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In the official curriculum documents of many countries, statistical thinking have become 
part of the mainstream in school curriculum. We argue that teacher capacity is a key 
dimension in realizing essential goals for developing students’ statistical literacy, 
reasoning and thinking in practical teaching. In this paper, a construct of Teacher 
Capacity was used to analyze how Australian and Chinese teachers understand and give 
effect to content in “Statistical thinking”. The responses of the 82 teachers involved in 
the study to a questionnaire were analyzed qualitatively and quantitatively in terms of 
four criteria which form the basis of our construct of teacher capacity: Knowledge of 
Mathematics, Interpretation of the Intentions of the Official Mathematics Curriculum, 
Understanding of Students’ Thinking, and Design of Teaching. These analyses gave rise 
to three classifications of Teacher Capacity: High, Medium and Low Capacity. Australian 
teachers performed slightly better on all four criteria than Chinese teachers, but there 
did not exist statistically significant difference. Among the four criteria, Design of 
Teaching appears to be the critical dimension for the implementation of curriculum 
reform.   

Keywords: statistical thinking, teacher capacity, national curriculum reform, comparative 
study, Australia, China 

INTRODUCTION  

In the official curriculum documents of many countries, statistics and statistical 
thinking have become part of the mainstream in school curriculum. In The 
Australian Curriculum: Mathematics (ACARA, 2010), “Statistics and Probability” is 
one of three key content areas. In its overview statement to this strand, ACARA 
(2010) states that: “Statistics and probability initially develop in parallel, and the 
curriculum then progressively builds the links between them. Students recognize 
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and analyze data and draw inferences…They 
develop … to critically evaluate chance and data 
concepts …and develop intuitions about data” (p.2). 
A corresponding strand, Chance and Data has been 
present, for at least five years, in related State 
curriculum documents. E.g. VELS (VCAA, 2008) and 
the Mathematics Developmental Continuum 
(DEECD, 2006). China’s newly revised Mathematics 
Curriculum Standard for Compulsory Education 
(Ministry of Education of PRC , 2011) also presents 
a single strand entitled Statistics and Probability. In 
the overall objective for this content strand, it is 
stated that “to experience the process of collecting 
and dealing with data in practical problems, as well 
as using data to analyze questions and obtaining 
information” in “knowledge and skills” (p. 8); and it 
refers to “to experience the significance of 
statistical methods, to develop ideas of statistical 
analysis and to experience random phenomena” in 
“mathematical thinking” (p. 9). 

These intentions are endorsed by Garfield & 
Ben-Zvi (2008) who point out that in contrast to 
traditional approaches to teaching which focus on 
computations of theoretical probability, new 
emphases are squarely focused on understanding 
data and development of statistical thinking and 
literacy (p. 7). They argue that “the goals for 
students at the elementary and secondary level 
tend to focus more on conceptual understanding 
and attainment of statistical literacy and thinking 
and less on learning a separate set of tools and 
procedures.” (p. 14). These goals are reflected in the 
National Curriculum in Australia and China, where 
students are expected to learn and understand that: 
(1) explanations supported by data are more 
powerful than personal opinions or anecdotes; (2) 
variability is natural and is also predictable and 
quantifiable; (3) association is not the same as 
causation; and (4) random sampling allows results of surveys and experiments to be 
extended to the population from which the sample was taken. (cf. Garfield & Ben-Zvi, 
2008, p. 15). 

However, the implementation of curriculum change is never simply from the top 
down. Teachers’ interpretations and responses at the level of practice are never 
simple reflections of what is contained in official curriculum documents. While 
curriculum documents set out broad directions for change, any successful 
implementation of these “big ideas” depends on teachers’ capacity to apply subtle 
interpretations and careful local adaptations (Datnow & Castellano, 2001). We argue 
that Teacher Capacity is a key dimension in realizing that goal. Meanwhile, both 
Australia and China published the newest professional standard for teachers that 
will be guidance for looking at teachers’ professional development (AITSL, 2011; 
Ministry of Education of PRC, 2012). As a result, research on teacher capacity will be 
with great significance for both teacher professionalization and curriculum 
implementation. 

State of the literature 

 Shulman’s construct of teachers’ knowledge 
using Pedagogical Content Knowledge became 
the most cited literature for research in 
teacher knowledge. But PCK did not look at 
any specific subjects.  

 Ball’s continuing work on PCK, using 
Mathematics Knowledge for Teaching focused 
on mathematics teachers and distinguished 
between Specialized Content Knowledge and 
Common Content Knowledge, but MKT did 
not value knowledge of official curriculum 
due to its American background. Researchers 
now recognize the importance of official 
curriculum.  

