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Abstract 

The article at hand deals with students’ procedural knowledge, the frequency of technology use 

(CAS, graphics calculators) during mathematics education in upper secondary level and their self-

assessed technology knowledge. In this study, the participating students (representative sample 

of Austrian high school students in the final year, n=455) had to solve procedural, curriculum-

related tasks without any aids (neither technology nor formula booklets). We examined how the 

frequency of technology use in the classroom affects the students’ success rate on procedural 

tasks. On average, GeoGebra or graphic calculators with CAS are used once a week by the teacher 

and the students in class, respectively, and unexpectedly, there is no significant correlation 

between the frequency of technology use during mathematics education in upper secondary level 

and the procedural knowledge acquired. Regardless of the success in solving the procedural tasks, 

the students rate their technology knowledge for solving the procedural tasks as rather high. 

Keywords: procedural knowledge, technology use, technology knowledge, mathematics 

education 

 

INTRODUCTION 

Even if the present study’s results are not limited to 
German-speaking countries in terms of its informative 
value, it draws its motivation from an interesting 
educational policy situation and discussion that has been 
occurred in Austria in recent years. There were (again) 
complaints, even in daily newspapers, that graduates of 
higher schools or first-year students in mathematics-
related courses do not have sufficient arithmetic and 
algebraic skills (Die Presse, 2015; Kurier, 2018). More 
recent is the criticism that mathematics in school is 
primarily reduced to finding a suitable command using 
more advanced technology like computer algebra 
systems (CASs) or graphic calculators. For example, 
lecturers at the Technical University of Vienna observe a 
“constant decline in mathematical knowledge and 
skills” among first-year students.  

These deficits (e.g., in the case of term 
transformations) are attributed, among other things, to 
the “currently unrestricted possibility of using CASs” in 
the standardized written school leaving exam (Matyas & 

Drmota, 2018). The Austrian Mathematical Society 
(ÖMG) also notes in a statement on the future of the 
standardized school leaving exam that operational skills 
suffered from the approval of technology for all tasks 
(ÖMG, 2019). From their point of view, it is not required 
that technology-free calculating should be in the 
foreground in the future, but that it should at least 
“appear” in the school leaving exam, since it can make 
important contributions to understanding “to a modest 
extent” (ÖMG, 2019, p. 1). In line with these findings, the 
concept of the school leaving exam at Austrian high 
schools (AHS, German abbreviation for 
“Allgemeinbildende höhere Schule”; translates to “high 
school for general education”) is currently being revised. 
It is envisaged that from the 2027/28 school year on, 
some calculations will have to be carried out without 
calculators and more advanced technologies (i.e., a 
“technology-free” part in the school leaving exam is 
planned, BMBWF, 2022, p. 2). “Basic calculations” 
should again be mastered with paper and pencil, such as 
simple term transformations, solving equations or 
deriving a function using the product rule (BMBWF, 
2022, p. 2). 
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A look at Germany shows that there, too, a large 
number of university lecturers find deficiencies among 
first-year students in areas such as fractions, binomial 
formulas, and term transformations, which cannot be 
made up for either in preliminary courses or in bridging 
courses (Open Letter, 2017). After there are technology-
free parts in the school leaving exams (Abitur) in almost 
all German federal states, the reasons for the deficits 
described are located in the introduction of educational 
standards, the competence orientation, and the use of 
modeling tasks in the school leaving exam (Open Letter, 
2017). But there, too, it is required to ensure that the use 
of calculators and CASs “does not impair the important 
phase of practicing elementary and symbolic calculation 
techniques” (Open Letter, 2017). 

Internationally, procedural knowledge seems to play 
a central role in STEM (science, technology, engineering, 
and mathematics) courses, despite the fundamental 
commitment to strengthening conceptual understanding 
(Altieri, 2016; Bosse & Bahr, 2008; Hallett, 2006; Qetrani 
et al., 2021) and the ongoing digitalization of our society. 
The literature confirms that mathematics is mainly 
taught, learned, and tested procedurally in tertiary 
STEM courses (e.g., Bergqvist, 2007; Bergsten et al., 2017; 
Engelbrecht et al., 2009; Zerr, 2009). This makes the 
desire from this direction for a strengthening of 
procedural skills in school education understandable, 
although we do not see it uncritically ourselves. 
Empirical evidence is needed at this point before 
appropriate educational policy decisions can be made. 

In fact, there are no empirical studies that 
investigated the procedural knowledge of high school 
graduates over the last few decades, especially in 
Austria. There is a lack of systematic, representative 
surveys that would scientifically and comprehensibly 
confirm the above-mentioned deficits and the causes 
listed or at least suggested. What is needed here is an 
inventory of the procedural knowledge of high school 
students in their final classes, their technology 
knowledge, and the frequency of technology use in the 
classroom and for homework. Furthermore, we are 
interested in finding out to what extent the frequency of 
technology use in the classroom and at homework 
influences students’ technology-free procedural skills. 
The aim of this paper is to close these research gaps. 

The results are of course also of interest beyond 
German-speaking countries. The connection between 
the frequency of technology use in mathematics lessons 
and procedural knowledge indicates to what extent the 
digitization of our society probably will lead to a change 
in the types of knowledge acquired in school. The 
current situation in Austria (so far unrestricted use of 
technology in the school leaving exam, but a technology-
free part from 2025/26 on) offers unique framework 
conditions for research into the change in procedural 
knowledge and its dependence on the frequency of 
technology use. 

