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ABSTRACT 
Modern science standards emphasize knowledge-in-use, i.e., connecting scientific 
practices with content. For knowledge to become usable in knowledge-in-use 
performances, students need well organized knowledge networks that allow them to 
activate and connect sets of relevant ideas across contexts, i.e. students need 
integrated knowledge. We conducted a longitudinal interview study with 30 students 
in a 7th grade energy unit and used network analysis to investigate students’ integrated 
knowledge, i.e., their knowledge networks. Linking these results with results from 
knowledge-in-use assessments, we found a strong connection between integrated 
knowledge and knowledge-in-use about energy. Further, we found evidence that well-
connected ideas around the idea of energy transfer were particularly helpful for using 
energy ideas in the knowledge-in-use assessments. We present network analysis as a 
valuable extension of existing approaches to investigating students’ knowledge 
networks and the connection between them and knowledge-in-use. 
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INTRODUCTION 
Science standards such as the US Next generation science standards (NGSS Lead States, 2013) or the German 
Bildungsstandards (Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik 
Deutschland, 2004) emphasize that a central goal of science education is that students are enabled to use their 
knowledge to make sense of the designed and natural world, i.e., students should be enabled to demonstrate 
knowledge-in-use by integrating disciplinary knowledge with scientific practices (Harris, Krajcik, Pellegrino, & 
McElhaney, 2016). For knowledge to become usable in such a way, students need to develop a well-connected 
knowledge network around central ideas of the domain as this facilitates retrieval and application (Bransford, 
2000). The importance of knowledge networks organized around core ideas is recognized in modern educational 
standards, e.g., the NGSS emphasize “Disciplinary Core Ideas” and the German Science Standards introduced 
“Basic Concepts”. 

However, as Schwartz and Arena (2013) argue, science assessments often primarily focus on how much 
knowledge student have acquired instead of measuring to what extent students have an integrated knowledge. 
Students that have an integrated knowledge have well organized knowledge networks that allow them to activate 
and connect sets of relevant ideas across contexts. During the last decade, a number of authors have started to 
address this issue and developed different measures that describe to what extent students can connect ideas (Lee, 
Liu, & Linn, 2011; O. L. Liu, Lee, Hofstetter, & Linn, 2008; O. L. Liu, Ryoo, Linn, Sato, & Svihla, 2015; Nordine, 
Krajcik, & Fortus, 2011; Won, Krabbe, Ley, Treagust, & Fischer, 2017). These studies have often used the knowledge 
integration perspective (Linn, 2006), which views learning as a process in which students develop increasingly 
better organized networks of ideas, i.e., while students learn, they (re)organize their knowledge networks around 
core ideas in a domain. These knowledge networks are considered to be the basis that allows students to 
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demonstrate knowledge-in-use, i.e., connecting scientific practices, disciplinary core ideas, and cross-cutting 
concepts to interpret and explain real world phenomena (Harris et al., 2016). 

Existing measures of students’ knowledge networks have either provided quantitative information about the 
extent to which students have organized knowledge networks (e.g., Lee & Liu, 2010) or qualitative information 
about how students organize their knowledge networks (Won et al., 2017). Neither approach has linked their results 
to knowledge-in-use in the sense of connecting practices, content, and cross-cutting concepts. In consequence, the 
relationship between students’ knowledge-in-use and integrated knowledge in a domain is only little researched. 
We present a network analytical approach that provides qualitative and quantitative information about students’ 
integrated knowledge, i.e., how students activate and connect ideas, and explore connections between quantitative 
network measures and knowledge-in-use.  

This study is part of a broader project on the teaching and learning of energy in middle school. As students 
usually hold a wide range of ideas about energy, the energy concept provides an excellent venue to explore how 
network analysis can help to investigate students’ knowledge networks and their relationship to students’ ability 
to demonstrate knowledge-in-use. Because the knowledge-in-use assessments used in this study have been 
described in depth elsewhere (Neumann et al., 2018), we only revisit them relatively quickly. 

BACKGROUND 

Integrated Knowledge and Knowledge-in-Use 
Knowledge, or more specifically the organization of knowledge, is often characterized as a network-like 

structure (e.g., Anderson, 1983; National Academies of Sciences, Engineering, and Medicine, 2018). This 
characterization has been recognized and successfully applied in neuro- and cognitive science (Griffiths, Kemp, & 
Tenenbaum, 2008; McClelland & Axel Cleeremans, 2009; Park & Friston, 2013; Thagard, 2000). Synthesizing 
findings from psychology, the learning sciences, and educational research, learning can be viewed as a process in 
which students’ knowledge networks undergo a process of restructuring, i.e., students add new ideas to their 
knowledge networks, sort out ideas, and establish, change, refine, and strengthen the connections between ideas 
(diSessa & Sherin, 1998; Linn, 2006). If certain ideas are commonly activated together and across a range of 
instances, they form patterns of activation which represent conceptual understanding (Derry, 1996). Within these 
patterns of activation, some ideas have larger span (diSessa, 2013), i.e., some ideas are more strongly connected 
than others and serve as hubs that connect multiple ideas. Those hubs represent core ideas in a domain. Further, 
patterns of activation become more likely to be activated in certain contexts if they prove to be of explanatory value, 
i.e., they can be used productively to interpret and explain phenomena (Smith, diSessa, & Roschelle, 1994). In sum, 
students that have an integrated knowledge have well organized knowledge networks around core ideas which 
allow them to activate and connect relevant ideas across context.  

This perspective on learning resonates well with major findings from the cognitive sciences and science 
education. The focus on the re-structuring of idea networks acknowledges that students come to the classroom with 
strong assumptions about how the world works (Bransford, 2000) and that this prior knowledge plays an important 
role in any learning process. Science education research has identified many of these conceptions or frameworks 
(e.g. Watts, 1983) and developed strategies to engage them by pointing to the superior explanatory value of their 
scientific counterparts (e.g. diSessa, 1988). Research on differences among novices and experts has revealed that 
novices and experts have differently organized knowledge networks (e.g. Chi, Feltovich, & Glaser, 1981). Chi et al. 
(1981) found that in the context of physics, experts used core ideas such as the principle of energy conservation to 
make sense of phenomena while novices relied on surface features of the phenomena. In essence, the knowledge 
of experts is well-organized around core ideas in the domain like energy conservation while the knowledge of 
novices typically exists as a set of loosely connected or disconnected ideas, resulting in novices and experts often 

Contribution of this paper to the literature 

• This paper contributes to the existing literature on students’ integrated knowledge by providing evidence 
that supports the premise of modern science standards of deep learning around small sets of core ideas as 
a key factor for knowledge-in-use. 