 The term Teacher Capacity comes out of the 
literature of school improvement and 
curriculum reforms.  It combines knowledge 
and disposition to act.  

Contribution of this paper to the literature 

 This paper researches mathematics teachers 
considering the background of national 
curriculum reform in Australia and China. It 
identified teacher capacity as a key dimension 
in practical teaching of statistical thinking.  

 Our construct of teacher capacity is based on 
four criteria, including knowledge of the 
intention of the official mathematics 
curriculum. And out of the four, Design of 
Teaching is the most significant dimension. 
This finding was consistent with an earlier 
parallel research on algebraic thinking. 

 The results of this paper support that teacher 
capacity needs to be explored further focusing 
on specific contents in different subjects.  
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RELEVANT RESEARCH OF TEACHER CAPACITY  

While the term “teacher capacity” is not widely used in mathematics education 
research, it has clear connections with the research of “Pedagogical Content 
Knowledge” by Shulman (1986; 1987) and “Mathematical Knowledge for Teaching” 
by Ball, Thames & Phelps (2008). 

Shulman’s model 

Shulman (1987) identified pedagogical content knowledge as the category most 
likely to distinguish the understanding of the content specialist from that of the 
expert teacher. The importance given to PCK suggests that what is needed in 
mathematics teaching is not just knowledge of the subject, or general knowledge of 
pedagogy, but rather a combination of both. However, after twenty five years of 
exposure to Shulman’s thinking, Petrou & Goulding (2011) conclude that: “Although 
Shulman’s work was ground-breaking and his ideas continue to influence the 
majority of research in the field, later researchers in the same tradition argue that it 
is not sufficiently developed to be operationalised in research on teacher knowledge 
and teacher education” (p12). We note that Shulman did not write specifically for 
mathematics teaching, but for all teaching subjects; and that his categories tend to 
reflect the educational context of the USA where there was no national curriculum. 

Michigan model 

Ball et al. (2008), while sympathetic to Shulman, prefer to use the term 
Mathematical knowledge for teaching (MKT). Within this idea, they identify four 
constituent domains or categories: (1) Common content knowledge (CCK) defined 
as the mathematical knowledge and skill used in settings other than teaching; (2) 
Specialized content knowledge (SCK) as the mathematical knowledge and skill 
unique to teaching specific topics; (3) Knowledge of content and students (KCS) 
defined as knowledge that combines knowing about students and knowing about 
mathematics; and (4) Knowledge of content and teaching (KCT), which combines 
knowing about teaching and knowing about mathematics. 

Among these four domains discussed by Ball et al. (2008), CCK is a primary 
component of mathematical knowledge, and needs to be combined with a teacher’s 
SCK, the subject matter knowledge needed for teaching specific mathematics 
content or topics. KCS and KCT are both intended to describe distinct knowledge for 
teaching. However, “content” used in the four categories may refer to: today’s 
worksheet, or this year’s textbook, or what is contained in official curriculum 
documents. In this sense, KCT may not be too far removed from Shulman’s category 
of Curriculum knowledge under which he includes teachers’ having a grasp of 
relevant materials and programs. While these knowledge domains are intended to 
anticipate classroom use, their instructional consequences are only implied. What is 
more, what appears to be a common feature of both Ball et al. (2008) and Shulman 
(1986; 1987) is a an interpretation of “curriculum” and “curriculum knowledge” 
which may be based too closely on their USA experience, where curriculum 
knowledge can be interpreted simply as “the particular grasp of the materials and 
programs that serve as ‘tools of the trade’ for teachers” (Shulman,1987, p. 8); and 
Ball et al. (2008) do not seem to have moved beyond this. 

Limitations of research on PCK and MKT 

Ruthven (2011) has presented four distinct conceptualizations of Mathematical 
knowledge for teaching – Subject knowledge differentiated; Subject knowledge 
contextualized; Subject knowledge interactivated and Subject knowledge 
mathematised – each of which is intended to move forward debate about and 
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research – but in different directions. These four lines of thinking show that 
Mathematical knowledge for teaching is no longer a single unified idea. Researchers 
also need to be aware of the limitations of some or all of these four approaches: (1) 
all four have a strong focus on how to improve pre-service teachers’ mathematical 
knowledge needed for their teaching in the future; (2) apart from the first 
framework adopted by Petrou & Goulding (2011), the other three do not appear to 
place a strong emphasis on the way in which official mathematics curriculum 
documents are intended to guide teaching in many countries; (3) apart from the first 
framework, the other three tend to view knowledge for teaching mathematics in 
general terms, rather than considering the specific areas of mathematical content 
important for curriculum reform; (4) all four theoretical frameworks are not easy to 
conceptualize into empirically conducted in research. Our own position on 
Mathematical knowledge for teaching is closest to that of Petrou & Goulding (2011). 
We use this framework to inform our construct of teacher capacity, and to show 
where it differs from that of Ball et al. (2008), especially in its stronger links to 
research on curriculum reform and school change. 