LITERATURE REVIEW 

Procedural Knowledge in Large-Scale Studies 

In order to survey students’ procedural knowledge, 
appropriate tasks are needed. Of course, there are many 
studies that test students’ mathematical knowledge in 
general, e.g., PISA and TIMSS. A closer look at the items 
of PISA (OECD, 2018) or TIMSS shows that students 
should apply their mathematical knowledge in an 
embedded context, and, hence, it is a mixed query of 
conceptual and procedural knowledge. Besides the fact 
that 15-year-old students are tested and due to the 
mixture described, the items cannot be used to 
investigate procedural knowledge. However, the upper 
secondary level study TIMSS advanced provides some 
suggestions for item creation. Its framework 
distinguishes between content domains and cognitive 
domains. In the cognitive domain “knowing”, the 
category “compute” is listed. The description of the tasks 
of this category is very close to the understanding of 
procedural knowledge presented here.  

“Carry out algorithmic procedures (e.g., 
determining derivatives of polynomial functions, 
and solving a simple equation)” (Grønmo et al., 
2014, p. 14). 

Solely nine countries took part in the last survey 
(TIMSS advanced 2015), and there were no German-
speaking countries among them. In conclusion, the 
Russian federation (intensive courses) achieved the 
highest and Sweden the lowest average score among the 
nine participating countries (Provasnik et al., 2016). A 
detailed analysis of the results in the category 

Contribution to the literature 

• This study closes a gap in the literature, where studies on procedural knowledge and frequency of 
technology use were usually only examined separately. 

• This research uses a validated test instrument to show that, different than expected, there is no statistically 
significant connection between the frequency of technology use in mathematics classes and procedural 
mathematical knowledge. 

• This work surveys students’ intention to use more advanced technology in procedural tasks and how they 
self-assess their technology knowledge. 
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“compute” was not published, an exception to this is 
Norway. Students from there achieved poorly on items 
with high demands on symbolic manipulations. In 
contrast, however, they achieved very good results in 
PISA tasks, which are set in an application-oriented 
context (Pederson, 2015). As a consequence, Pederson 
(2015) calls for more time to be devoted to algebraic 
activities in mathematics classes. Generally, a decreasing 
tendency of numerical and arithmetic skills can be 
observed in the Scandinavian countries. Some blame 
application orientation, others the use of technology in 
mathematics teaching (Österman & Bråting, 2019). In 
summary, it can be said that there are hardly any studies 
that survey purely procedural knowledge (Rolfes et al., 
2021). 

Measuring Procedural Knowledge of University 
Entrants 

Close to the target group of the present study, 
students in their last year of school, are university 
entrants. Such students often face difficulties in 
mathematics in the transition from secondary school to 
higher education (Di Martino & Gregorio, 2019). For this 
reason, many universities test the mathematical 
knowledge of the students in the introductory phase 
(e.g., Germany: Greefrath et al., 2015; Poland: Kopńaska-
Bródka et al., 2015; UK: Cambridge Assessment 
Admissions Testing, 2019). According to Hoever and 
Greefrath (2018) and Knospe (2008), entrants’ 
mathematical knowledge has decreased over the years. 
A closer look at such tests at German universities shows 
that they mostly ask for procedural skills, in concrete 
terms, this means the fast and correct execution of 
known procedures and a confident handling of standard 
representations (Heinze et al., 2019). Considering the test 
of Hoever (2018) at the FH Aachen University of Applied 
Science, it is a paper-pencil test with no aids (neither 
technology nor formula booklet) allowed. The items can 
be described as follows: the text length of the items is 
kept short, they are of procedural nature, students are 
asked for mathematical contents known from school and 
the correctness of the students elaborations determines 
the total score (Greefrath et al., 2015). 

Procedural Knowledge and Use of Technology 

The use of digital tools (such as CASs, dynamic 
geometry systems, etc.) in mathematics teaching led and 
leads to changes in teaching in many ways. The 
associated effects on students’ mathematical abilities 
and skills have been researched extensively over the 
years. Essentially, a positive but rather small effect 
(d≈0.2) in mathematics performance could be shown 
(Cheung & Salvin, 2013; Drijvers et al., 2016 based on Li 
& Ma, 2010; Rakes et al., 2010). Cheung and Slavin (2013) 
summarized these results with “it’s a help but not a 
breakthrough” (p. 102). Otherwise, the PISA study from 
2012 revealed a negative correlation between 

mathematics performance and computer use (“index of 
computer use in mathematics lessons”), which led to the 
following statement 

“[…] there is little solid evidence that greater 
computer use among students leads to better 
scores in mathematics […]” (OECD, 2015, p. 145) 

