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Abstract

Several studies have observed that the presentation tasks in mobile devices in a conversational
rather than a formal style may produce a personalization effect and benefit performance. Put
another way, students’ cognitive structures tend to function better when they are involved in
personalized contexts. However, little attention has been paid to the personalization principle
from mathematics contexts, particularly in the southern hemisphere. Framed by the
personalization principle, this mixed methods study investigated the effects of presentation mode
in a task involving explicitly laying out the theories and obtaining results through logical proofs,
ensuring no ambiguity, which entangles the practice of mathematicians. To this end, this mixed
methods study selected a convenience sample of 162 pre-service teachers (PSTs) enrolled in an
advanced mathematics module in a large public university located in south-eastern South Africa.
Following random assignment, eighty-five (ny = 85) PSTs were presented with material in
conversational tone and seventy-seven (n, = 77) PSTs were presented with material in formal tone.
Quantitative analysis revealed, among other things, a significant difference in the responses by
the two groups of PSTs, t(160) = 4.83, p < .001, and d = .16. In addition, qualitative analysis of
what PSTs say about the functions of pure mathematicians in response to the presentation of the
prompt in different contexts showed that personalized contexts foster performance. Considering
the limitations of this study, a discussion of the consequences the results of this paper might have

on the direction of future mathematics education research is provided.
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INTRODUCTION

Pre-service teachers (PSTs) are increasingly using
smartphones-which of course have become “powerful
learning devices” and gradually replacing the post office
and land lines (US Department of Education, 2017, p.
76)-to connect with instructors for communication and
facilitation of mathematics pedagogy. A PST working
from a smartphone is alone but with the texts, narrations,
feedback and cues, and is provided with a conversation.
Communication is presented on a personal level,
including predicting information in which the PST is
interested almost correctly. This technology can be
maximized by designing mathematical problems using a
conversational rather than a formal style that PSTs can
easily process (Brom et al., 2017). Thus, the infusion of
technology into teaching and learning has considerably

altered pedagogy, understanding in particular.
According to Mayer (2005), people learn better through
presentations in which the words are in a conversational
style rather than in a formal style. Thus, mobile learning
has ushered in a transformative era, compelling
educational institutions to reimagine their pedagogical
approaches and increasingly integrate it into traditional
education (Dahri et al., 2024). It is therefore interesting to
understand how PSTs perform on a task about
mathematicians for whom proof is considered to be
central to their practice.

As Mayer (2005) points out, there are two ways in
which a conversational style can be formed:

(1) to use I and you instead of a third person and

(2) to include direct comments in the instructional
content with which students are required to work.
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Contribution to the literature

e This article contributes to the literature on the personalization principle in undesratnding the functions of
mathematicians, particularly in the southern hemisphere.

e The findings of this study are relevant for educators involved in initial teacher education in that PSTs
perform better in personalised contexts than in non-personalised context.

e There is a need to engage in efforts intended to improve PSTs' knowledge about the actual work of

mathematicians in their training courses.

It is my experience that the instructional content in
mathematics is primarily conducted through the formal
style. However, findings on the effect of these two ways
of presenting instructional material have presented
inconsistent results (Schrader et al., 2018). Additional to
the discrepancies in the results, the effect of the
personalization principle in the context of smartphones
in mathematics pedagogy has not received sufficient
attention. In fact, to the best of my knowledge, no
previous study has addressed whether the presentation
style of instructional material has an effect on PSTs
performance in advanced mathematics modules,
particularly from the southern hemisphere. By advanced
mathematics module is meant here pure mathematics
module for PSTs with a focus on theory (proofs) instead
of computations (Paoletti et al., 2018).

The importance of conversational tones for PSTs
contributes strongly to enhancing teachers” engagement,
influencing teachers’ satisfaction and performance,
enhancing content knowledge, pedagogical skills,
professional dispositions, and yielding improved
learning outcomes, fostering understanding of proofs
(Dahri et al., 2024). However, while tangible interfaces
have played an important role in mathematics teachers’
development for decades, employing these tangible
objects together with smartphones in the classroom has
been rarely explored yet (Reinschliissel et al., 2018).
Thus, the purpose of this study was to investigate this
gap in research to contribute to the research base on
increasing PSTs’ interest and understanding of the
nature of the mathematics discipline. To do this, the
study investigated the effect of presenting prompts to
PSTs in two different contexts: personalized (e.g., list five
reasons for which you can hire a pure mathematician)
and non-personalized (list five reasons for which they
can hire a pure mathematician). Specifically, the
following research questions were addressed:

1. Towhat degree does the personalization principle
affect PSTs” responses to the prompts?

2. What do PSTs say about the functions of pure
mathematicians in response to the presentation of
prompts in different contexts?