Teacher capacity model 

The term “Teacher capacity” comes out of the literature of school improvement, 
school leadership and system reform (McDiarmid, 2006; Fullan, 2010). When used 
in this context, teacher capacity usually relates to teachers’ ability to understand and 
act on the reforms that policy makers are seeking to implement (Spillane, 1999). It is 
close to our definition of Teacher Capacity as professionally informed judgment and 
disposition to act. Researchers such as Floden, Goetz & O’Day (1995) emphasize that 
teacher capacity is multidimensional and evolving. Firstly, they argue that teachers’ 
ability to assist students in learning is dependent on teachers’ own knowledge, 
which includes knowledge of the subject matter, knowledge of curriculum, 
knowledge about students and knowledge about general and subject-specific 
pedagogy; secondly, they argue that, while knowledge interacts with skills, there is a 
considerable gap between what teachers believe they should be doing in the 
classroom and their ability to teach in the desired ways; and thirdly, they point to 
the importance of dispositions, since enacting reform requires having the 
dispositions to meet new standards for student learning and to make the necessary 
changes in practice. 

There are clear parallels here with Ball et al. (2008) who make the equally strong 
point that any definition of Mathematical knowledge for teaching (MKT) should 
begin with teaching, not teachers. Any such definition must be “concerned with the 
tasks involved in teaching and the mathematical demands of these tasks (our 
emphasis). Because teaching involves showing students how to solve problems, 
answering students’ questions, and checking students’ work, it demands an 
understanding of the content of the school curriculum” (p. 395). 

METHODOLOGICAL POSITION 

Theoretical framework 

Our construct of Teacher Capacity, as professionally informed judgments and 
dispositions to act, is intended to capture a common ground between movements 
for school system and curriculum reform and the construct of Mathematical 
knowledge for teaching elaborated by Ball et al. (2008). Four criteria inform our 
theoretical model. 

Criterion A – Knowledge of Mathematics – is intended to be applied to the tasks 
that the students have completed or are being asked to complete. Knowledge of 
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Mathematics is intended to capture the key mathematical ideas for teaching specific 
content. 

Criterion B – Interpretation of the Intentions of the Official Mathematics 
Curriculum – is concerned with how teachers relate what is mandated or 
recommended in official curriculum documents of China and Australia to what their 
students are being asked to learn. This Criterion differs from MKT (Ball et al., 2008) 
in giving a greater emphasis to official curriculum documents and teachers’ 
willingness to use them in planning instruction. 

Criterion C – Understanding of Students’ Mathematical Thinking – is directly 
concerned with teachers’ capacity to interpret and differentiate between what 
students actually do (or did) and to anticipate what they are likely to do. It implies 
that teachers are able to recognize the typical errors that students make and what 
mathematical thinking led to these errors. 

Consequently, Criterion D – Design of Teaching – places a clear emphasis on 
teachers’ capacity to design teaching in order to move students’ thinking forward 
and to respond to specific examples of students’ thinking in the light of official 
curriculum documents. Criterion D is intended to give greater emphasis to how 
teachers use their professionally informed judgment to design practical teaching on 
specific topics.  

Among the four criteria above, criterion D is intended to give greater emphasis to 
how teachers use their professionally informed judgment to design practical 
teaching on specific topics. Our model of teacher capacity is shown in Figure 1 
(Zhang & Stephens, 2013). 

As shown in Figure 1, each of the four criteria is focused on teachers’ 
professionally informed judgments and dispositions to act, distinguishing them from 
the four knowledge domains of Ball et al. (2008). Criterion D (design of teaching) is 
put forward as the central component in our model. As the instructional 
embodiment of teacher capacity, design of teaching rests on strong connections with 
the other three criteria. However, we also anticipate that, when separated from 
criterion D, the inter-relationships between the other three criteria will not be as 
strong as their relationship to criterion D (design of teaching) (Zhang & Stephens, 
2013).  

What is more, each criterion of above was elaborated in terms of four specific 
indicators (see Table 1). 