Ronau et al. (2014) nevertheless summed up 
positively: “[...] digital technologies such as calculators 
and computer software improve student understanding 
and do no harm to student computational skills” (p. 974). 
This is confirmed by an Austrian study, according to 
which the regular use of more advanced technology is 
beneficial for the general mathematical learning 
outcome (Liebscher et al., 2013). These (meta) studies 
refer to the mathematics performance of students, which 
include conceptual and procedural knowledge, though, 
the present study is interested in the use of digital tools 
in connection with procedural knowledge exclusively. 
Long time ago, Wynands (1984) already examined the 
effects of an ordinary (scientific) calculator on the 
arithmetic skills of students at the end of secondary 
school without using a theoretical model. In this study, 
it was shown that students who reported using the 
calculator did not perform any worse in a non-calculator 
test as students who did not use the calculator in class. 
According to Wynands (1984), the students’ success rate 
was on a rather low level but comparable to results from 
the time when there were no pocket calculators. The 
currently frequently expressed skepticism (see 
introduction) regarding nowadays used technology or 
digital tools (CAS, DGS, etc.) in mathematics classes is 
reminiscent of that towards the ordinary (scientific) 
calculator at that time. A few studies indicate that paper-
and-pencil skills or procedural skills, respectively, can 
also be learned using technology (e.g., CAS) in the 
classroom (Ingelmann, 2009; Kieran & Drijvers, 2006; 
Kieran & Yerushalmy, 2004). According to Kieran and 
Yerushalmy (2004), “[…] the presence of technology 
does not eliminate symbolic manipulation from algebra, 
but it does change it” (p. 142). Regarding students’ 
paper-and-pencil-techniques, it seems that what matters 
is not whether technology is hardly used in mathematics 
education, but how it is taught. The studies do not 
answer whether there is a connection between paper-
and-pencil skills or procedural knowledge and the 
frequency of use of technology, and in general there are 
no large-scale studies that examine this. 

THEORETICAL FRAMEWORK 

In order to create a well-founded theoretical reference 
point and to be able to operationalize procedural 
knowledge by creating corresponding tasks, the most 
important terms are to be discussed and defined here. 
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Procedures 

Hiebert and Lefevre (1986) did some fundamental 
work on the distinction between procedural and 
conceptual knowledge. They stated that the central 
property of procedures is that they “are executed in a 
pre-determined linear sequence” (Hiebert & Lefevre, 
1986, p. 6). One can deduct from this, when creating 
suitable test items for procedural knowledge, an attempt 
must be made to limit the requirements as far as possible 
to carrying out sequences of processing steps known 
from the mathematics lessons in the usual way. 
Knowledge about the selection of a specific solution 
method, strategic planning knowledge for task solving 
as well as conceptual knowledge (which ultimately 
provides reasons why procedures work) should 
explicitly not play a role. Even if there is a controversial 
discussion in the literature to what extent procedural 
(knowing how) and conceptual (knowing why) 
knowledge for solving tasks are mutually dependent 
(Kieran, 2013; Star, 2005), first indications point out that 
these types of knowledge can be separated empirically 
(Lenz et al., 2019, for the topic of fractions). 

We work with the following definition: “A procedure 
is a step-by-step instruction that prescribes how a task is 
to be solved.” (Hiebert & Lefevre, 1986) An example is 
solving a quadratic equation without technology. 
Recognizing the type of equation, grasping the structure 
of the equation, and selecting an appropriate procedure 
require conceptual knowledge and are therefore not part 
of the procedure. Conversely, if the task specifies that it 
is a quadratic equation that is to be solved using one of 
the solution formulas, the individual processing steps 
are predetermined. The procedure then consists of 
writing down the formula, reading the coefficients from 
the quadratic equation, inserting them into the formula, 
carrying out the necessary arithmetic calculations, 
applying fractional calculation rules if necessary and 
writing down the solution set. 

Procedural Knowledge 

The execution of procedures requires a specific type 
of knowledge, which will be examined in more detail in 
this section and finally laid down in a definition. Of the 
different definitions of procedural knowledge in the 
literature, we focus in particular on the formulations of 
Star et al. (2015, p. 45): “Procedural knowledge refers to 
having knowledge of action sequences for solving a 
problem” and Rittle-Johnson and Schneider (2014, p. 5): 
“[…] procedural knowledge is the ability to execute 
action sequences (i.e., procedures) to solve problems.” 
While the first description gives attention to the 
knowledge of the procedure (or the algorithm), the 
second formulation focuses on the concrete execution of 
the procedure (i.e., the aspect of skill). Altieri (2016) takes 
these two aspects into account and integrates them into 
a common and therefore more differentiated definition. 

In this respect, procedural knowledge is the combination 
of “knowledge of the procedure” and “procedural 
skills”: 

• Knowledge of the procedure: Knowledge of 
symbols and the formal language of mathematics 
as well as knowledge of rules and procedures for 
solving mathematical problems. 

• Procedural skills: Skills required to apply the 
knowledge of the procedure in a case-specific and 
targeted manner in a way that leads to a correct 
result in a reasonable time, especially in the case 
of procedures (Altieri, 2016, p. 25, translated). 

In the case of a quadratic equation, the reproduction 
of the solution formula is part of the knowledge of the 
procedure, all further processing steps are part of the 
procedural skills. In general, knowledge of the 
procedure usually refers to specific procedures, while 
procedural skills usually consist of (elementary) 
mathematical skills that can be used in a wide variety of 
mathematical topics (Altieri, 2016). 

Task Characteristics 

In the following, the dimensions “number of 
procedural steps of the task”, “curricular grade level” 
and “content area” are described, according to which 
tasks on procedural knowledge can be created and 
systematically classified. The corresponding model is 
taken up again when the creation of the tasks is reported. 