• This paper also contributes to the literature on the teaching and learning of energy as it supports theoretical 
work that suggests that energy transfer can be a particularly helpful energy idea to make sense of 
phenomena. 

• Lastly, this paper presents how network analysis can be used to provide qualitative and quantitative 
information about students’ knowledge networks. 
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perceiving the same phenomenon differently – experts are more likely to notice deep structure while novices are 
commonly drawn to the surface features that experts ignore (Hmelo-Silver & Pfeffer, 2004).  

Recent science standards such as the NGSS or the German science standards emphasize that a central goal of 
science education is to enable students to apply their knowledge in the context of scientific practices in a wide range 
of contexts (Harris et al., 2016), i.e., to demonstrate knowledge-in-use. To be able to connect disciplinary ideas, 
scientific practices and cross-cutting ideas to make sense of a range of phenomena, students need knowledge 
networks that are organized around core ideas of the domain, that is, integrated knowledge (Bransford, 2000; 
diSessa, 1988; Linn, 2006; Schneider & Stern, 2009). From an instructional perspective, the question arises which of 
the possible organizations of knowledge networks help to promote knowledge-in-use. More specifically, we might 
ask what is the relative importance of ideas in a given domain or what ideas are better suited as core ideas for an 
integrated knowledge? As studies usually focus either on knowledge-in-use or integrated knowledge (e.g., Lee and 
Liu, 2010) there has been little research into the relationship between the two. Further, existing measures of how 
students connect ideas largely focus either on qualitative features of students’ knowledge networks but do not 
connect those results to students’ performance on related knowledge-in-use assessments (Won et al., 2017) or 
distinguish broader levels of connectedness in students’ knowledge networks that relate to students’ performance 
on related assessments (not knowledge-in-use assessments) but provide little information about how students 
actually connect ideas (Lee & Liu, 2010). 

Existing Measures of Integrated Knowledge 
In order to measure integrated knowledge i.e., how students organize their knowledge networks and activate 

and connect ideas to make sense of phenomena, researchers have taken a number of approaches, making different 
assumptions and using different testing formats: Kauertz and Fischer (2006) used multiple choice (MC) tasks, Lee 
and Liu (2010) constructed response (CR) tasks, Nordine et al. (2011) used interviews, and Won et al. (2017) used 
concept mapping.  

Mulitple Choice Tasks. Kauertz and Fischer (2006) used a measure of six different levels of complexity that 
distinguished the number of ideas and the number of connections between those ideas. Low complexity was 
characterized by disconnected individual ideas, while high complexity was related to systemic connections 
between ideas organized around core ideas in a domain. Thus, the complexity measure targets different qualitative 
stages in students’ knowledge networks. Using the complexity framework, Kauertz and Fischer designed MC tasks 
that match the different levels of complexity. More precisely, Kauertz and Fischer defined which ideas students 
had to link to answer a question correctly at the different levels of complexity, e.g., on a lower complexity level a 
student might have to link a form of energy with speed, on a higher complexity level a student might have to link 
two forms of energy with the idea of energy transformation. While the choices for linking ideas such as “energy 
transformation” are reasonable, they might not reflect the ideas that students actually used when answering the 
question as MC tasks allow for guessing or other test-wiseness related strategies (Pellegrino, Chudowsky, & Glaser, 
2004). However, using IRT modeling, they found a strong and highly significant correlation between the complexity 
levels that they had assigned to the tasks and task difficulty. By mapping individual ability and task difficulty using 
IRT, Kauertz and Fischer concluded that students that score higher are able to elaborate more complex scientifically 
valid links among ideas relevant to the tasks, i.e., that higher scoring students have better organized knowledge 
networks.  

Constructed Response Tasks. Liu, Lee, Hofstetter and Linn (2008) established one approach that was tested 
and refined over multiple studies (e.g., Lee & Liu, 2010). In this approach a combination of multiple choice (MC) 
and constructed response (CR) items are used (see Figure 1 as an example). 
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Beginning with the MC part, a phenomenon is presented, and students have to choose the correct answer. In 
the associated CR part, students are asked to explain or justify their answer from the MC part. The extent to which 
students are able to connect ideas identifiable in the explanations is then coded on a scale from not linking relevant 
ideas (“no link”) through an intermediate level of linking (“partial link”) to the level of elaborating a scientifically 
valid link between two ideas relevant to a given context (“full link”). A further “complex link” level is identified 
when students use more than one link between at least three ideas, but only very few students reach that level (Lee 
et al., 2011). The authors use IRT models to link the scales of the MC questions to those of the CR question. Higher 
levels of performance on the MC questions map onto higher levels of performance on the CR questions, thus linking 
higher test scores to higher levels of connecting ideas. Thus, the study supports the relationship between better 
organized knowledge networks and performance on related assessments found by Kauertz and Fischer (2006). 
Further, Lee and Liu (2010) measure how students connect ideas less distal than Kauertz and Fischer (2006) as they 
observe the extent to which students link ideas in their answers directly. However, as Lee and Liu (2010) note, the 
extent to which students connect ideas may be underestimated due to students known lack of commitment to 
formulating scientific explanations. Students who are not motivated to explain their choice or not motivated to do 
so in a thorough way will link few if any ideas in their explanations.  

Interviews. Nordine et al. (2011) measured which ideas students connect in the domain of energy using an 
interview about instances approach (Osborne and Gilbert, 1980). In this approach, the interviewed student is 
presented pictures that illustrate various everyday situations and asked whether the pictures illustrate their idea of 

 
Figure 1. Example for items and knowledge integration rubric used by Lee and Liu (2010) 
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energy. If the student answers “yes”, the interviewer asks for the students’ reasoning. If students use ambiguous 
wording the interviewer can, using the language of the student, probe into the students’ reasoning to clarify what 
is meant. To measure how students’ connect ideas from these interviews, the researchers used a qualitative analysis 
to determine whether the students used “transformation” to link at least two forms of energy (kinetic energy etc.). 
This level of connecting ideas appeared to be equivalent with a middle ground between the “full link” and “partial 
link” level identified by (Lee et al., 2011). Thereby, how students connect ideas was dichotomously assigned to 
represent either at least a “partial link” level or to be below the “partial link” level. The level of connecting ideas 
was significantly correlated with students’ scores on an energy concept questionnaire adapted from Swackhamer 
and Hestenes (2005). This supports that better organized knowledge networks are in fact related to higher 
performance in interpreting and explaining phenomena using core ideas in a domain. While measuring how 
students connect ideas on a coarser grain size than Lee and Liu (2010), the interview approach can help to counter 
the motivational issues in the Lee and Liu (2010) approach and is potentially more sensitive to developmental stages 
in students’ knowledge networks where students may not yet be able to articulate links between ideas in a written 
from. 

