the work or only scarcely present.  

Case 3 (PT3) 

We consider the strategy of PT3 to be trial and error, 
and it does not fit into any planned strategy. The work 
of PT3 consists of making different folds in the paper and 
measuring (probably with a ruler) the sides to calculate 
the areas referred to as “color” and “non-color.” In this 
manner, three pairs of areas are calculated (Figure 9).  

Based on these values, three conclusions are drawn 
that are linked to one another: 

1. “The non-color one is always smaller than the 
color one. But when you make the color triangle 
smaller, the non-color one is bigger.” 

2.  “It depends on what fold is made.” 

3. “One gets bigger and the other gets smaller, so 
they are not the same size (at any time).” 

This allows us to identify a work in which a dynamic 
is present on paper (the areas get smaller and larger). In 
addition, a dependence between the areas is expressed 
(Figure 10).  

No variables are established, and only particular 
cases are tested; from this we conclude that, in 
Balacheff’s terminology, it would correspond to a proof 
of the naïve empiricism type (1987). The notion of 

 
Figure 8. Excerpt 2 of the work of PT2 (Source: Authors’ own elaboration) 

 
Figure 9. Excerpts from the work of PT3 (Source: Authors’ own elaboration) 
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continuity is not present, and the absence of this 
property leads to an erroneous response.  

 The presence of the three geneses can be noted, but 
they are disjointed: 

● Semiotic genesis is present when representing the 
areas numerically and visualizing the results.  

● Instrumental genesis is present in the probable 
use of a ruler to measure the areas, the use of the 
paper, and the use of area formulas.  

● Discursive genesis is present in the conclusions 
that PT3 obtains, although the theoretical 
referential is very weak and the conclusions are 
erroneous.  

The varied strategies for developing the task, the 
different circulations in the MWS that are developed, 
and the domains involved point to the range of 
possibilities offered by the task to be addressed in initial 
teacher training and school contexts. This can be done 
with the purpose of working in a visual manner, 
utilizing technological artefacts, or working with the 
hypotheses of the IVT in a more formal way, among 
others, which will be discussed in the final section of this 
article. 

DISCUSSION AND CONCLUSIONS 

This study aims to characterize the mathematical 
work of PTs when solving a task designed to connect 
school mathematics with university mathematics, 
specifically focusing on continuous functions. In order to 
do this, a task was proposed, with the different ways in 
which it could be approached having been previously 
analyzed. We analyze three cases that show us the 
variety of possible solutions, but additionally that they 
are developed in different domains.  

In terms of the PTs’ solutions, the last case remains in 
the geometric domain, but its work is likewise mainly 
carried out through direct measurement; in the second 
case, we see a work that is mainly in the algebraic 
domain, focused on solving equations; only the first case 
is in the domain of functions and particularly that of 
continuous functions, with explicit use of some 
hypotheses of the IVT.  

In this work, all of the MWS geneses have been 
identified; however, the final case presents problems 
with the relevant hypotheses. Meanwhile, the other two 
cases are more restricted to the elements of the 
theoretical referential to which each can resort. 

Among the solutions provided, none makes use of 
dynamic software, which is notable considering that our 
society is experiencing increased technologization every 
day (Gaona & Menares, 2021). 

Proposal for Work in Initial Teacher Training 

Previous research indicates the existence of a 
decoupling of the teaching of calculus in teacher 
education and what is required to carry out work in the 
school (e.g., Weber et al., 2020), this in addition to the 
complexity of working with calculus objects in the 
university. According to Selden and Selden (1995), it is 
necessary for definitions to become operational for 
students, and it is desirable that they are not left with 
only intuitive notions.  

According to our analysis, the task presented in this 
article allows mathematical work to be undertaken in 
different stages in which an evolution can take place 
from an intuitive notion to the use of IVT hypotheses to 
construct a formal mathematics that makes sense and is 
joined with previous intuitive and visual work. In this 
sense, the task proposed favors the idea of a complete 
MWS (Kuzniak et al., 2016), which can be used and 
adapted in different contexts and education levels so that 
different geneses and components of MWS are efficiently 
activated.  

The latter point also offers a response to the 
requirements of the Chilean national curriculum, which 
establishes that work with objects of limits and 
continuity should contain a wealth of strategies, 
including visualization, the formation of conjectures and 
their validation, and the use of software that supports 
work by hand. Thus, working with the task in question 
can have a double role: developing the construction of 
formal knowledge about continuous functions and the 
IVT, and supporting approaches to school mathematics.  