The remainder of the paper is structured as follows:
In the first section I review literature related to the
personalization principle and mathematicians; then I
present the theoretical perspectives framing the study
before providing a discussion of the methods used to
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answer the two research questions; next I present
analyses of the results; in the discussion section I
integrate the results with prior research and consider the
limitations of the study and suggest directions for future
research; I end the paper with conclusions about the
implications of the results.

REVIEW OF RELATED LITERATURE

Previous Studies on the Personalization Principle

In a transdisciplinary research project with computer
scientists, mathematics educators and a textbook writers
who were also teachers, Reinschliissel et al. (2018)
investigated the potentials of using tangible user
interfaces for algebra learning, developed and evaluated
a scalable system for different use cases in grade 9, while
using the personalization principle. In presenting their
results, they found that when focusing on specific
concepts smart smartphones can enrich the interaction
equipped with dynamic constraints. Dahri et al. (2024)
conducted a quantitative study using a research
framework and collected data from 563 schoolteachers
through an online survey. These respondents were
actively engaged in mobile-based training courses at a
teacher training institute during their mandatory
training programs in the academic year 2022-23. They
used structural equation modeling to analyze their
hypotheses on the personalization principle. The study’s
findings unveiled a robust and significant nexus
between several critical factors and educators’
experiences when utilizing mobile learning for training.
Specifically, content quality, information quality, system
quality, prior experiences, and mobile self-efficacy
contributed strongly to task technology, ultimately
enhancing teachers’” engagement, and yielding
improved outcomes.

Acknowledging that primary school students may
face difficulties in acquiring mathematical competence,
possibly because teaching is generally based on formal
lessons with little opportunity to exploit more
multisensory-based activities within the classroom,
Cuturi et al. (2022) conducted a study in which they the
designed a novel multisensory learning environment for
teaching mathematical concepts based on meaningful
inputs from primary school teachers. First, they
developed and administered a questionnaire to 101 PSTs
asking them to rate, based on their experience, the



EURASIA ] Math Sci Tech Ed, 2025, 21(11), em2730

learning difficulty for specific arithmetical and
geometrical concepts encountered by primary school
students. Additionally, they reported that the
questionnaire investigated the feasibility of using
multisensory information to teach mathematical
concepts. Results show that challenging concepts differ
depending on students” school level, thus providing
guidance to improve teaching strategies and the design
of new and emerging learning technologies accordingly.
Second, they obtained specific and practical design
inputs with workshops involving PSTs and students.

Mayer et al. (2004) examined the performances of 62
psychology students enrolled at the University of
California, Santa Barbara. Twenty-nine participants
served in the personalized group, and 33 served in the
non-personalized group. These groups were exposed to
a narrated animation explaining how the human
respiratory system works. Specifically, the narration for
the non-personalized version was in formal style,
whereas the narration for the personalized version was
in conversational style in which “the” was changed to
“your.” Having conducted 3 experiments in this context,
they found that the students in the personalized group
were significantly more successful in transfer tests (i.e.,
tests involving solving novel problems using the
presented material) than those in the non-personalized
group. More specifically, they found had a large effect
on students’ subsequent performance on tests of
transfer-yielding effect sizes of .65, 1.07, and .72 across
the three experiments. Son and Goldstone (2009)
experimented with 73 undergraduates at Indiana
University who participated for credit. A computer
program randomly assigned participants to two groups.
Participants were asked to quickly read the text
presented in the experiment. The task featured a medical
doctor trying to diagnose patients with leukemia by
examining blood cell distortion levels. They found that
the personalized group learned less about medicine
content than the non-personalized group.