The research instrument 

Teachers were invited to complete a written questionnaire consisting of two 
parts. Part A has four questions which were based on tasks developed in previous 
research, containing some situations relating to statistical thinking that students are 
expected to meet. 

 

Figure 1. Model of Teacher Capacity 
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Question 1 was adapted from Shaughnessy et al. (2004):  
A gumball machine has 100 gumballs in it. 20 are yellow, 30 are blue, 
and 50 are red. The gumballs are all mixed up inside the machine. 
(a) Suppose you do the following experiment: you pick out a handful of 
10 gumballs, count the reds and write down the number of red gumballs 
in one handful. How many reds do you expect to get? 
(b) You replace the handful of 10 gumballs back in the machine and mix 
them up again. Now you draw another handful of 10 gumballs. Would 
you expect to get the same number of reds in every handful if you did 
this several times? Briefly describe why. 
(c) How many reds would surprise you in a handful of ten? Why would 
that surprise you? 
(d) If each time a handful of 10 gumballs is taken, these are replaced and 
remixed before taking another handful again, what do you think is likely 
to occur for the numbers of red gumballs that come out for a sequence 
of five handfuls? Please write the number of reds in each handful here.  
(e) Look at these possibilities that some students have written down for 
the numbers they thought likely when they answered question d. Which 
one of these lists do you think best describes what is most likely to 
happen? Circle it. (A. 8,9,7,9,10; B. 3,7,5,8,5; C. 5,5,5,5,5; D. 2,4,3,4,3; E. 
3,0,9,2,8; F. 7,7,7,7,7). Why do you think the list you chose best describes 
what is most likely to happen? 

Table 1. Four criteria and associated indicators 

Criterion A – Knowledge of  Mathematics 
Criterion C – Understanding of Students’ Mathematical 
Thinking 

(1) Is the teacher able to solve the theoretical mathematical 
probability problem (Q1a) and be able to understand 
relationship between chance of real events and sample size 
(Q3)? 
(2) Does the teacher consistently understand the variability 
of theoretical probability always happens in natural events 
in real life (Q1b, 1d), and the variability has a certain range 
close to the theoretical probability (Q1c, 1e, 1f)? 
(3) Does the teacher understand the meaning of “variability” 
by giving specific certain information (Q2)? 
(4) Does the teacher recognize that the difference between 
association and causation (Q4)? 

(1) Is the teacher able to anticipate students’ common difficulties 
and misconceptions on Question 1 (e) in questionnaire? 
(2) Does the teacher give clear and reasonable explanations to 
students’ incorrect answers? 
(3) Is the teacher able to discriminate between students’ different 
levels of understanding statistics and probability according to their 
answers, especially discriminating between incorrect answers? 
(4) Does the teacher recognize the importance of using familiar 
contexts, such as coin tossing or rolling dice, to help students 
understand the statistical features of (less familiar) situations that 
contain similar statistical characteristics. 

Criterion B – Interpretation of the Intentions of 
Official Mathematics Curriculum 

Criterion D – Design of Teaching 
(1) In design of teaching, does the teacher focus on the important 
key conceptions of statistical thinking (theoretical probability, 
sampling, sample size and inevitable variability in actual data, as 
well as using familiar contexts to simulate real world events), not 
focusing too much on general teaching strategies or overall 
descriptions on statistics and probability? 
(2) Does the teacher have the subsequent plan in next one or 
several lessons to respond students’ incorrect answers in Question 
1 (e)? 
(3) Does the teacher have a longer-term plan to consistently 
develop students’ deep understanding of statistical thinking (see 1 
above), not just aiming to have students correctly calculate 
theoretical probability problems? 
(4) Does the teacher, in his/her teaching, give concrete examples 
that are familiar and easy for students to understand to help them 
understand statistical thinking and its relationships with real life? 

(1) Does the teacher realize that “statistical thinking” should 
be valued in teaching and learning beyond the solutions of 
probability problems or does the teacher refer to relevant 
statements on statistical thinking in the official curriculum 
documents? 
(2) Does the teacher understand and support the intention  
of the curriculum of helping students understand key ideas 
 of statistical thinking such as theoretical probability, 
sampling, sample size and inevitable variability in actual 
 data, rather than calculating theoretical probabilities? 
(3) Does the teacher think it important to consider statistics 
and probability by linking natural events and real life? 
(4) Does the teacher show in his/her descriptions of 
developing students’ ability to read and understand data  
and information which is important for their further learning 
and future life? 
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(f) In the above six repetitions of the experiment, what do you think will 
be the highest and lowest number of reds in one handful? Please discuss 
briefly why you think this. 