The number of procedural steps of a task can be 
determined based on the number of different decisions 
that are necessary to solve the task according to the 
intended solution method. Decisions are to be 
understood as small solution steps, in this case the steps 
in the procedure under consideration. Typically, the 
length of a task is described by categories such as low, 
medium, and high (Jordan et al., 2006, p. 61). In our case, 
it makes sense not to count several analog solution steps 
that occur more than once. We will report on this in the 
methods section in more detail. 

The curricula of Austria’s high schools (Curriculum, 
2021) and the concept of the standardized written school 
leaving exam (Concept SRP, 2021) serve as the basis for 
the dimensions “content area” and “curricular grade 
level”. Since visual representations of mathematical 
objects and connections to the non-mathematical world 
play a central role in the content areas of functional 
dependencies and probability and statistics per se, the 
procedural part of the knowledge required for solving 
corresponding tasks is difficult to isolate. In the content 
areas of algebra and analysis, on the other hand, there 
are a lot of tasks that can be carried out in a formalistic 
and non-visual way (e.g., calculating a scalar product, 
deriving a function using the product rule). We therefore 
limit our test items to these two areas. 
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RESEARCH QUESTIONS 

As reaction to the problem areas outlined above and 
the identified research gaps, the present study (which 
was carried out as part of the OFF project “Operational 
skills and abilities without the use of technology”) is 
intended to collect corresponding data and thus answer 
the following research questions:  

1. What is the relationship between success in 
completing curriculum-related procedural tasks 
(without technology and formula booklets) and 
the frequency of more advanced technology use in 
mathematics education? 

2. What is the relation between success in 
completing curriculum-related procedural tasks 
(without technology and formula booklets) and 
the intention to use technology for these tasks? 

3. What is the relation between success in 
completing curriculum-related procedural tasks 
(without technology and formula booklets) and 
the self-assessed technology knowledge for 
solving these tasks?  

A formula booklet was not permitted because we also 
wanted to survey the students’ “knowledge of the 
procedures” (as a part of procedural knowledge). We do 
not want to be misunderstood with these research 
questions by giving procedural knowledge in 
mathematics education a higher priority than before. On 
the contrary, we do not want to make any statements 
about the importance of procedural knowledge but 
create a database that is as descriptive as possible. 

Although we collected our data in Austria, the results of 
our study are also interesting for other regions of the 
world due to our study design presented in next section. 

METHODS 

Item Development and Validation 

Despite thorough literature research, the authors are 
not aware of any suitable, validated item packages for 
testing the procedural knowledge of high school 
students in their final year. In part, Hoever’s (2018) tasks 
of a test in the introductory phase at the University of 
applied sciences Aachen (Germany) seem suitable for 
the study at hand. According to Heinze et al. (2019), 
these tasks mainly cover procedural knowledge, but do 
not comprehensively cover AHS curricula. For these 
reasons, a separate collection of items was designed for 
the present study. Originally, this included 30 items and 
due to validation processes the number was reduced to 
24. A total of 15 people (five mathematicians, five 
mathematics education researchers, five teachers) rated 
the procedural knowledge evoked by the tasks as part of 
an expert validation (procedural score on a scale from 0 
“no procedural knowledge” to 3 “exclusively procedural 
knowledge”), gave additional feedback on the task 
formulations and rated the importance of tasks. The 
latter means, that the experts assessed, whether a 
student should be able to solve the task without using 
technology and formula booklets (3 “yes”, 2 “rather 
yes”, 1 “rather no”, 0 “no”) (Table 1). 

Table 1. Tasks of the study & associated model parameters (Class: Grade level, content (sub)area [AG: Algebra, AN: 
Analysis], number of different procedural steps, & the rating of importance on a scale from 0 to 3) 
No. Description Gr. Content subarea (content area) Steps Rating 

PA01 Transform a formula 8 Terms & formulas (AG) 3 2.79 
PA02 Use a binomial formulaT 7 Terms & formulas (AG) 5 2.86 
PA03 Solve a linear equationT 6 Linear equations & systems of equations (AG) 4 2.93 
PA04 Conduct a  polynomial division 11 Terms & formulas (AG) 6 1.00 
PA05 Use certain exponentiation rulesT 10 Exponentiations, roots, & logarithm (AG) 3 2.86 
PA06 Solve a fractional equation 8 Linear equations & systems of equations (AG) 9 1.86 
PA07 Solve a 2x2 system of equations (elimination method)T 8 Linear equations & systems of equations (AG) 12 2.93 
PA08 Solve a quadratic equation 9 Nonlinear equations (AG) 11 2.21 
PA09 Calculate a cross productT 10 Vectors (AG) 4 1.71 
PA10 Calculate a different quotient 10 Differential calculus (AN) 7 2.64 
PA11 Differentiate a polynomial functionT 11 Differential calculus (AN) 5 2.93 
PA12 Conduct an integration by partsT 12 Integral calculus (AN) 6 1.00 
PB01 Add two fractionsT 6 Arithmetic (AG) 5 2.71 
PB02 Divide two decimal numbersT 5 Arithmetic (AG) 6 2.00 
PB03 Conduct a partial root extractionT 10 Exponentiations, roots, & logarithm (AG) 3 2.07 
PB04 Transform in floating-point notion 9 Exponentiations, roots, & logarithm (AG) 3 2.29 
PB05 Solve 2x2 system of equations (substitution method) 8 Linear equations & systems of equations (AG) 12 2.86 
PB06 Solve an equation with square roots 10 Nonlinear equations (AG) 8 2.21 
PB07 Solve a biquadratic equationT 11 Nonlinear equations (AG) 13 1.50 
PB08 Calculate a dot product 9 Vectors (AG) 3 2.93 
PB09 Calculate a linear combination of vectors 9 Vectors (AG) 7 2.64 
PB10 Differentiate using the product ruleT 11 Differential calculus (AN) 4 2.36 
PB11 Differentiate using the chain ruleT 11 Differential calculus (AN) 3 2.43 
PB12 Calculate a definite integralT 12 Integral calculus (AN) 9 2.93 
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This question was asked in a general educational 
sense, more concretely, regardless of which educational 
or professional path the students will later choose. 