In contrast, Yeung et al. (2009) set out to test the
personalization hypothesis in the domain of chemistry
under e-learning environments over 2 semesters. Using
retention tests (i.e, asking for recall of what was
presented in a lesson) and transfer tests immediately
after students had completed the pre-laboratory work.
Approximately 600 students took part in the project in
semester 2, about 800 participated in semester 1. They
found that the personalized group does not perform
significantly differently in general from the non-
personalized group. Specifically, however, the results
suggested that the different performance of personalized
or non-personalized groups is dependent on
participants” prior knowledge; if prior knowledge was
weak, significant improvements were found for
personalized over non-personalized instruction.
Doolittle (2010) randomly assigned 365 students to a
control, segmented, or personalized multimedia group

and found no personalization effects on learning
historical inquiry content within computer-based
material.

As Son and Goldstone (2009) suggest, personalized
contexts “may have an effect on the content that is
actually learned” (p. 53). Thus, the tone in which
material is presented seem to matter. The study reported
in this paper was framed by the Mayer et al.’s (2004)
cognitive theory of multimedia learning which posits
that personalization causes students to actively process
the incoming material. The theory is based on the notion
that the brain does not interpret a multimedia
presentation of words, pictures, and auditory
information in a mutually exclusive fashion; rather,
these elements are selected and organized dynamically
to produce logical mental constructs. Cognitive load
occurs when extraneous information completes for the
processing capabilities of the working memory and
therefore interferes with the learning process (Wouters
et al., 2008).

Mayer et al. (2004) and Moreno and Mayer (2004)
conducted a series of experiments that focused on
learning and ways technology can be used to enhance
learning. Seven important principles-which are
organized around a cognitive theory of multimedia
learning (Mayer, 2005) which itself is considered the
most comprehensive theory about learning with
instructional multimedia (Wouters et al., 2008)-were
uncovered. The principles are: coherence principle
(extraneous words, sounds, and pictures); modality
principle (presenting words as narration rather than as
on-screen text), spatial contiguity principle (placing on-
screen text near rather than far from corresponding
pictures), temporal contiguity principle (presenting
narrative simultaneously with corresponding animation
rather than successively); voice principle (using a human
voice rather than a machine voice; segmenting and
pretraining principle (managing complexity by breaking
a lesson into parts); and, personalization principle (using
words in a conversational style rather than a formal

style).
The Mathematicians’ Practice

PSTs” views about the practices of mathematicians
influence their attitude towards mathematics (Aguilar et
al., 2016). In acknowledgement of the importance of
understanding the practices of mathematicians, several
researchers (e.g., Livingston, 1999; Picker & Berry, 2000,
Rock & Shaw, 2000) conducted investigations into the
constructs that characterize the work of mathematicians.
Most studies reporting on the activities of
mathematicians tend to associate mathematicians with
proving theorems (Giaquinto, 2005). Hersh (1997) is
convinced that one unrecognized cause of students’
failure in mathematics is the misconception of the nature
of mathematics. Thus, holding informed conceptions of
mathematicians” work can have profound effects on the
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learning of mathematics. Given students’ limited view
on the practice of research mathematicians, it is
unsurprising that some sections of the general public
think of mathematicians as people that can help in doing
arithmetic exercises (Picker & Berry, 2000).

The work of mathematicians is primarily that of
constructing proof; thus, their work is described in terms
of what they do. Simply put, a mathematician creates
mathematics; this can mean creating new mathematical
theorems and results (Latterell & Wilson, 2012).
However, the concept of proof evokes various meanings
to different people. For some PSTs, proof is viewed from
everyday language to mean evidence (Knuth, 2002). In
the discipline a litany of meanings is ascribed to concept
of proof, on the basis of its role in mathematics.
According to de Villiers (1990), proof is seen as a means
of verifying the truth of a mathematical statement;
explaining why a mathematical statement is true;
communicating the results to others; discovering results
whether those results are known to the PST or not and
systematizing by organising accepted principles of
previously proven results to apply the principles of logic
to create a deductive argument.

THE THEORETICAL FRAMEWORK

The Personalization Principle

In the present study, the effect of one of these
principles, the personalization principle, is examined in
the context of understanding the practice of research
(pure) mathematicians. The personalization principle is
premised on the notion that learning increases when the
content is presented in a conversational tone (e.g., I and
you), that is, personalized style, rather than in a formal
tone (e.g., he, she, and it). The theoretical explanation the
personalization principle is that using the self as a
reference point increases the student’s interest, which in
turn encourages him or her to deploy “available
cognitive capacity for active cognitive processing of the
incoming information during learning” (Mayer et al,,
2004, p. 391). Personalized information tends to reinforce
references to the communicated information for the
student, unlike information referring to other frames of
reference (Schrader et al., 2018). When students feel that
the material talks to them, they see the material as a
speaking partner; the material says. For instance,
changing the to your, has a significant effect on students’
learning of personalized science content in computer-
based multimedia presentations (Dunsworth, 2005).