 Question 2 was adapted from Meletiou, & Lee (2002): 
Look at the histogram of the two distributions shown in Figure 2. 
Which of the two distributions you think has more variability? (a) 
Distribution A (b) Distribution B 
Briefly describe why you think this.                                                            

Question 3 was adapted from Garfield, & Gal (1999):  
Half of all newborns are girls and half are boys. Hospital A records an 
average of 50 births a day. Hospital B records an average of 10 births a 
day. On a particular day, which hospital is more likely to record 80% or 
more female births? 
(a) Hospital A (with 50 births a day); (b) Hospital B (with 10 births a 
day); (c) The two hospitals are equally likely to record such an event; 
(d) There is no basis for predicting which hospital would have that 
percentage of female births. Give a brief explanation of why you think 
like this. 

Question 4 was adapted from Garfield, & Gal (1999):  
For one month, 500 elementary students kept a daily record of the 
hours they spent watching television. The average number of hours per 
week spent watching television was 28. The researchers conducting the 
study also obtained report cards for each of the students. They found 
that the students who did well in school spent less time watching 
television than those students who did poorly.  
Which of the following statements is (are) correct? (a) The sample of 
500 is too small to permit drawing conclusions; (b) If a student 
decreased the amount of time spent watching television, his or her 
performance in school would improve; (c) Even though students who 
did well watched less television, this doesn’t necessarily mean that 
watching television hurts school performance; (d) One month is not a 
long enough period of time to estimate how many hours the students 
really spend watching television; (e) The research demonstrates that 
watching television causes poorer performance in school; (f) I don’t 
agree with any of these statements. For one statement that you agree 
with, explain why you think that way. For one statement that you 
disagree with, explain why you think that way. 
Part B of the questionnaire had three questions which asked teachers to 
consider teaching implications arising from the questions in Part A. 
Specifically they were asked to consider common misunderstandings 
and difficulties for students in the Part A questions; how the key 
mathematical ideas or critical points presented in these questions are 

 

Figure 2. Two distributions 
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addressed in their respective country’s official curriculum documents; 
and how to design some lessons to help students to understand these 
key ideas. 

The participants 

There were 17 Australian secondary and primary schools randomly selected in 
both urban and rural regions in Melbourne. Up to four teachers of Year 6 or Year 7 in 
each participating school were invited to complete the questionnaire. The Australian 
sample consisted of 41 Australian teachers, 28 secondary teachers and 13 from 
primary schools. The China sample comprised 41 teachers randomly selected from 
training programs in Chongqing, Hangzhou and Wenzhou. Twenty eight were 
secondary and 13 were primary teachers. 

DATA ANALYSIS: QUALITATIVE 

The following examples provide evidence of Chinese and Australian teachers’ 
(coded either as Teacher n CH or Teacher n AU) responses with respect to each of 
the four criteria. Teachers in both countries showed their different levels of 
understanding on all four criteria. 

Criterion A (Knowledge of Mathematics) 

Teacher 57 AU responded to Question 3 of Part A: “Hospital B is more likely to 
record the 80% as it has a much smaller population… Larger samples or more trials 
give results that are closer to theoretical probability.” This teacher clearly 
demonstrated understanding of the relationship between sample size and variation 
from theoretical probability.  

However, Teacher 31 AU answered: “Both hospitals are equally likely to record 
80% female births because the probability is the same for each birth to be a boy or a 
girl.” This teacher considered this problem as a completely theoretical probability 
question and did not realize variation exists and the sample size will influence the 
variation. And, Teacher 28 CH didn’t identify the key point of this question by saying 
“it is random and no absolute result”.  

Criterion B (Interpretation of the Intentions of Official Mathematics 
Curriculum) 

When referred to official mathematics curriculum, Teacher 35 CH said “This is 
the typical question representing thinking of probability and statistics. In the stage 
of primary school, statistics is more important. The main content of statistics is data 
processing, not to infer or guess with (theoretical) probability…” 

Meanwhile, some teachers like Teacher 53 AU just listed several headings that 
are used in curriculum documents such as “measurement, chance and data” and 
some related ideas such as “calculating theoretical probabilities”. And Teacher 24 
CH referred to “including mathematical thinking of abstraction, transformation, 
modeling and etc.”, but could not identify any specific mathematical thinking implied 
in the questionnaire. 