The final 24 items have an average procedural score 
of 𝑥̅=2.6 (s=0.2). In the context of a pilot study carried out 
in January 2021, a correlation (r≈0.66 and p<0.01) to 
selected procedural tasks by Hoever (2018) could be 
demonstrated (constructive validation). In order to 
identify conceptual processing steps when solving the 
items, four students were asked to solve the tasks while 
thinking aloud (type-1 verbalizations according to 
Ericsson & Simon, 1980, 1993). Finally, we can assure 
that (almost) no conceptual knowledge is being tested. A 
prototype task from our testing can be seen in Figure 1. 
In the case of task PA07, the solution procedure was 
deliberately specified because, according to the theory, 
the decision for an appropriate solution method must be 
assigned to conceptual knowledge. 

When processing the task, the reproduction of the 
requested procedure (knowledge of the procedure) and 
its concrete implementation (procedural skills) remains.  

In the following, we want to illustrate the counting of 
the “number of different procedural steps” for solving 
PA07 (Figure 1), which is one of the task characteristics. 
Before we do that it must be noted, we only consider the 
shortest possible solution. Of course, some students (see 
percentage at the end of the paragraph) deviate from the 
presented path below, which can lead to an increase in 
number of the different procedural steps.  

When using the prescribed counting method, we 
multiply the first equation by two (step 1). After 
applying the distributive law on the left-hand side (step 
2), the term 2x and the term 3y must be multiplied by 
two. In this counting system, they only count as one step 
(step 3), because they are analog calculations. This 
system is based on the consideration of preventing a task 
with many analogous steps, but overall, only few 
different processing steps from being coded as a long 
task (e. g. differentiation of a polynomial function, see 
item PA 11 in Table 1). In the next step, the elimination 
method is applied (step 4). Then, one must add two 
terms (step 5) and two integers (step 6). Performing the 
equivalence transformation (division) leads to the next 
step (step 7), as well the division of two integers (step 8). 
Then we insert the result -1 of the equation into one of 

the given equations (step 9). The solving process of this 
new established equation contains a multiplication of 
integers (step 10), which is followed by an addition as 
equivalence transformation (step 11). According to the 
presented rules, the division does not contribute to 
increasing the number of different procedural steps. 
Finally, for a complete processing of the task, the 
solution set must be written down (step 12). According 
to this counting method, item PA07 has 12 different 
procedural steps, which is considered as long task. The 
above-mentioned validation measures confirm the 
assumption of the straightforward solvability of the 
procedural tasks. If there is a deviation from the 
specified solution procedure, the student’s processing 
was not considered as correct. This does not include 
deviations from the prototypical solution, provided that 
the procedure specified in the task is carried out. 
Considering the main survey, this was the case in 42 of a 
total of 5,460 student processing (less than 0.8%). 

Table 1 provides an overview of the tasks used in the 
survey. In order to shorten students’ processing time 
during the survey, the 24 tasks were divided into two 
test booklets (see designation PA and PB in Table 1), a 
balanced distribution of the model parameters (number 
of procedural steps of the task, curricular grade level and 
content area) was considered when splitting. 

Use of Technology 

To answer the research questions, which combine 
procedural knowledge with the use of technology, two 
additional questions were asked at the end of 14 selected 
procedural tasks, see marking “T” in Table 1. These 
surveyed on the one hand the self-assessed knowledge 
of technology and on the other hand the intention to use 
technology, both of which relate to the (ideally 
previously processed) procedural task. The first question 
is formulated, as follows: “Would you know exactly 
what you would have to enter or do in order to get the 
result of the task using technology?” with the possible 
answers “yes”, “no, but I would know how to try it”, 
“no, I would try it somehow” and “no, I would have no 
idea at all”. The second reads, as follows: “If you had the 
opportunity — would you use technology to solve it? 
(multiple answers possible)” with the possible answers 
“no”, “yes, ordinary scientific pocket calculator (e.g., TI 
30, pocket calculator on the mobile phone)”, “yes, 
graphics calculator with CAS (e.g., Casio ClassPad, TI-
Nspire)” and “yes, GeoGebra (or a comparable 
software)”. As part of the first evaluation, we used only 
a distinction between “no” and “yes” for the second 
question, i.e., the three last-mentioned categories were 
combined. At the end of the booklets, as part of a 
questionnaire section, there are three questions on 
technology usage frequency: 

Tea: How often did your high school math teacher 
typically use more advanced technology (e.g., 

 
Figure 1. Prototypical task of the present study, task PA07 
of test booklet A, system of linear equations (translated) 
(Source: Authors’ own elaboration) 
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GeoGebra, Casio ClassPad, and TI-Nspire) in class 
during upper secondary level? (Ordinary pocket 
calculators are not meant here).  