According to Mayer and Moreno (2003), the “major
challenge for instructional designers is that meaningful
learning can require a heavy amount of essential
cognitive processing, [...]. Therefore, multimedia
instruction should be designed in ways that minimize
any unnecessary cognitive load” (p. 50). Cognitive load
is a phenomenon that occurs when extraneous
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information completes for the processing capabilities of
the working memory and therefore interferes with the
learning process (Wirth et al., 2020). The principle is also
viewed as one of the techniques to reduce cognitive load
(Wouters et al., 2008).

Proving and Validation in Mathematics

In reviewing the literature on the practice of
mathematicians, perhaps it is important to provide an
answer to this question, “What is mathematics, really?”
Answers to this question vary considerably given the
variety of fields in the discipline of mathematics and the
complexities created by school mathematics. That
notwithstanding, doing mathematics “often involves
establishing mathematical truths by checking
conjectures, and deciding whether to reject or accept
them” (Zaslavsky, 2005, p. 316). In defining what
mathematics is, Hersh (1979) concludes that it entails
discovering of the properties of ideas through the
construction of  proof and  searching for
counterexamples. ~ Watson  (2008) provides a
comprehensive description of what it means to do
mathematics from the perspective of research
mathematicians:

Doing mathematics’ is predominantly about
empirical exploration, logical deduction, seeking
variance and invariance, selecting or devising
representations,  exemplification,  observing
extreme cases, conjecturing, seeking relationships,
verification, reification, formalization, locating
isomorphisms, reflecting on answers as raw
material for further conjecture, comparing
argumentations for accuracy, validity, insight,
efficiency and power. It is also about reworking to
find errors in technical accuracy, and errors in
argument, and  looking  actively  for
counterexamples and refutations (p. 4).

It is widely recognized that proving-defined here as
a mental act of establishing mathematical knowledge
using a range of cognitive processes generally referred
to as mathematical reasoning, namely, patterning,
conjecturing,  exemplifying,  generalizing;  and,
justifying-is the core of mathematical practice (Lannin et
al., 2011). Most studies reporting on the activities of
mathematicians tend to associate mathematicians with
proving theorems (Giaquinto, 2005). However, this is not
entirely correct. For Steinbring (2005), the practice of
mathematicians entails communication and construction
and justification of mathematical knowledge. Research
mathematicians (hereinafter mathematicians) engage in
activities well beyond just proving. An understanding of
these practices is important if the participation of
students in mathematics were to increase.

The concept of validating entails checking the
correctness of a mathematical proposition or simply



EURASIA ] Math Sci Tech Ed, 2025, 21(11), em2730

verification. In validating, all that is required is to
examine if a prover logically connected axioms to arrive
at a conclusion regardless of its form or aesthetic appeal
(Hanna, 2007). Verification denotes the removal of
uncertainty by seeking, in the vocabulary of Harel and
Sowder (1998), to “convince” or “persuade” someone or
oneself about the validity of a conjecture. Harel (2013)
takes this idea of certainty further and claims that the
‘need for certainty is the natural human desire to know
whether a conjecture is true-whether it is a fact” (p. 124).
That feeling of certainty is really powerful, for patterns
and trends can be deceptive. All mathematicians have
their favorite examples of patterns that look like they
ought to hold but fail, or of conjectures that are true for
the first n tries but then fail (Schoenfeld, 1994).

Mathematicians use “formal reasoning and the
construction of rigorous proofs, informal deductive
reasoning, and example-based reasoning” in validating
proofs (Weber, 2008, p. 431). By formal reasoning and the
construction of rigorous proofs is meant checking which
assumptions or proof methods (e.g., direct proof) are
used in the argument prior to line-by-line checking or
constructing a sub proof with logical references and a
valid proof technique during line-by-line checking
(Weber, 2008). Informal deductive reasoning means
justifying the truth and falsity of each claim using
informal explanations (Weber, 2008). Example-based
reasoning means that mathematicians use one or more
examples to determine the validity of each line shown in
the argument (Weber, 2008). On the contrary, PSTs tend
to begin with a line-by-line check of the argument
(Alcock & Weber, 2005) or use line-by-line checking with
examples thus relying on empirically-based evidence to
determine the validity of each claim (Selden & Selden,
2003).