Criterion C (Understanding of Students’ Mathematical Thinking) 

When teachers were required to comment on students’ answers in Question 1(e) 
of Part A, Teacher 21 AU said “Students who choose C do not consider the variation 
but understand the basic principles of chance. Students who choose A, D, E and F, … 
do not understand the basic principles of chance.” This teacher gave reasonable 
explanations for each response of students and was able to discriminate students’ 
different thinking level on statistics.  
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But these “typical” answers of students were confusing for some teachers. For 
example, Teacher 4 CH initially thought that “Students’ understanding is there are 
more red balls”, but then pointed that “Students will think all outcomes are possible, 
it’s difficult to judge”. This teacher did not understand the various misconceptions 
embedded in the “typical” answers. 

Criterion D (Design of Teaching) 

When discussed on how to help students understand the critical mathematical 
thinking of Question 3 of Part A, Teacher 54 AU articulated teaching plans: “There 
are many activities that can be carried out using counters, coins and dice to simulate 
certain events. In the case of babies being born male or female, tossing a coin 10 
times and recording Heads as female and Tails as male could be done. If every 
student performs the 10 tries, I would have enough data to compare and expect a 
good range including possibly 80% female. I could then compare individual trials of 
10 to collective trials by putting together 5 groups of 10 results and comparing the 
male and female numbers and hopefully show that the results tend more to 50:50 
female: male”, concluding “(one) would need to get across the idea that when an 
experiment is conducted many times over, certain patterns are likely to appear.” 
This teacher correctly focused on the critical points and designed very elaborate 
simulation – coin tossing – which is more familiar to students, not just talking about 
general teaching strategies.  

Teacher 19 CH indicated that the teaching focus was about “statistical 
knowledge”, but offered no discussion of any specific statistical concepts, giving only 
very general teaching strategies like having “students conduct various kinds of 
experiments… they need practical manipulations to explore possibility”. Likewise, 
Teacher 2 focused only on “understanding of fractions, percentages and decimals. I 
would introduce whole numbers and equivalence and converting decimals to 
percentages.” This teacher referred only to some general strategies like “open ended 
questions including ratio of boys and girls.” 

DATA ANALYSIS: QUANTITATIVE 

By assigning a score of 1 if one of the four indicators was evident in a teacher’s 
response, and 0 if it was omitted from their response or answered inappropriately, 
it was possible to construct a score of 0 to 4 for  each criterion , and hence a 
maximum score of 16 across the four criteria. We allowed for the possibility that 
teachers might provide convincing alternative indicators to the four indicators 
listedin each criterion.  

The two researchers operated independently to score teachers’ responses; then a 
careful confirmative check took place in order to resolve any difference. A high 
degree of consistency was present in the initial grading by the two graders, where, 
in less than 30 cases of 0/1 grading, only minor differences occurred. Any resulting 
differences in grading the 82 responses across the four criteria were easily resolved 
by consensus. 

A summary for Chinese and Australian samples 

For the 41 Chinese teachers, the highest score was 14 and the lowest score was 3, 
with a median score of 8. For Australian teachers, the highest score was 15 and the 
lowest was 4, with a median score of 9. The respective mean scores were 8.34 
(Chinese) and 9.27 (Australian) with standard deviations 2.70 and 2.63 respectively. 
Table 2 shows means and deviations that were calculated for each of the Criteria 
and total score. Of the four criteria, Criterion D (Design of Teaching) had the lowest 
mean (1.77) followed by Criterion B (Interpretation of the Official Mathematics 
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Curriculum) with the mean of 2.11, followed by Criterion C (Understanding of 
Students’ Mathematical Thinking) with the mean of 2.38. Criterion A (Knowledge of 
Mathematics) had the highest mean at 2.56. 

Australian teachers scored slightly higher on all four criteria than their Australian 
counterparts, but there was no statistically significant difference. On Criterion A, 
Australian teachers were clearer on the understanding critical concepts in statistics, 
especially in distinguishing variability from theoretical probability; on Criterion B, 
Chinese teachers paid more attention to methods to calculate possibility or chance 
that students need to learn, but Australian teachers were more focused on the 
development of how to deal with data in practical situations; on Criterion C, 
Australian teachers performed better on anticipating difficulties and 
misunderstandings that students might encounter; on Criterion D, Australian 
teachers were more likely to locate the key statistical idea  in the hospital question 
in Part A, and could show in more practical ways how to develop related statistical 
thinking. 

Three classifications of Teacher Capacity 

Three sub-categories of our construct of teacher capacity were created, with the 
boundaries set on the basis of the qualitative analysis of teachers’ responses as 
discussed earlier. These were High capacity (score 11-16), Medium capacity (score 
6-10) and Low capacity (score 0-5). These classifications using the two samples are 
shown in Table 3. 