Stu: How often did you typically use more 
advanced technology (e.g., GeoGebra, Casio 
ClassPad, and TI-Nspire) in the school exercises 
during upper secondary level? (Ordinary pocket 
calculators are not meant here). 

Hw: How often did you typically use more 
advanced technology (e.g., GeoGebra, Casio 
ClassPad, and TI-Nspire) for homework in upper 
secondary level? (Ordinary pocket calculators are 
not meant here). 

The answer options are: “(almost) every math lesson” 
(for questions “Tea” and “Stu”) or “(almost) every 
homework” (for question “Hw”), “approx. once per 
week”, “approx. once or twice per month”, “less than 
once per month” and “never”. Such a gradation in the 
answer options can be found in other surveys of this type 
as well (e.g., Yao & Zhao, 2022). The first option listed 
received the value 0 during data entry, the second the 
value 1, and so on. The teachers of the students 
participating in the survey answered the first two 
questions in almost identical form in order to check the 
reliability of the students’ answers. 

Sample, Data Collection, and Type of Data Evaluation 

The tasks above were tested on a representative 
sample, which was drawn according to the 
recommendations for carrying out the field trial for the 
tasks of the Austrian centralized school leaving exam 
(Bartok & Steinfeld, 2015). All students in final classes at 
AHS represent the entire target population according to 
the research questions. For organizational reasons, it was 
not possible to draw the sample at student level, which 
is why schools were drawn at random. For the sampling 
frame, the list of school codes kindly received from the 
Austrian Federal Ministry of Education, Science and 
Research was supplemented by the stratification 
variables federal state, school type and degree of 
urbanization. Schools were drawn from each stratum 
using the probability-proportional-to-size method 
(including substitute schools whose turn it was when the 
schools originally drawn were canceled). 

After the consent of the schools and the approval of 
the education departments of all nine federal states, the 
approval of the legal guardians was obtained. 538 
students declared their willingness to take part in the 
survey in April 2021. In the end, we received 455 (test 
booklet A: 230) completed test booklets and 25 teacher 
responses to questions concerning the frequency of 
technology use. The teachers participating with their 
class were free to choose a 50-minute survey time 
(duration of one lesson) in April. In the pilot study, it was 
checked by recording the processing time that the 

estimated 50 minutes are sufficient for processing one 
test booklets and in order to guarantee a uniform 
procedure in the different classes, each teacher received 
an accompanying letter with precise instructions on the 
sequences. The students were not allowed to use a 
formula booklet or any technology when working on the 
test booklets. 

Due to the here used definition of procedural 
knowledge according to Altieri (2016), procedural 
knowledge is only available if both knowledge of the 
procedure and procedural skills are available and hence 
the procedural task is solved correctly. The authors 
coded the students’ processing of each task of the 
completed test booklets by awarding one point for 
successful completion and zero points otherwise. To 
counter the objection that longer tasks count just as much 
as shorter tasks, the success rate does not depend on the 
number of procedural steps (linear model: β=-0.022, 
p=0.234, other models were also calculated, which did 
not provide a better fit of the given data). The results 
below are based on descriptive data analysis and, in 
order to take class structure into account, linear mixed 
effects models. In doing so (model 0 in Table 2), the 
procedural performance pij of student i in class j can be 
written as the sum of the arithmetic mean β0j of the 
procedural performances of students in class and an 
error term εij, so it applies: pij= β0j+ εij and the above-
mentioned mean value can be again represented as sum 
of the overall mean value µ00 of student performances 
and an error term α0j, then we have: β0j= µ00+ α0j. Based 
on these considerations, the intraclass correlation 
coefficient (ICC) can be calculated. Due to the use of two 
test booklets, we checked their interaction, in other 
words, whether the effects were the same in both test 
booklets. This was achieved by calculating a separate 
linear model with the feature “test booklet” and the 
corresponding two-way interaction (one of the variables 
“Stu”, “Tea”, or “Hw” and the categorical variable “test 
booklet”). For the calculations of the models, reference 
category “A” was chosen for the categorical variable 
“test booklet”. 

RESULTS 

Figure 2 shows the students’ success rate of each 
item. On average, the arithmetic mean of these rates is 
36%, with some almost never being solved (PA12: 0.04%) 
and some by almost everyone (PA03: 94%). The median 
of the above-mentioned success rates amounts to 30% 
and the corresponding quartiles are 17% and 52%. 
Overall, the two exercise books hardly differ, the 
difference in the average students’ success rate is 3.7 
percentage points (exercise booklet A: 34.3%, exercise 
booklet B: 38%). According to the Austrian curriculum, 
the items PA01, PA02, PA03, PA06, PA07, PB01, PB02, 
and PB05 can be assigned to lower secondary level. On 
average, these items have higher students’ success rates 
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than those at upper secondary level (sec I: 𝑥̅=0.54 and 
s=0.25, sec II: 𝑥̅=0.27 and s=0.24).  