METHODS

Design

The present study is underpinned by a pragmatic
paradigm using a concurrent transformative mixed
methods design to gather both numerical and verbal
data in line with Creswell and Plano Clark’s (2011)
guidelines. Mixed methods studies present an
innovative = combination of different research
perspectives that promise additional insight, which
might not be accessible with a single methodological
research approach (Buchholtz, 2019). Although a pilot
study was conducted prior to the main study, its main
focus was on refining methodological issues rather than
demonstrating statistically significant findings.

This design was appropriate given the qualitative
and quantitative evidence needed to explore the
personalization principle among two groups of PSTs. As
Holm and Kajander (2012) note, “[o]nly when the beliefs
and knowledge of the teacher are both considered, can

changes in mathematics teaching have real and lasting
effects on future generations of students” (p. 13).
Specifically, this study adopted two designs:

(1)a causal-comparative design to determine
whether the personalization principle
(independent variable) affected PSTs performance
in the prompt (dependent variable) by comparing
two groups of participants and

(2) a case study to seek insight into what PSTs say
about the practice of mathematicians.

Research Context

The participants

The participants were a convenience sample of 162
PSTs recruited from a large public university in south-
eastern South Africa, over three years. The longitudinal
aggregation was chosen because it allowed data from
multiple points in time to be combined for their ability
to reveal patterns and trends in change over time about
the views of mathematicians that participants may hold.
This sample of PSTs was drawn from the target
population of mathematics education students (N = 824),
some of whom were in their third or fourth year of their
Bachelor of Education (BEd) program. Specifically,
eighty-five (n1 = 85) PSTs were presented with material
in conversational tone, that is, they served in the
personalized group and seventy-seven (n2 = 77) PSTs
who served in the non-personalized group. These
participants were chosen because they may have a
different perspective on views of mathematicians
compared to those who attended high school in the early
2000s, due to the change in the curriculum, which made
geometry proofs compulsory for the learning of
mathematics in high school.

The mean age was 21.8 years for the personalized
group and 21.4 years for the non-personalized group. As
is typical in schools of education and in the teaching
profession in general (Correa et al., 2015), the majority of
the participants were women; the personalized group
contained 63% women, and the non-personalized group
contained 61% women. The rationale for purposively
selecting these two groups of participants was not only
that they were representative of the population of PSTs
registered for the module and easily accessible to the
researcher, but primarily that they were appropriate in
capturing the major variations in their knowledge of the
work of mathematicians which could not be obtained
from other choices (Maxwell, 2013).

The setting

The PST were enrolled, among others, in an advanced
mathematics module as part of their BEd program. The
curriculum includes both methods and content modules
(courses). The assessment in tests and examinations of
the advanced mathematics module comprises important
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theory content which involves reconstruction “ab initio”
of proofs of major theorems. The textbook for the course
was Bartle and Sherbert’s (2011) Introduction to real
analysis and the module included all the appendices.
The book was chosen on the basis that it is intended to
help develop PSTs ability to think deductively, analyze
mathematical situations and extend ideas to new
contexts. Topics covered in the module included sets,
functions, properties of the real number system, proof by
induction, limits of functions and sequences, the
topology of the real line, limits of functions, continuity,
uniform continuity, and the generalized Riemann
(“gauge”) integral. The book also provides brief
biographical sketches of some famous mathematicians to
enrich its historical perspective. The module lectures
took place for 75 minutes twice a week over the course
of a 9-week semester.