Menares Espinoza and Vivier (2022) report on the 
scarcity of dynamic responses presented when 13 PTs 
solved the task in question. In response to this, as a 
proposal, we suggest approaching the task first with 
work done by hand using paper, in which conjectures 
about the solution to the problem appear. Then, one can 
advance modeling the task with dynamic geometry 
software. University students will be able to set the 
variables and, in doing so, formulate the functions 
involved. It may be important that the applet generated 
shows the corresponding points on the graph of the 
function as the vertex of the triangle is moved, as shown 
in Figure 11.  

In this manner, what is happening on the graph can 
be formally translated, granting importance to the fact 

 
Figure 10. Excerpt from the conclusions of the work of PT3 
(Source: Authors’ own elaboration) 



Menares-Espinoza et al. / Pre-service teachers’ mathematical work on a calculus task that connects school and university 

 

12 / 16 

that the function is continuous on the interval, and 
making the inequalities in the images of the functions at 
the extreme points of the interval explicit. Through this, 
the IVT hypotheses are obtained to conclude with the 
fact that the required point where the areas are equal 
must exist.  

Proposal for Work in the School  

According to school plans of study in Chile, an 
important objective is for students, beyond learning 
content, to develop mathematical thinking, 
understanding mathematics as being articulated among 
different domains (MINEDUC, 2021). This is especially 
important when working with calculus objects since 
students must connect what they know–which is mainly 
situated in geometric and algebraic contexts–with new 
objects that involve the idea of the infinitesimal.  

In the case of working on the task at the school level, 
one strategy could be, once again, to begin by 
establishing conjectures through work on paper; 
students will be able to decide if a given point exists by 
simply making slides and measurements, as we 
observed in the case of PT3. Then the applet, which has 
been previously designed, can be provided, allowing the 
modeling of the situation on paper and the graphing of 
the functions in parallel. Students can discuss which 

variables are at play, establishing relationships between 
the figure and the graph, and thus make conversions 
from the figural register to the graphic register, which 
implies important semiotic work.  

After this, students can make slightly more formal 
inferences and establish conclusions regarding the 
existence of the point where the areas are equal, 
encountering concepts of continuity, for example, by 
recognizing, “there are no jumps in the graph,” and the 
inequality of the images of the functions, for example, by 
stating that “it is necessary to cross the graph of one of the 
functions to go from one point to another.” This can prompt 
discursive work that can be strengthened progressively. 
It remains up to the teacher to formalize each of the 
hypotheses and arrive at the desired mathematical 
concepts.  

Directed Vertical Planes Approach 

Based on the analysis of the circulations, we can 
observe the prevalence of one genesis in each vertical 
plane of the MWS–not only as the one that takes on a 
greater role in the work, but as the one that motivates 
greater work in the other, as also noted by Menares 
Espinoza (2019) and Menares Espinoza and Vivier 
(2022). This allows us to differentiate two vertical planes 
that activate the same geneses, but in which the work is 
directed primarily by one of them.  

Indeed, in the work of PT1, an articulation can be 
observed between semiotic and discursive geneses, and 
that semiotic processes are activated in order to provide 
the theoretical referential with elements (hypotheses and 
theses of the IVT) and thus enable the construction of a 
proof. Discursive genesis can be identified as the director 
of the personal MWS of PT1, which indicates the 
activation of a directed vertical plane, which we denote 
as [sem-Dis*]. 

In the MWS of PT2, on the other hand, the semiotic 
processes that are carried out–with the reconfiguration 
of the figures–have the purpose of formulating and 
solving an equation. Thus, we identify instrumental 
genesis as the genesis directing the work, so there is once 
again a directed plane activated, which in this case we 
denote as [sem-Ins*]. 

A clearer difference can be found in planned 
strategies 3 and 4, in which the activation of the [sem-
ins] plane is recognized. However, in strategy 3, it is 
semiotic genesis that has the directing role, since the 
digital artefact is utilized to represent a function 
graphically that had previously been formulated 
algebraically. Meanwhile, in strategy 4, when working in 
GeoGebra, it is possible to visualize what is happening 
in the graph without having an algebraic formula for the 
function. Thus, we posit that in planned strategies 3 and 
4, the directed planes activated are [Sem*-ins] and [sem-
Ins*], respectively.  

 
Figure 11. Applet showing the movement of the paper on 
the left, and the corresponding points on the graph of the 
functions on the right (Source: Authors’ own elaboration) 
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Lastly, based on the results presented, one of the 
limitations of this study is related to the number of tasks 
that have been considered, since the analyses are shown 
in the context of one specific task. However, in order to 
analyze mathematical work in depth, the decision was 
made to exhibit and analyze the personal MWS of future 
teachers for the single task proposed. Future work could 
consider other types of tasks in the calculus domain (or 
another domain) that connect school mathematics with 
university mathematics. Likewise, the task of this study 
could be further used or adapted for teacher education; 
in particular, it could be used in student-teaching 
courses in which future teachers take on the role of 
classroom teachers. 
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