Concept mapping. Won et al. (2017) asked students to draw concept maps (Novak, 1990) on the topic of energy 
and used the multiple choice energy concept assessment from (Neumann, Viering, Boone, & Fischer, 2013). Concept 
maps provide vivid representations of how students connect ideas and allow to distinguish qualitative differences 
in how students connect ideas. Different features related to students’ knowledge networks, e.g., the number of ideas 
in a map or the number of connections between ideas, can be used to score the maps. However the scoring of the 
maps employed by Won et al. (2017) is only weakly related to how students perform on the energy concept 
assessment. Won et al. (2017) identify various issues such as students’ inexperience with the concept mapping task 
that may explain the unexpectedly weak relationship between students’ concept maps and their performance on 
the energy concept assessment. In addition, we consider concept maps problematic for measuring how students 
connect ideas to make sense of phenomena, as they are typically constructed by the students themselves. There is 
a threat to validity in this approach: a student may certainly be able to draw a concept map that connects two 
relevant ideas, e.g. energy transformation and different forms of energy, but not be able to apply those ideas when 
asked to make sense of a phenomenon and vice versa. Thus, concept maps may be suited to assess the structure of 
students’ declarative knowledge (Ruiz-Primo, 2004) but appear less suited to assess students’ ability to link ideas 
to make sense of phenomena, i.e., students’ integrated knowledge. 

In summary, the MC, the CR, and the interview approach to measuring students’ integrated knowledge found 
a strong relation between different levels of connectedness in students’ knowledge networks and performance on 
related assessments (although not knowledge-in-use assessments). The MC approach hinges on the assumption 
that one can reliably infer the ideas that a student has connected from the answer he gives on a MC test. The CR 
approach assigns levels of knowledge integration based on the extent to which a student uses specific a priori 
defined linking ideas. The same is true for the interview approach which is potentially more sensitive to less 
developed stages of knowledge integration than the CR based approach. Finally, the concept mapping approach 
does not find a strong relation between students’ knowledge networks as assessed by concept mapping and 
students’ performance on related MC assessments but provides insight into qualitative differences in how students 
connect ideas. 

Measuring Integrated Knowledge using Network Analysis 
We propose to synthesize the existing approaches to measuring how students connect ideas through the 

application of network analytical tools. First, consider again the definition of integrated knowledge: it describes 
students’ ability to coordinate a set of core ideas consistently across phenomena to make sense of them. Thus, we 
propose, similar to the CR or interview approach, to measure which ideas students use when interpreting and 
explaining phenomena. However, instead of assessing whether students use a priori defined linking ideas and 
assigning respective knowledge integration scores, we draw on the central assumption that all ideas a student uses 
in response to a phenomenon, are connected. We consider this assumption, which is used with great success in 
automated semantic analysis (Landauer, 2014), automated coding of student responses (e.g. Zehner, Sälzer, & 
Goldhammer, 2016), or classification of texts (Blei & Lafferty, 2007), warranted because we aggregate across 
phenomena and do not interpret co-occurrences of ideas in a single phenomenon. When we aggregate across 
phenomena, sets of ideas that co-occur across many phenomena appear to be stronger linked than those sets of 
ideas that are only used in a single phenomenon or across few phenomena. Stronger linked ideas should reflect 
core ideas in a domain as - following the definition above - the central feature of core ideas is that they are used 
consistently across phenomena. Following this approach leads to relational data that can be visualized as a network. 
Similar to a concept map, the network should reveal major characteristics of how students link ideas, yet these 
maps are generated by analyzing students’ use of a concept when making sense of phenomena rather than mapping 
the concept itself. In addition, network analytical methods allow for the quantification of aspects of the networks 
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which can then be related to students’ performance on knowledge-in-use assessments. In the following, we will 
describe how knowledge networks can be constructed and quantitatively analyzed.  

From Ideas to Networks. To derive networks from student explanations of a range of phenomena, we draw on 
the central assumption that ideas that co-occur within a student’s response to a single phenomenon are connected 
and that repeated co-occurrence (across multiple phenomena) is an indicator for the strength of the connection. In 
the following, we provide an example for an individual student that has explained two phenomena A and B. 
Assume that the student used the ideas speed, transfer of energy and gravitational field in his explanation of 
phenomenon A. This leads to a network for phenomenon A in which all three ideas - speed, transfer of energy and 
gravitational field – are connected with each other (Figure 2). 

Now assume that the same student uses the ideas speed, heat, and transfer of energy in the explanation of 
phenomenon B. Now, combining the networks for phenomenon A and phenomenon B results in a network (Figure 
3) in which we add the idea heat to the existing network for phenomenon A and connect heat to speed and transfer of 
energy. 

Further, since speed and transfer of energy co-occur in phenomenon A and phenomenon B, we increase the 
strength of the connection between speed and transfer of energy which is represented by the increase in width of the 
line connecting the ideas in Figure 3. In the same manner, we can combine networks across more of phenomena. 
Further, aggregating across individual-level networks gives collective networks, e.g., for students in a classroom. 
Such aggregated networks can be useful for understanding the prevalence of ideas and connections that exist in 
student populations (Loh & Subramaniam, 2018).  

Quantifying Networks. Visual inspection of the network tells us which ideas co-occur and how often they do 
so. Network analysis provides the tools to construct numerical measures that help to quantify knowledge networks 
with respect to integrated knowledge.  