Data Collection

Survey prompt items

Using their mobile devices, PSTs responded to the
personalized prompt, “If you have a leaky tap, you need
to hire a plumber; if you break your leg, you need the
services of a doctor. List 5 reasons for which you can hire
a pure mathematician,” or to the non-personalized
prompt, “if someone has a leaky tap, they need to hire a
plumber; if they break their leg, they need the services of
a doctor. List 5 reasons for which they can hire a pure
mathematician” (adapted from Picker & Berry, 2000, p.
71). The single problem was given on the basis of the
multimedia learning theory’s idea that when using
multimedia, it is important to reduce cognitive load for
the purpose of improving the information processing
capabilities of students’ memory. I take as
characterization of a problem the as the following: “a
mathematical question whose solution is not
immediately accessible to the solver, because he does not
have an algorithm for relating the data with the
conclusion” (Callejo & Vila, 2009, p. 112). The
participants took approximately 10 minutes to complete
the task.

Data Analysis

The main purposes of the analyses of the data from
the prompt were twofold: to explore the differences in
responses to the prompt in the context of the principle
and to describe PSTs” views of what mathematicians do.
To this end, inferential and descriptive statistics based
on the t-test and frequency tables were produced. I
analyzed responses from PSTs over a period of three
years (2018-2020), comparing their performance in the
same prompt throughout. The concepts of
personalization, proving, and validating provided a lens
for interpreting the data.
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Quantitative data

To answer the first research question, PSTs scores
were analyzed by applying the test for independent
means to answer the first research question. The data
was subjected to SPSS. Initially, the data were imported
from Excel spreadsheets. Next, the data were cleaned by
handling missing values and outliers, prior to
determining the appropriate statistical test based on the
research question. Then, descriptive statistics was used
to determine measures like means, standard deviations,
and skewness. Last, an analysis was run, using the t-test
to make inferences about populations based on sample
data.

Responses which were consistent with the
contemporary views of the work of pure mathematicians
were categorized as “informed = correct” and
misconceptions as “naive = incorrect.” Whether the data
approximated a normal distribution was verified by
using two tests: skewness and kurtosis z-value (ratio
with standard error). Data obtained from the SPSS was
used to calculate the effect size (d).

Qualitative data

For the second research question, the data were
analyzed using a predetermined coding scheme to
categorize what PSTs say about the functions of pure
mathematicians in response to the presentation of the
prompt in different contexts. Three mathematics
professionals with varying educational backgrounds
were purposively selected to assess intercoder reliability
on the PSTs’ responses to the prompts. One of the coders
held a doctorate in secondary-focused mathematics
education, one in pure mathematics, and one was an
associate mathematics education professor with
teaching experience in secondary school mathematics.

Thus, sampling here was consistent with Shadish et
al.’s (2002) argument that when the characteristics and
qualifications of the population are defined, purposeful
sampling is a credible sampling technique. Each
response was coded according to references to proving
(patterning, conjecturing, exemplifying, generalizing
and justifying) and validating as described in the
theoretical perspectives section (Table 1). Initial coding
involved sixteen categories.

However, because some codes appeared very
infrequently, these codes were subsequently simplified
into five categories: patterning (code 9); conjecturing
(codes 1 and 10); exemplifying (code 11); generalizing
(codes 5,12, and 13); proof function (codes 3, 6, 7, 8, and
14); other (codes 0, 2, 4, and 15). Any response which
mentioned several reasons for hiring a mathematician
received multiple codes.
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Table 1. Categorization of PSTs responses to the prompts

Response relating to: Code Response Code
Blank 0 Discovering 8
Guessing 1 Looking for patterns/structure 9
Computing 2 Conjecturing 10
Validating 3 Examples/informal deductive reasoning 11
Help PST with assignment/homework 4 Generalizing 12
Prove 5 Justifying/formal reasoning 13
Communicating new results 6 Explaining 14
Verifying (truth) 7 Other 15
Table 2. Descriptives and normality tests of personalization principle
Group Measure Statistics Standard error
Prompt score Personalized Mean 3.22 .76
Standard deviation 1.43 16
Skewness .52 40
Kurtosis -97 .78
Non-personalized Mean 211 72
Standard deviation 1.63 19
Skewness 17 .28
Kurtosis -1.12 .55

RESULTS

Quantitative Analysis

The test for independent means was used to analyze
survey data. Preliminary statistical results showed that
there were no outliers or missing data, and the Shapiro-
Wilk test for normality showed that data of both samples
approximated a normal distribution, namely, data
values were between -1.96 and +1.96. The result of
Levene’s test for equality of variances showed that the
variances of the two populations are the same. Put
another way, a confidence interval with a 95%
confidence level, showed that 95 out of 100 times the
estimate fell between the upper and lower values
specified by the confidence interval. Thus, the
nonsignificant result (405 is not below .05) suggested
that there was no reason to question the assumption of
equal population variances; that is, there was confidence
in the conclusions drawn from the t-test results. These
results, taken collectively, suggested the scores of the
two groups were suitable for the t-test (Salkind, 2010).
Descriptive statistics such as the means, standard
deviations, and measures of skewness and kurtosis are
presented in Table 2.