The following can be reported for the questions on 
the frequency of technology use: The mean value of the 
coded answers to the question estimating how often the 
mathematics teacher used more advanced technology 
(“Tea”) is 𝑥̅=1.00 (s=1.03). This corresponds to the 
answer option “approx. once a week”. Considering the 
second question, how often the students themselves 
typically used more advanced technology during high 
school (“Stu”), here the average value amounts to 
𝑥̅=1.21(s=1.21). The third question focuses on the use of 
technology in the homework (“Hw”), here the value is 
𝑥̅=0.92 (s=1.2). The mean values of the teachers’ answers 
to the first two questions (“Tea” and “Stu”) are almost 

identical to the values of the students (𝑥̅=1.08, s=0.76 and 
𝑥̅=1.33, s=0.85). 

In the following paragraph, we consider the 
dependency of procedural knowledge on technology 
usage frequency (Table 2).  

For procedural knowledge, the hierarchical structure 
of the data is considered and, hence, linear mixed effects 
models must be used because the class affiliation for 
itself could already explain 28.17% (ICC) of the variance 
of procedural knowledge (model 0). This variance 
explanation is only slightly reduced by the addition of 
the explanatory variables “Tea”, “Stu” and “Hw”. 
However, the test booklet has no effect on the procedural 
knowledge (model 1). When looking at the 
aforementioned variables, only one effect was shown for 
the use of technology in homework (model 2). The value 
of 0.021 means that for every one unit increase on the 
technology use scale (“Hw”, e.g., from “(almost) every 
homework” to “approx. once per week”), the procedural 
score increases by 2.1 percentage points. Though, this 
effect varied with the test booklets. However, the 
absolute values of the numbers in Table 2 are very small, 
even for the significant variable “Hw”, for this reason the 
frequency of technology use has only little influence. 

Figure 3 visualizes the intention to use technology for 
the respective task. A distinction was made between 
successful processing, marked with 0, and unsuccessful 
processing, marked with 1. The bottom bar shows the 
relative frequency of students who would use 
technology, measured by the number of students who 
successfully completed task PA02, here 55%, and the 

 
Figure 2. The relative students’ success rates for each item in the test booklets (Source: Authors’ own elaboration) 

Table 2. Linear mixed effects models to predict students’ 
procedural knowledge through technology usage 
frequency (“Tea”, “Stu”, & “Hw”).  

 Model 0 1 2 3 

 Intercept 0.362 0.345 0.333 0.332 

Main effects Tea   -0.004 0.011 
 Stu   0.011 -0.003 
 Hw   0.021 0.004 
 Test booklet (A)  0.035  0.006 

Interactions Tea    -0.033 
 Stu    0.022 
 Hw    0.040 

 ICC 28.17% 27.58% 24.50% 24.01% 
 logLik 135.95 136.51 147.84 154.06 

Note. All parameters are not standardized; for the variable 
“test booklet” the reference category is given in brackets (A); & 
parameters in bold are significant (p<0.05). 
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relative frequency of students who would not use 
technology, measured by the number of students who 
successfully completed task PA02, amounts to 45%. The 
second bar from the bottom refers analogously to the 
unsuccessful students in this task, the numbers are 82% 
and 18%. This means that 82% of the students who did 
not complete the task successfully would use 
technology. For tasks whose solution rate is not between 
10% and 90% (marked with an asterisk in the legend), the 
corresponding bar was omitted due to little information 
value (e.g., PA03: 0). 

Remarkably, the intention to use technology in the 
respective procedural task is lower in almost all tasks for 
successful processing than for unsuccessful ones (single 
exception PB02). However, this difference is only 
significant for the tasks PA02, PA07, PA11, PB03, and 
PB10. Apart from this, with only one exception (PA03), 
for each of these items, more than 50% of those students 
who solved the task without any aids would also use 
technology to solve the task if given the opportunity. 

The results of the self-assessed technology 
knowledge question are shown in Figure 4. The bottom 

 
Figure 3. The intention to use technology in the respective task, separately visualized in successful (1) & unsuccessful (0) 
students’ processing (Source: Authors’ own elaboration) 

 
Figure 4. The self-assessed knowledge of technology in the respective task, separately visualized in successful (1) & 
unsuccessful (0) students’ processing (Source: Authors’ own elaboration) 
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bar shows the relative frequencies of students who 
successfully completed task PA02 and “yes”, “no, but I 
would know how to try it”, “no, I would try it somehow” 
and “no, I would have no idea at all”. Here, 61% of the 
students stated that they knew what they had to do to 
get the result of the task. The values of the other 
categories are 22%, 13%, and 3%. The second bar is to be 
interpreted analogously, just considering the 
unsuccessful students’ processing. Again, for tasks 
whose students’ success rate is not between 10% and 
90% (marked with an asterisk in the legend), the 
corresponding bar was omitted due to little information 
value (e.g., PA03: 0). With the exception of task PA09, the 
relative proportions of the category “yes” for the items 
show values of over 60%, regardless of the students’ 
success. It is also noticeable that the bars for successful 
processing are similar to the bars for unsuccessful 
processing. There are no significant differences in the 
distribution of answers for any of the tasks (Chi-squared 
test for homogeneity, p>0.05). 