The Role of Single Ideas. Not all ideas are equally important and powerful to make sense of phenomena. Central 
ideas of a domain that serve as hubs that connect multiple ideas are more powerful as they are applicable across a 
range of phenomena and contexts (National Research Council, 2012). For example, the idea that kinetic energy is 
related to the square or speed is correct, but not as central or broadly applicable as the idea that energy is conserved. 
Core ideas serve as linking ideas in knowledge integration measures (Lee and Liu, 2010) and have a larger span 
(diSessa, 1988; diSessa & Sherin, 1998). With respect to our networks this translates to the strength of the 
connections of a single idea to the remainder of the network. Network analysis offers a range of so-called centrality 
measures that capture this idea (Freeman, 1978). The simplest of these is degree and it captures how connected an 
idea is to the remainder of the network. Degree quantifies the number of other ideas a single idea is connected to, 
taking the strength of the connections into account, e.g., energy transfer in Figure 3 has a degree of four (one 
connection to heat, one connection to gravitational field, and one connection of strength two to speed) and heat has a 
degree of two. Thus, the higher degree of energy transfer with respect to heat reflects that energy transfer was used 

 
Figure 2. Example of network for one student and one phenomenon. Lines between boxes represent co-occurrence and the 
number next to the lines indicated frequency of co-occurrence 

 
Figure 3. Example of network for one student for two combined phenomena. Lines between boxes represent co-occurrence and 
the number next to the lines indicated frequency of co-occurrence 
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across more phenomena and in coordination with a broader range of ideas than heat. Note that the numerical values 
of network measures are often only meaningful relative to other networks that were created using the same process 
and often have little meaning on their own.  

A Network Measure of Integrated Knowledge. Higher levels of integrated knowledge are typically associated 
with increasingly interconnected coordination of ideas, assuming that the ideas that are normative (Anderson & 
Schunn, 2000; Bransford, 2000; diSessa, 1988; Koponen & Huttunen, 2013; Linn, 2006; Rumelhart & McClelland, 
1986). To quantify how interconnected a network as a whole is, we draw on what Rafols and Meyer (2010) call 
network coherence. To calculate network coherence, we calculate the closeness (Freeman, 1978) for each idea to 
each other idea and average across all ideas. Closeness C is defined as the inverse of the sum of the distance d 
between a single idea x and all other ideas y in the idea network:  

𝐶𝐶(𝑥𝑥) =
1

∑ 𝑑𝑑(𝑦𝑦, 𝑥𝑥)𝑦𝑦
 

In the formula, 𝑑𝑑(𝑦𝑦, 𝑥𝑥) is the shortest path between any two ideas. In our idea networks, we would consider 
energy transfer and speed strongly connected with a connection strength of 4 when a student uses those two ideas in 
four out of five phenomena. To interpret the strength of connection between ideas as a distance, we simply take the 
inverse of the strength of connection between two ideas to ensure that strong connections between ideas reflect 
short distances and vice versa. Let us provide an example: consider the network in Figure 2. To ensure that strong 
connections reflect short distances we simply take the inverse. Thus, the shortest path between the stronger 
connected ideas energy transfer and speed becomes 0.5, whereas the shortest path between the looser connected ideas 
energy transfer and heat becomes 1. Following the formula, the closeness of energy transfer is 0.4 as adding the shortest 
paths between energy transfer and heat, energy transfer and speed, and energy transfer and gravitational field gives 2.5 
(1+0.5+1) and the inverse of 2.5 is 0.4. Following the same procedure for gravitational field gives 0.25 (the inverse of 
1+1+2) which reflects that gravitational field is less strongly connected with the remaining network than energy 
transfer. Averaging across the closeness of each idea in the network gives a network coherence of 0.325. Compare 
the network in Figure 3 with the network in Figure 4. 

The network in Figure 4 suggests that the student used all four ideas in both phenomena, demonstrating a more 
integrated knowledge as she coordinated a larger number of ideas consistently across phenomena than the student 
from the network in Figure 3. The measure of network coherence reflects this as it takes the larger value of 0.58. 
Similar to degree, network coherence has no natural scale, i.e., the numerical value can be used to compare different 
networks that were created using the same process but has no meaning of its own. To account for different numbers 
of ideas in networks, network coherence can be normalized by multiplying it with the number of ideas in a network 
(Freeman, 1978). In sum, network coherence is high in dense networks with strong connections and low in sparse 
networks with weak connections and should thusly provide a holistic measure of integrated knowledge. 

Research Questions 
To investigate to what extent the proposed network analytical approach illuminates how qualitative differences 

in students’ knowledge networks are related to students knowledge-in-use, we asked the following research 
questions:  

RQ1: How is the change in students’ integrated knowledge over the course of instruction as measured by a 
network analytical approach related to the change in students’ knowledge-in-use? 

RQ2: What qualitative information about students’ knowledge networks does the network analytical approach 
provide and how is this related to students’ knowledge-in-use? 

 
Figure 4. Example of network for one student for two combined phenomena. Lines between boxes represent co-occurrence and 
the number next to the lines indicated frequency of co-occurrence 
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METHODS 
To address the research questions, we conducted semi-structured interviews before and after a middle school 

unit about energy. In the interviews, students were presented brief videos of five different phenomena and asked 
to explain them. We then used network analytical methods to characterize and represent how students organized 
their ideas within idea networks and to assess the extent to which students developed an integrated knowledge 
over the course of the instructional unit.  

We assessed students’ knowledge-in-use about energy using distal, NGSS aligned knowledge-in-use 
assessment (Neumann et al., 2018) before and after the energy unit and linked students’ performance on those tasks 
to how students’ idea networks changed over the course of instruction. 

In the following sections, we describe the energy unit, describe our data sources, and then focus on how we 
analyzed the interviews to create representations of students’ idea networks. 

Sample and Setting 
Our study was conducted as part of a larger project investigating the teaching and learning of energy in middle 

school. The learning environment consisted of an approximately 10-week long energy unit (Nordine et al., 2018) 
that emphasized energy transfers in interpreting and explaining phenomena as emphasized in the NGSS (NGSS 
Lead States, 2013). The energy unit was enacted by three teachers in the 7th grade of two rural middle schools 
located in the Midwestern United States. A sample of N=30 students, representing approximately 10% of the total 
sample of N=294 students, was interviewed. The teachers selected the students based on a request from the 
researchers to identify a sample of students who they felt would be comfortable being interviewed and who 
represented a range of student abilities in their classes. To test the representativeness of our interview-sample for 
the whole sample, we compared our interview sample to the sample as a whole based on students’ average grade 
and gain on the unit’s pre / post-test (Table 1). 

 Although the differences between interview sample and the sample as a whole on both measures (gain: t(234 ) 
= 0.32, p = .75, d = 0.07; average grade: t(234) = 1.52, p = .13, d = 0.38) are statistically not significant, they indicate 
that our interview sample consisted of slightly higher achieving students. 