There were one more High Capacity teachers in Australian sample than in 
Chinese sample (respectively 8 and 7); one less Australian teachers were classified 
as Low Capacity than Chinese teachers (respectively 7 and 8). In both Chinese and 
Australian samples, Medium Capacity group was the biggest group which included 
26 teachers out of 41, that was more than 60%. 

High Capacity teaching of statistical thinking was evident in nearly 20% of 
Chinese and Australian teachers’ responses to the questionnaire. It was shown by a 
clear understanding of the critical thinking and concepts in statistics of the four 
questions of Part A; relating the tasks to relevant curriculum documents; by high 
interpretative skills when applied to each of the six possible answers of students’ 
work in Question 1(e); and by an extensive range of ideas for designing and 
implementing a teaching program to support the development of students’ 
statistical thinking. Medium Capacity was shown by approximately 60% of teachers 
who, while possessing knowledge and skills supportive of these directions, clearly 
need to increase their current levels of professional knowledge and skills. In both 
samples, Low Capacity was evident in a minority of teachers – nearly 20% – who 
appeared unable to express a clear articulation of the mathematical nature of the 
tasks, or what differentiated the six students’ answers in Question 1(e). These 

Table 2. Means for each criterion and global means and deviations 

Sample Criterion A Criterion B Criterion C Criterion D Total 

Chinese(41) 2.42(0.67) 2.02(0.96) 2.27(0.71) 1.66(0.97) 8.37(2.70) 

Australian(41) 2.72(0.86) 2.21(0.83) 2.49(0.76) 1.85(0.93) 9.26(2.63) 

CH & AU(82) 2.56(0.82) 2.11(0.90) 2.38(0.76) 1.77(0.97) 8.82(2.79) 

 
Table 3. Classifications of teacher capacity 

Capacity Chinese Australian 

High 7(17.1%) 8(19.5%) 

Medium 26(63.4%) 26(63.4%) 

Low 8(19.5%) 7(17.1%) 
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teachers were unable to point with any confidence to how the tasks related to what 
is contained in official curriculum documents, and found it difficult to describe how 
they would plan a program of teaching to foster students’ statistical ideas. 

Interrelations of teacher capacity 

Table 4 (calculated using SPSS 19.0 English version) shows the bivariate 
correlation between any two of the four criteria as well as that between each 
criterion and the total for the 82 Chinese and Australian samples. 

First of all, all the four criteria have clear and strong contributions between .749 
and .885 to the total score at the 0.01 level (2-tailed). And furthermore, all pairings 
of the four criteria have a significant correlation, supporting our theory that all four 
components of teacher capacity are interrelated. However, we cannot know whether 
the correlation between any two criteria was direct or was influenced by a third 
variable (Pallant 2001, p. 130). As a result, we statistically controlled one of the four 
criteria, then carried out four partial correlation analyses between any two of the 
other three criteria. When Criterion A (Knowledge of Mathematics) was controlled, 
the partial correlations between the other three criteria–B/C (.354), B/D (.567), and 
C/D (.447)–were all significant at 0.01 level. The result was the same when Criterion 
B (Interpretation of the Intentions of the Official Mathematics Curriculum) was 
controlled – A/C (.398), A/D (.433) and C/D (.437). When Criterion C 
(Understanding of Students’ Mathematical Thinking) was controlled, the partial 
correlation between criteria A and D (.362) and that between criteria B and D (.515) 
were significant at the 0.01 level, only partial correlation between criteria A and B 
(.188) was the exception. 

However, it showed very different results when Criterion D (Design of Teaching) 
was considered as the statistically controlled variable. We can see from Table 5, 
correlation between Criterion A and Criterion C was significant (.260) at 0.05 level, 
both of the rest pairs had no statistically significant correlations: A/B (.039), B/C 
(.142). 

The results were slightly different from a previous research (Zhang & Stephens, 
2013), but it was still obvious that after statistically controlling any one of the other 
three criteria, Criterion D still had significant and strongest correlation with the 
other two at 0.01 level. However, when Criterion D was statistically controlled, the 
relationship between any two of the other criteria became much weaker as shown in 
Table 5. A multi-step linear regression analysis confirmed the importance of 
Criterion D: On its own, Criterion D accounted for 88.5 % of the variance of our 
model. This also endorses our placing of Design of Teaching at the center of the 

Table 4. Bivariate correlations between each criterion and the total and any two of four criteria 

  A B C D total 

A Pearson Correlation 1 .384** .506** .553** .749** 

Sig. (2-tailed)  .000 .000 .000 .000 

B Pearson Correlation .384** 1 .476** .648** .792** 

Sig. (2-tailed) .000  .000 .000 .000 

C Pearson Correlation .506** .476** 1 .601** .786** 

Sig. (2-tailed) .000 .000  .000 .000 

D Pearson Correlation .553** .648** .601** 1 .885** 

Sig. (2-tailed) .000 .000 .000  .000 

total Pearson Correlation .749** .792** .786** .885** 1 

Sig. (2-tailed) .000 .000 .000 .000  

**. Correlation is significant at the 0.01 level (2-tailed). 
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model shown in Figure 1, where it is informed by the other three criteria, which are 
only weakly related when dissociated from Design of Teaching. 