The results of the independent-samples t-test analysis
conducted to explore if there is a difference in the
performance of PST in relation to the personalization
context in which the prompt presented showed a
statistically significant difference in the scores for
personalized: #(160) = 4.83, p < .001, and d = .16. Put
another way, the results showed that the difference in
performance between the two groups was not only
statistically significant but also-on the basis of the very
large Cohen’s d-of practical significance.

Qualitative Analysis

Information about the second research question,
“What do PSTs say about the functions of pure
mathematicians in response to the presentation of the
prompt in different contexts?” was sourced from PST
responses to the prompts. Intercoder reliability,
particularly intraclass correlation coefficient (ICC),
which accounts for chance agreement, is crucial for
ensuring the consistency and accuracy of qualitative
data analysis. The reliability procedures followed were
developing the codebook, which outlined all categories,
subcategories, and their definitions to help coders
understand what to look for and how to apply the codes
consistently. The coders were trained to understand the
codebook, coding procedures, and how to apply the
codes consistently. This involved practice coding,
feedback sessions, and discussions about disagreements.

The coders raised merely clarity-seeking questions
prior to the scoring. The limited time available for the
project constrained the provision of formal training on
the use of the codes, simulating its probable future uses.
However, this lack of training did not contribute to
inconsistent coding, which suggested that the coding
schemes can be administered uniformly and consistently
in different contexts. All coders scored the same set of
ten PSTs’ responses independently. Then, they were
asked to rate the responses on a 5-point Likert scale, with
response options ranging from 1 (= very weakly
represents mathematicians” work) to 5 (= very strongly
represents mathematicians” work).

The result of this process was a set of categorizations
grounded in literature. ICC was used. Whereas ICC is an
index that reflects both degree of correlation and
agreement between measurements, the term “class” is
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Figure 1. Distribution of PSTs’ responses to prompts by the 2 groups (Source: Authors’ own elaboration, using SPSS V30)

used to refer to “the test takers, persons, families, or
other entities that serve as objects of measurement in a
correlational analysis” (McGraw & Wong, 1996, p. 30).
Thus, the ICC was used to assess the degree that coders
were consistent in their coding of PSTs” responses.

Based on Koo and Li’s (2016) ICC estimates, values
less than .50, between .50 and .75, between .75 and .90,
and greater than .90 were indicative of poor, moderate,
good, and excellent reliability, respectively. For this
analysis, the resulting single-measure ICCs for the
prompts were within the “good” range (.83). This value
suggested a high degree of agreement among coders,
despite the lack of training, practice, or discussion
among some of them. Put another way, these high ICCs
suggested that the independent coders, with no training,
introduced only a small amount of measurement error.
In Figure 1, I provide a distribution of PSTs” responses
according to the reasons for which they would hire a
mathematician, gleaned from their answers to the
prompts.

Although Figure 1 shows that the most common
responses suggest that PSTs view mathematicians as
engaging in practices coded as “other” than in proving
and validating, functions mentioned by a little over 51%,
fewer PSTs held in the personalized group hold the
“other” view about what mathematicians do.
Specifically, the majority of PSTs responded with
answers that either made little sense or gave no response
at all, irrespective of the context in which the prompt was
presented. More PSTs in the personalized group
regarded mathematicians as people who engage in
verifying, =~ communicating mathematical results,
explaining why a proposition is true, systematize
mathematical results into a deductive system of axioms,
and invent new mathematical results, all coded as proof
function. That mathematicians formulate conjectures
was almost equally mentioned by both groups while
responses suggesting some kind of pattern observation
or seeking by mathematicians, coded as patterning, were
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very rare for both groups, referred to by only less than
5% of PSTs.

DISCUSSION

The discussion that follows is organized around the
two research questions:

1. To what degree does the personalization principle
affect PSTs responses to the prompt?

2. What do PSTs say about the functions of pure
mathematicians in response to the presentation of
the prompt in different contexts?