Energy Ideas in the Unit 
Prior to the unit, we expected students’ ideas about energy to be relatively disconnected and mostly about 

different forms of energy and some ideas about the transformation of energy which they may have picked up in 
earlier learning opportunities (Chen et al., 2014). From the literature on student conceptions of energy (for an 
overview see Duit, 2014) and students usage of energy ideas to solve problems (Chabalengula, Sanders, & Mumba, 
2012; Driver and Warrington, 1985) we expected that prior to the unit, students would rarely use energy ideas to 
explain and interpret phenomena and instead use ideas such as forces and everyday interactions between objects. 

This study is situated in an energy unit (Nordine et al., 2018) that emphasizes energy transfers between systems 
as envisioned in the Framework for K-12 Science Education. The so-called “systems-transfer approach” is a transfer-
only approach and does not distinguish between different forms of energy but instead treats energy as a unitary 
entity. During phenomena, interacting systems transfer energy between them and in parallel, each system 
undergoes a process that changes the amount of energy the system has. Energy conservation is implied because 
when energy is transferred from a system, it is always transferred to another system. Therefore, we would expect 
that, at the end of the unit students should have developed idea networks that are organized around the central 
idea of energy transfer and are able make sense of phenomena using those ideas, i.e., demonstrate knowledge-in-
use about energy. Other energy ideas such as forms of energy or energy transformations should play a less 
significant role. 

Table 1. Mean and standard deviation for average grade across science, math, and, English (11 point grading system), and 
learning gain (z-Score) between whole sample and interview group 
 Group M SD 

Average grade Interview group 8.10 3.74 
Whole Sample 6.67 3.75 

Learning gain 
Interview group 0.47 0.70 
Whole Sample 0.44 0.54 
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Data Sources 
Interviews - Protocol and Phenomena. To gain insight in how students connect ideas to make sense of 

phenomena, students were interviewed individually according to a semi-structured interview protocol. In this 
protocol, students were shown short (5-10 second) videos of five different phenomena and prompted to explain 
each one. After introductions and obtaining student consent, we showed students the video of the first phenomenon 
and asked: “How would you explain this phenomenon?”. After students’ initial answer, non-instructional prompts 
were used to clarify ambiguous statements and elicit which ideas students used, e.g. if a student referred to energy 
transfer to/from an object, the interviewer might ask “What do you mean by energy transfer?” After prompting, 
students were shown the video of the next phenomenon. 

The pre and post interviews were identical and addressed five phenomena: a cup above a burning candle that 
starts spinning, a bouncing ball that eventually stops bouncing, melting ice1, a person pushing a barrel up a ramp, 
and an electric heater heating up (all phenomena are available as online supplemental). The phenomena were 
selected to cover a broad range of phenomena and topics (thermodynamic, mechanics, electricity, biological 
systems, etc.) and to be rich in the sense that one could interpret and explain them on different levels of detail (e.g., 
using a macroscopic or particle perspective to explain melting ice).  

Knowledge-in-Use Energy Assessments. We used NGSS-aligned knowledge-in-use assessments (Neumann et 
al., 2018) to investigate how students’ performance at interpreting and explaining phenomena using energy ideas 
changes over the course of the unit. The assessments were distal in the sense that they are not aligned to what was 
taught in the unit but the NGSS energy performance expectations for middle school. The assessments emphasized 
knowledge-in-use, i.e., blending a disciplinary knowledge (in this case about energy) with science practices such as 
constructing an explanation and cross-cutting ideas such as systems (Harris et al., 2016). The tests included twelve 
open-ended tasks. We used evidence-centered design as laid out in the NRC report on Developing assessments for the 
Next Generation Science Standards (Pellegrino et al., 2014) and more specifically following the procedure by (Harris 
et al., 2016) to ensure that the tasks blended scientific practices, disciplinary core ideas, and cross-cutting practices, 
i.e., the task were designed to capture knowledge-in-use. Eight of those tasks were aligned to the NGSS energy 
middle school performance expectations and four to the K-5 energy performance expectations. The tasks were 
scored by experienced teachers (average percentage agreement across all tasks: 83%). We used a polytomous IRT 
model (Bond & Fox, 2015) to calculate students’ knowledge-in-use ability. The infit and outfit of the items was 
between 0.90 and 1.20 and reliability was found to be .76. 

Analysis 
Coding – from Interviews to Ideas. As a first step, we transcribed all interviews. Then we used qualitative 

content analysis (Mayring, 2014) to determine which ideas students’ used in their explanations. We followed a 
deductive approach in which phrases served as a coding unit and the complete explanatory account of one 
phenomenon as context unit, i.e., the number of times a student mentioned an idea such as speed in his or her 
explanation of one phenomenon was not accounted for. The deductive categories consist of numerous energy ideas 
and other scientific concepts (e.g., gravity, forces, or the particle model of matter) that students could use to 
construct scientifically valid explanations of the phenomena. We referred to literature on energy learning 
progressions (e.g., Neumann, Viering, Boone, & Fischer, 2013) to identify relevant energy ideas (e.g., forms, transfer, 
transformation). For all other concepts we considered grade band appropriate conceptions, e.g., for the concept of 
“force” we considered the respective literature on student conceptions (Gilbert, Watts, & Osborne, 1982) and 
labeled the resulting code “pushes / pulls”. An example of our category system can be found in Table 2. 
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In some cases, interviewers asked the student to describe the phenomenon prior to explaining it. Ideas 
mentioned in a merely descriptive part were not coded. Further, in some cases the interviewers used instructional 
prompts (e.g. directly prompting for energy). In these cases, anything after such prompts was ignored. If 
instructional prompts occurred in more than one scenario, we excluded the interview because ideas potentially 
introduced by the interviewer would distort our results. In consequence, data from 13 students were excluded from 
the analysis because of instructive prompts. The remaining sample of N=17 students represents 7% of the total 
number of 236 students that studied the unit with these teachers and took the unit pre- and post-test. 

We used a second rater to conduct an inter-rater reliability analysis in which we found very good agreement 
(Cohen’s Kappa 𝜅𝜅 = .85, (Landis and Koch, 1977)) and after an analysis of the conflicting codes, we were able to 
resolve them. 