DISCUSSION, CONCLUSION, AND 
LIMITATIONS 

The present study sees itself as an inventory and thus 
as a possible data basis for current educational policy 
decisions in Austria and as a basis for comparing the 
procedural knowledge of high school students in 
upcoming graduation classes. Apart from the concrete 
political situation in Austria, our results are also 
interesting for the international scientific community. 
While it is generally assumed that more frequent use of 
technology leads to less procedural knowledge, the 
present study shows that there is no substantial 
statistical correlation. Hence, there does not seem to be a 
contradiction between using more advanced technology 
in the classroom and still acquiring mathematical 
procedural knowledge. The class structure of the data 
better explains students’ performance in procedural 
knowledge than the frequency of technology use. From 
this, one can cautiously conclude that the acquisition of 
procedural knowledge depends on the way teachers 
design their lessons. In the literature, there are already 
indications in this context that the presence of 
technology in the classroom does not impede the 
acquisition of procedural skills (Ingelmann, 2009; Kieran 
& Drijvers, 2006; Kieran & Yerushalmy, 2004).  

For the time of the survey in 2021, it can generally be 
stated that the students’ success rates when processing 
procedural tasks can be classified as rather low. This 
confirms the observations reported in the literature (Di 
Martino & Gregorio, 2019; Matyas & Drmota, 2018; Open 
Letter, 2017; Pederson, 2015) and is reminiscent of the 
results of Wynands (1984), who, however, examined the 
computational skills of students at the end of lower 
secondary school. In this regard, it should be mentioned 
that in the present study, procedural tasks from lower 

secondary level have, on average, higher success rates 
than those from upper secondary level. However, it 
cannot be deduced from our data to what extent this is 
related to the frequency of technology use in lower 
secondary school, to the intensity with which certain 
types of tasks are trained or to the level of complexity of 
certain tasks. 

The myth of the omnipresent use of technology in 
Austrian mathematics education mentioned in the 
introduction (ÖMG, 2019) cannot be confirmed from the 
representative data collected. The results of the survey 
show that more advanced digital tools (CAS, graphic 
calculators) are used on average only once a week by 
mathematics teachers or their students in class and once 
a week by students for homework. Conversely, this 
means that it is not used in the remaining two to three 
weekly lessons or for the remaining homework. The 
relatively rare use of technology in mathematics lessons 
may have different reasons, such as a lack of 
infrastructure in schools or appropriate teacher training. 
However, this requires further research. In general, 
analyzes and investigations are needed to find the 
reasons for the relatively low frequency of solving some 
of the tasks.  

Unsurprisingly, we observed a somewhat greater 
intention to use technology for certain tasks among 
students who were unsuccessful in the technology-free 
processing of these tasks. In general, however, it can be 
said that a large number of successful students also 
appreciate the opportunity to have technology available, 
probably for control purposes or to save computing time 
and effort. Restricting technology in the classroom 
would deprive them of that opportunity. 

The data on technological knowledge shows that, to 
a large extent, the students feel capable of solving the 
procedural tasks with the help of technology. More 
precisely, this depends on the specific task you look at 
(e.g., for the cross product (vector product, PA09) only 
50% of the students were sure what they had to enter, 
while for the division task (PB02) almost all were sure). 
For each of the 14 tasks for which the technology 
questions were asked, the percentage of students who 
had no idea how to use technology was less than 10%. 
Overall, it can be said that the students rate their own 
technological skills as quite high. This applies equally to 
students with high and low success rates in technology-
free work. If one assumes that these self-assessments 
correspond approximately to their actual knowledge of 
technology, one can speak of a contribution of 
mathematics lessons to digital education. Nevertheless, 
at this point we cannot really be sure whether the 
students have a good self-assessment concerning this 
question. 

We surveyed the frequency of technology use. Of 
course, classroom observations could provide more 
objective data. In addition, statements about the type 
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and quality of technology use could also be made in this 
way. Unfortunately, this possibility was not available in 
our study. However, through the additional questioning 
of the teachers, we were at least able to confirm the 
statements of the students. 

All the procedures in our test are curriculum-related 
(Curriculum, 2021). However, we do not know whether 
all procedures were actually taught in class. In any case, 
there is hardly any data that indicates that someone 
solved certain tasks with conceptual knowledge (e.g., by 
developing a suitable solution method her- or himself 
during the test). In short, if someone was able to solve a 
task, then it happened with procedural knowledge in 
almost all cases. A deviation from the intended step-by-
step sequences could only be recognized in 
approximately 0.8% of all student processing. 

It should be emphasized that our data represent a 
snapshot from which no conclusions can be drawn about 
the years and decades before. Low success rates for 
individual tasks in no way mean that corresponding 
success rates have been higher in the past. Nor can we 
make any statements about in what way the procedural 
knowledge of the students will change by the time they 
start studying mathematics or other STEM courses at a 
technical college or university. 

In the light of our results, it would of course be 
interesting to see what success rates students would 
have when using technology for processing the tasks. A 
corresponding survey is already being planned. 

As part of the OFF project, it is planned to continue 
collecting data on the procedural knowledge of high 
school students in final classes in the coming years. This 
enables statements to be made about the development of 
procedural knowledge of students at Austrian high 
schools, especially in view of the forthcoming 
technology-free part of the school leaving exam. 
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