This project aimed to investigate the personalization
principle’s effectiveness on the performance of PSTs in a
prompt about the practice of mathematicians.

Quantitative  analysis =~ showed  that  the
personalization principle significantly affected the
performance of the group of PSTs who were presented
with a formal format. This finding was parallel to the
findings of Mayer et al’s (2004) experiments and
Dunsworth’s (2005) study. Mayer et al.’s (2004) study
found similar results. However, it was inconsistent with
the findings of Son and Goldstone (2009), Yeung et al.
(2009), and Doolittle (2010) who found a non-significant
difference between personalized and non-personalized
groups. Noteworthy is that the results of these previous
studies were all in nonmathematical contexts.

The results in this study need not be construed as
suggesting that personalized contexts must be a feature
of mathematical practice because “if all learning is tied
to specific contexts, the possibility of transfer across
domains and phenomena comes into question” (Son &
Goldstone, 2009, p. 53). My point is that although
knowledge must be decontextualized and abstracted
from particulars in order to be transferred to novel
situations, learning in a personalized context, whenever
practical, needs to be pursued. The findings in this study
lend support to this stance. In fact, Son and Goldstone
(2009) argue that when only a limited exposure to
personalized  contexts is  available, strategic
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decontextualization, if successfully employed, can allow
students to function across contexts and extend prior
learning to solve new problems.

The qualitative results seem to be consistent with the
finding that PSTs in personalized contexts tend to
perform better than those in non-personalized contexts.
In addition, these results revealed that a sizeable
majority of PSTs had no clear idea of what
mathematicians actually do. This finding is similar to
Picker and Berry’s (2000) who found that
mathematicians are thought of as people that can help in
doing arithmetic exercises. Thus, setting a personalized
question tends to lead to a surprising array of valid but
unexpected responses. Surprising because, in contrast to
Son and Goldstone (2009) suggestion the personalized
context had an effect on the content (ie., what
mathematicians do) that has not even been previously
learnt. The key findings of this study extend our insight
into PSTs" understanding of the functions of
mathematicians and the effect of the personalization
principle when responding to the prompt via
smartphones.

There is no manuscript without some limitations.
First, the study reported in this paper did not investigate
PSTs reasons for the responses they provided. For
example, understanding what they meant by
“Examples.” Future studies must conduct open-ended
interviews to further shed light into this principle.
Second, although the study’s participants were
representative samples, the results should be confined to
contexts similar to this study given the small sample size.
Future research may need to conduct randomized
experiments to enable the generalization of results to
other contexts.

The “novelty effect” in the context of mobile surveys,
that is, the initial positive response and engagement
participants demonstrate when using smartphones for
the first time, seemed to diminish as they became
accustomed to using them. This was observed in various
aspects of survey participation during the longitudinal
attrition. In particular, the novelty effect was observed in
the response rates, the length and detail of responses,
and overall satisfaction with the survey experience. The
novelty effect could have been diminished by providing
participating PSTs with a clear explanation of the
research’s purpose, ensuring it was easy to use, and
making the survey itself engaging and interactive. Thus,
this longitudinal study captured the full impact of the
survey on participant engagement.

CONCLUSIONS

By focusing on the personalization principle, the
mixed methods study reported in this paper investigated
whether two different prompt presentation formats on
the practice of mathematicians influenced PSTs
performance. The results showed that there were more

positive effects on the performance in the conversational
presentation format than in the formal format. Further,
qualitative results suggested that PSTs know very little
about mathematicians” practice. If PSTs experience
difficulty in describing the work of mathematicians, it
should not come as a surprise that learners also have
similar problems. The finding that PSTs have a limited
understanding of mathematicians has educational
implications. First, the implication for PSTs is that they
will continue to struggle with understanding of the
mathematical practice unless efforts are geared towards
improving their knowledge about the actual work of
mathematicians in their training courses. Second, the
implication is that PSTs can take it upon themselves to
learn what actually mathematics is all about. It is during
such their own effort that they can pick it up about the
work of mathematicians, especially when they learn to
prove theorems. Additionally, PSTs can plan and
facilitate mathematics lessons that focus on the practice
of mathematicians. These results underscore the
necessity to consider the format in which tasks are
presented to PSTs.
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