Network Analysis. The codes resulting from qualitative content analysis provide us with a list of ideas that co-
occur in each explanatory account of each phenomenon for each student. Our central assumption for constructing 
networks is that ideas that co-occur in the explanatory account of a phenomenon are connected. We combined 
networks across all phenomena the student explained to construct an individual-level network for each student. 
Further, aggregating across individual-level networks gives networks for the interview sample as a whole for pre-
and post. We used the network measure of degree to investigate the role of single ideas in students’ networks and 
the network measure of coherence to investigate students’ levels of knowledge integration. For our calculations we 
used the igraph (Csardi & Nepusz, 2006) and tnet (Opsahl, 2009) packages in R (R Development Core Team, 2008). 

Assessing Knowledge Integration. To investigate how our network analytical approach compares to the 
existing approaches to measure how students connect ideas based on a priori defined linking ideas as in e.g., Lee 
and Liu (2010), we adopted the knowledge integration scoring scheme used by Lee and Liu (2010) to the phenomena 
used in our study. Figure 5 shows an example rubric for the bouncing ball phenomenon. 

Table 2. Example part of category system used for deductive coding of ideas 
Variable Definition Anchor Example Borderline Cases 

Transfer 

S talks about energy being 
transferred from one system 
(including fields and objects) to 
another. 

“The fire is transferring energy up to the 
cup.” 

Energy has to be transferred 
from one to another system. 
Energy only being transferred 
“from” or “to” something is not 
sufficient. 

Transformation S talks about one form of energy 
being transformed into another. 

“When the person drops the ball, it [the 
energy] goes from potential to kinetic 
energy.” 

 

Interaction 
S talks about interactions between 
objects that are characterized by 
pushing / pulling. 

“this boy is pushing a barrel up a hill” This includes friction and 
changes in shape. 

Gravity S talks about gravity pulling 
something down. 

“Because gravity is trying to force it 
down.”  
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We assigned each phenomenon a knowledge integration score based on the rubric and averaged across the 
phenomena to come up with a knowledge integration score for each student. We used a second rater to conduct an 
inter-rater reliability analysis on 16 randomly chosen explanatory accounts (representing 10% of the explanatory 
accounts) and found substantial agreement (Cohen’s Kappa 𝜅𝜅 = .83, (Landis & Koch, 1977)). 

RESULTS 

RQ1 
During instruction, coherence (which is measured across phenomena) of students individual networks 

increased significantly (t(6.82) = 30.24, p < .001) from pre to post (Figure 6). 

 
Figure 5. Knowledge integration rubric for bouncing ball phenomenon based on Lee and Liu (2010) 
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To explore to what extent a change in students integrated knowledge as measured by coherence is related to 
the change in students’ knowledge-in-use, we used a linear model to estimate how strongly the change in coherence 
is related to the change in students’ performance on the knowledge-in-use energy assessments. To compare the 
network analytical approach to existing approaches to measuring how students connect ideas, we also modelled 
the gain in the knowledge-in-use assessments using the Lee and Liu (2010) based knowledge integration measure. 
Table 3 shows the mean and standard deviations of the coherence measure, knowledge integration measure, and 
the knowledge-in-use assessments. The results of the models predicting the gain in the knowledge-in-use 
assessments from the gain in the coherence measure and the gain in the knowledge integration measure are 
presented in Table 4. 

 

An increase in one standard deviation in coherence gain maps onto an increase of .55 (p=.022) standard 
deviations in the gain on the knowledge-in-use energy assessment. The model explains roughly a third of the 
variance in students’ gain from pre to post (𝑅𝑅2 = .3). Similar results hold for the regression model calculated with 
the measure of knowledge integration adapted from Lee and Liu (2010).  

To further investigate the validity of the network analytical measure, we compared the initial answers to the 
four scenarios from the post interviews. Table 5 contrasts the initial student answers that led to above median 
(coherence = 0.55) and below median (coherence = 0.37) coherence networks from the post interviews in Figure 7. 

 
Figure 6. Network coherence for pre- and post-networks of individual students 

Table 3. Mean and standard deviations of the network measure, knowledge integration measures, and knowledge-in-use 
assessments 
Variable M SD 
Knowledge-in-use assessments gain 0.22 0.61 
Network Coherence gain 0.25 0.16 
Knowledge integration measure gain 1.73 0.65 

 

Table 4. Regression models predicting knowledge-in-use gain 
Model 𝜷𝜷𝟐𝟐 p 𝑹𝑹𝟐𝟐 
Knowledge-in-Use gain ~ network coherence gain 0.55 0.022 0.30 
Knowledge-in-Use gain ~ knowledge integration gain (based on Lee and Liu (2010)) 0.41 0.05 0.23 
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The above median coherence student uses the idea of energy transfer across all four scenarios while the below 
median coherence student uses the idea only once. The above median student also uses a broader range of ideas 
together with energy transfer, e.g., in the explanation of the bouncing ball, the high coherence student elaborates 
in a more detailed fashion how energy is transferred away from the bouncing ball. Thus, the coherence measure 
reflects differences in the extent to which students connect a set of core ideas across phenomena.  

In sum, we found a strong relationship between the change in students’ knowledge-in-use and the change in 
students’ network coherence. We found a similar relationship using a measure of knowledge integration based on 
Lee and Liu (2010). Together with the fact that differences in network coherence between students are reflected in 
the extent to which they consistently use ideas across phenomena, this lends validity to the network analytical 
measure of coherence. 

RQ2 
Figure 8 shows an individual student’s networks for pre and post whose gain from pre to post on the 

knowledge-in-use assessments is representative for the average of the interview sample. 

Table 5. Inital student answers to the four scenarios from a below median coherence student and above median coherence 
student (based on post interviews). Usage of “Transfer” ideas printed bold 
Scenario Below median coherence student answers Above median coherence student answers 

Spinning cup 

Well, when someone put the sterno candle 
under the cup, the cup started spinning 
because the heat transferred energy to the cup 
and the air passes through the holes. They are 
in a certain direction so that’s how it spins. 

Well, that’s a chemical reaction. Burning is always chemical 
reaction and then the energy transfers from the flame through 
the air molecules into the cup and then the air molecules go out 
the hole in the cup and it causes the cup to get a speed increase 
and spin. 

Bouncing 
ball 

The person drops the ball and it bounces back 
up but every time it bounces back up it loses 
more and more energy to the field. 