CONCLUIONS 

Our construct of Teacher Capacity, presented here as teachers’ professionally 
informed judgments and dispositions to act, connects to but differs from earlier 
research into Pedagogical Content Knowledge by Shulman (1986; 1987) and 
Mathematical knowledge for teaching by Ball et al. (2008). Here Teacher Capacity 
was investigated in terms of Knowledge of Mathematics, Interpretation of the 
Intentions of Official Curriculum documents, Understanding of Students’ Thinking 
and Design of Teaching to foster the underlying mathematical ideas. Performance on 
each criterion was ascertained using a precise set of indicators that were related to 
the specific mathematical tasks, students expected thinking in relation to those 
tasks, the relationship between the tasks and official curriculum documents, and 
teachers’ ability to design explicit teaching sequences to support students’ learning. 

Design of Teaching, informed by the other three criteria, appears to be the critical 
dimension for the implementation of curriculum reform; and the criterion that most 
clearly distinguishes between different levels of teachers’ capacity to enact reform. 
Our construct of Teacher capacity strongly reflects the view that effective 
implementation of any curriculum reform depends on teachers’ subtle 
interpretations of official curriculum documents and their professional dispositions 
to act on those ideas, which go well beyond general descriptions or statements of 
intent that are usually embodied in official curriculum advice. 

Our construct of teacher capacity was built on earlier research into mathematical 
knowledge for teaching by MKT (Ball et al., 2008; Hill et al., 2008). However, to make 
the conclusions of this study compatible to their key idea of mathematical 
knowledge for teaching would appear to require a major reframing of their category, 
knowledge of content and teaching. In light of this study, that category appears to be 
too static and less suited to direct attention to design of teaching, which we have 
interpreted as understanding key aspects of national curriculum reform and 
knowing how to enact these aspects in practice. Our construct seems more suited to 
capture this key feature of curriculum reform. 

DISCUSSION 

In an earlier parallel study of teacher capacity on algebraic thinking (Zhang & 
Stephens, 2013), Chinese teachers scored slightly higher than Australian on two 
criteria of Teacher Capacity, but in this study, they scored slightly lower on all four 
criteria, supporting our position that Teacher Capacity should not be considered 
generally, but specifically to different content areas in the curriculum. And what is 
more, in both studies, all four components of teacher capacity were effective in 

Table 5. Partial correlations (criterion D as controlled variable)  

Control Variables 
A B C 

D A Correlation 1.000 .039 .260* 

B Correlation .039 1.000 .142 

C Correlation .260* .142 1.000 

*. Correlation is significant at 0.05 level 
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distinguishing between different levels of capacity, but Design of Teaching was the 
most powerful in distinguishing between the three levels.  

The above findings had clear implications for our further research into teacher 
capacity: First, we argued that teacher capacity should not be discussed generally, 
but specific content focused. So, what will be the connections of one teacher’s 
capacity on different mathematical content? From several teachers who were 
involved in both studies, we knew that teacher capacity were not necessarily 
completely the same. But there still existed certain relations. For example, one 
teacher with high capacity (scored 15) in algebraic thinking having high-medium 
capacity in statistical thinking (scored 11), and another teacher who scored high in 
statistical thinking (scored 14) was just getting a medium score (9) in algebraic 
thinking. As a result, we are confident to have the assumption that one teacher with 
high capacity on one mathematical content area might possibly have medium 
capacity in another, but it might not be very likely for a teacher with high capacity in 
one content area but having low capacity in another area. Second, as we argued in 
the beginning of this paper, teacher capacity is a key dimension in realizing 
intentions of the curriculum reform and implementing these goals into practical 
teaching in mathematics classrooms. So, how do we identify the different ways in 
which High Capacity teachers design teaching and how do we use these findings to 
improve the capacity of Medium and Low Capacity teachers? And third, this is a 
comparative study, so what are the affects that “culture” possibly brings?  
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