When he has the ball up here the gravitational field has the 
energy stored and then he drops it, it gives it back but it can’t go 
back higher because the… isn’t something to do with how the 
gravitational field, like it, each time it goes the surroundings so 
it’s losing just a tad bit of energy each time to the surroundings 
so it can’t bounce back to the same height. When he drops the 
ball the energy goes from the field to the ball and some of it 
goes to like the air. 

Pushing a 
barrel up a 
ramp 

Well, the person is pushing it and it’s spinning 
and going up. 

Well you could say the kid gives the barrel energy by pushing 
on it and then the speed increase for the barrel. 

Electric 
heater 

The person turned on the knob and it got 
hotter because there’s a cord that’s plugged 
into an outlet and that outlet gives the 
machine, it gives it fuel to be able to be heated 
up when it turned on. 

Well there’s like a little box some I’m guessing energy transfers 
from inside the box to the each one of those wires and then 
the heat waves cause it to heat up because there’s no such thing 
as warm energy or cold energy. So the energy transfers to the … 
whatever those are and then they start to heat up more and 
more. 

 

Figure 7. Post-networks of individual students, low coherence left, high coherence right 
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Visual inspection readily reveals differences between the two networks. Prior to instruction, the student only 
connects “Electricity” with “Temperature” and “Gravity” with “Pushes / Pulls”. The first connection comes from 
the electric heater scenario, “I see like electricity flowing through like the wires, well, I guess like the things to heat up a 
room. I don’t … I don’t really know”. The second is made in the bouncing ball scenario, “Uhm, I would explain it like 
uhm the kid’s putting pressure on it to keep it up even if the gravity wants to … to pull it back down.” The third connection 
comes in the person pushing a barrel up a ramp scenario,” Eh, because the friction, I guess, is pulling it down. Yeah, and 
like gravity.”. The pre-network corresponds to a network coherence of 0.09. The post-network, however, shows more 
connections between a broader range of ideas, corresponding to a network coherence of 0.46. “Transfer” is the best-
connected idea in the network with a degree of six and consistently used across scenarios to connect other ideas. In 
the electric heater scenario “Electricity” is now connected to the idea of “Temperature” via “Transfer”: „I saw… uh, 
heat like, well, no, I don’t really see heat, but like the strings I guess you call it I don’t know, uh they heated up once he turned 
the dial and mostly they do that because there’s like probably a battery inside of it and once you turn that … energy transfers 
to those and then those transfer like heat out, I don’t know”. Similarly, the student consistently uses “Transfer” across 
the person pushing a barrel up a ramp and the bouncing ball scenario and connects it to range of other ideas such 
as “Speed” or “Temperature”: “Uh the boy is transferring energy to the barrel to make it go up.” “I saw the guy drop the 
basketball onto the ground and then it not bounce back up not to its original height and that happens because energy is being 
transferred to the ground. As it falls the ball hits that and it transfers energy to the ground and the surroundings and then it 
makes the temperature increase.” The change in how the student only connects few ideas before the unit and connects 
various ideas and consistently uses “Transfer” across scenarios after the unit is captured in the notable increase in 
integration as measured by network coherence (0.09 to 0.46) and degree of the “Transfer” idea (0 to 6).  

Aggregated Development. The change in students’ knowledge structure over the course of the unit is most 
vividly apparent in Figure 9 which shows aggregated networks for pre-and post. 

Figure 8. Pre (left) and post (right) network of an individual student 
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Although no individual student network is identical to these aggregated networks, they reflect the central 
tendencies: we see a strong increase in degree (the number of other ideas an idea is connected to) for “Transfer”, 
“Gravitational Field”, and “Field between Atoms” – all ideas emphasized in the unit. Further, “Transfer” has the 
strongest degree in the post-network. Lastly, “Forms” and “Transformation” - energy ideas that are not emphasized 
in the unit – do not change in degree and have relatively low degree. The diagrams in Figure 9 suggest that during 
instruction, students developed more well-connected ideas about energy and that the concept of transfer gained a 
more prominent role as an idea that students activated.  

Connecting Quantitative Features of Students’ Knowledge Networks to Students’ Knowledge-in-Use. In the 
background section, we have argued that the degree measure allows to determine the relative importance of ideas 
in students’ knowledge structures, i.e., the ability to identify linking-ideas empirically. To do so, we considered the 
top five ideas with highest degree in students aggregated post-instruction networks, i.e., the best-connected ideas, 
and investigated to what extent an increase in connections of these ideas from pre to post (as it should occur during 
learning) predicted student learning. The results of the five regression models are presented in Table 6. 

We found the standardized regression coefficient of degree gain for “Transfer” to be the largest (0.49). Only the 
effect of “Speed” comes close which, however, is only approaching statistical significance, explains less variance, 
and has a higher AIC. “Pushes / Pulls” and “Forms” which together with “Transfer” would be natural candidates 
for linking-ideas from a theoretical perspective, explain about 10% less variance than “Transfer” and have higher 
AIC. Further, their effects are about 0.1 smaller and not statistical significant. In general, evaluating the models by 
their ability to explain the data 𝑅𝑅2 and accuracy AIC, “Transfer” is the best predictor as it has the highest 𝑅𝑅2 and 
lowest AIC of the five. This means that the increase in connections between energy transfer and other ideas in 
students’ idea networks is more strongly related to students’ performance on a distal knowledge-in-use assessment 
than the increase between other high-degree ideas and other ideas.  

In sum, visualizing the networks gives qualitative insights into students’ knowledge networks. In addition, 
derived quantitative measures allow to identify core ideas in students’ knowledge networks. 

 
Figure 9. Aggregated network representation of co-occurrences of student ideas, pre-(left) and post-(right). Line thickness 
represents number of co-occurrences 

Table 6. Standardized regression coefficient 𝛽𝛽2, p-value, variance explained 𝑅𝑅2 , F-test, and information criterion AIC for five 
regression models in which students’ learning gain on the energy pre/post-test was predicted by the gain in degree of the 
respective idea listed in the table 

Idea 𝜷𝜷𝟐𝟐 p 𝑹𝑹𝟐𝟐 AIC 
Transfer 0.49 0.046 0.24 48.57 

Pushes / Pulls 0.37 0.150 0.13 50.76 
Speed 0.44 0.080 0.19 49.63 
Forms 0.39 0.125 0.15 50.46 

Particles 0.19 0.476 0.03 52.62 
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DISCUSSION 
The premise of the many current standards documents emphasis on a small set of powerful science ideas, such 

as the US Framework for K-12 Science Education (National Research Council, 2012) or the German Bildungsstandards 
(Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland, 2004), is 
that having a well-developed knowledge base organized around major ideas of a domain is the basis of scientific 
literacy (Bransford, 2000). Further, emphasizing these major ideas (e.g., “disciplinary core ideas” in the NGSS and 
“Basiskonzepte” (basic concepts) in the Bildungsstandards) is supposed to help students develop such organized 
knowledge. In the domain of energy for example, increasingly connected knowledge networks around central 
energy ideas should be positively associated with students’ ability to make sense of phenomena using energy ideas 
(Bransford, 2000; Chi et al., 1981; Linn, 2006). We have developed a ground-up approach that provides qualitative 
and quantitative information about students’ ability to activate and connect sets of relevant ideas as they make 
sense of phenomena across contexts, i.e., students’ integrated knowledge. We found that students linked ideas 
around the central idea of energy transfer (which serves as a disciplinary core-idea in middle school and was 
emphasized in the energy unit in which the students participated) and that students that did so to a larger extent, 
performed better on a knowledge-in-use assessment in which students had to connect scientific practices and 
energy ideas. This supports the premise of the Framework for K-12 Science Education or the Bildungsstandards of deep 
learning around a small set of core ideas. In addition, our results support theoretical work that suggests that energy 
transfer can be a particularly helpful energy idea to make sense of phenomena (Brewe, 2011; Ellse, 1988; Nordine 
et al., 2018; Quinn, 2014; Swackhamer, 2005).  

Current approaches to measuring how students connect ideas often (e.g., Kauertz and Fischer (2006) or Lee and 
Liu (2010)) define linking-ideas a priori. In general, as our approach is more open in the sense that it does not rely 
on a priori established linking-ideas, it enables a more full and flexible description of students’ ideas without 
filtering through a pre-defined rubric (Steedle & Shavelson, 2009). This appears especially valuable when it is not 
really clear or at least contested which ideas should be considered central and how students’ ideas develop. For 
example, in domains with multiple central ideas such as energy it is not necessarily clear which possible linking 
ideas (energy transfer, energy transformation) are most productive (Papadouris & Constantinou, 2016). The degree 
measure can help to resolve such issues. 

Further, our results extend work that has linked how students connect ideas with their performance on related 
MC assessments (Kauertz & Fischer, 2006; Lee & Liu, 2010; Nordine et al., 2011) as we used knowledge-in-use 
assessments in which students had to connect disciplinary ideas with scientific practices and cross-cutting concepts. 
In general, the relationship of scientific practices, disciplinary core ideas, and cross-cutting concepts is not well 
defined when those components are integrated in knowledge-in-use performances. Our results provide a first step 
towards better understanding the role of well-organized disciplinary knowledge for knowledge-in-use, as the 
coherence measure that is insensitive to elements of a scientific practice, explained a large share of the variance in 
students’ knowledge-in-use. 

Limitations 
The network analysis method we present is built on the assumption that we consider ideas connected if they 

co-occur. Thus, we do not differentiate between students that meaningfully connect e.g., “force” with “friction” 
and those that use both ideas within the same explanatory account in isolation. However, the premise of the present 
approach is probabilistic as it assumes that given a sufficient number of phenomena, ideas that co-occur repeatedly, 
do so because they are connected meaningfully. Network coherence as a measure of integrated knowledge does 
not describe a single students’ explanation of a phenomenon but describes a student’s idea network given multiple 
explanations of phenomena from the student. Further, we ignore the order in which ideas are presented. Thus, we 
cannot differentiate between students that start their explanatory account with deep conceptual ideas such 
“transfer” and then use surface level ideas such as “speed” and those that start with surface level ideas and then 
go on to more conceptual ones. While future network approaches could at least in principle consider the order in 
which ideas are presented, it is also questionable to what extent order is a relevant feature of idea networks and 
not feature of language or other cognitive processes, given the prominent role of parallel processing theories in 
cognitive science (Rumelhart & McClelland, 1986).  

In sum, we consider that interpreting co-occurrence as connection and ignoring order are helpful in balancing 
the simplicity of assumptions and their effectiveness in practice which these two assumptions have already 
demonstrated in the contexts of automated semantic analysis (Blei, 2012; Landauer, 2014; Zehner, Sälzer, & 
Goldhammer, 2016). 
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Implications and Future Directions 
Our network analytical approach provides qualitative and quantitative information about students’ integrated 

knowledge which can be linked to students’ knowledge-in-use while not relying on a priori defined linking ideas. 
Thus, it allows researchers fuller access to the complexity of conceptual development and growth in understanding 
over time and addresses the problem, that developmental pathways may remain hidden due to the filtering through 
pre-defined learning progressions (Duncan & Rivet, 2013). Given the promising results we presented, we consider 
future research that uses the approach and helps to further develop and refine it warranted. 

Our network analytical approach is build ground-up from the ideas that students activate. This should not only 
help to avoid filtering through pre-defined learning progressions but also help to reveal intermediary stages in the 
developments of students’ knowledge networks where students might only be able to activate ideas, but not to 
connect them. This finer grain size could for example inform the discussion in the energy literature about the 
influence of developmental stages for energy learning progressions (X. Liu & McKeough, 2005).  

We focused on the normative part of students’ knowledge networks. Future research could extend the approach 
to include non-normative ideas to better understand the role that they play in students’ knowledge networks and 
how they develop over time. In the domain of energy for example, there is a rich literature on student conceptions 
of energy (Duit, 2014; Watts, 1983) but the extent to which they impair or may even enhance (as productive 
intermediary stages) how students develop well-organized knowledge networks is little reserached.  

Further, what we have sketched here for the domain of energy is in principle applicable to other domains and 
core-ideas like force or evolution in biology.  

Apart from such research oriented outcomes, our network analytical approach has the potential to provide rich 
diagnostic information for teachers and curriculum developers that current assessments do seldomly provide 
(Duncan & Hmelo-Silver, 2009). However, to be applicable in wide spread practice, one would have to find a way 
to scale the approach, possibly using automation techniques inspired by the field of learning analytics. 
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ENDNOTES 
During the analysis of the interviews we found that students were often confused by the melting ice 

phenomenon. Interviewers reacted by starting to explain the experimental setup in the video. However, during this 
they often included leading prompts. In consequence, the melting ice phenomenon was excluded from further 
analysis. 
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