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Abstract 

The aim of this article is twofold: first, to design a Python programming language proposal to 

analyze contextualized situations involving differential and integral calculus considering the case 

of the fundamental theorem of calculus (FTC); second, the proposal is applied to university 

students of differential calculus to promote the understanding of the derivative and the integral 

based on the Python programming language. This study is motivated because students have 

many difficulties to represent and applying calculus concepts in real situations. For this purpose, 

the theoretical model on the process of formation of mathematical concepts (PFC) is used, which 

consists of analyzing, abstracting, generalizing and synthesizing; the Python programming 

language and what concerns the FTC. The research was developed under a qualitative 

methodology in 4 stages: first, the proposal was designed based on the Python programming 

language; second, the participants were selected; third, the proposals were applied through task-

based interviews; and finally, data analysis using the PFC theoretical model and the analytical 

framework of computational actions. The results show that the Python programming language is 

a tool that facilitates the analysis of contextualized situations involving differential and integral 

calculus, considering, in this case, the FTC; the application of mathematical tasks to students 

generated a deep conceptual development reflected in the interpretations they issued after 

viewing and contrasting the graphs of the rate of variation, the accumulated integral and the 

relationship between them when deriving the accumulated integral. 
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INTRODUCTION 

The teaching of mathematics at the university level 
has been characterized by teaching processes based on 
the development of the algebraic aspect, forging in 
students the memorization of processes and techniques 
that allow them to find a result, but with little meaning 
applied to the close context or associated with the 
undergraduate degree they study. Researchers such as 
Cervantes-Barraza et al. (2019b) argue that differential 
and integral calculus and differential equations courses 
are encouraged by developing problems or exercises that 

involve algorithmic procedures and even memorization 
of rules or formulas without achieving an understanding 
of the definition of the concepts. The authors in their 
research addressed the study of ordinary differential 
equations (ODEs) from a graphical-visual approach 
from the qualitative theory of differential equations, 
enhancing the construction of deductive arguments and 
promoting the conceptual understanding of the concept 
of ODE, its general equation, its graphical representation 
and geometric interpretation for the case of orthogonal 
curves. 

https://doi.org/10.29333/ejmste/16885
http://creativecommons.org/licenses/by/4.0/
mailto:jonathan.cervantes@esap.edu.co
mailto:crodrigu79@cuc.edu.co
mailto:adamian@uagro.mx
mailto:armandomorales@uagro.mx
https://orcid.org/0000-0002-5708-8571
https://orcid.org/0000-0001-9922-4079
https://orcid.org/0000-0002-0372-4392
https://orcid.org/0000-0001-9841-7493


Cervantes-Barraza et al. / Promoting the use of the Python programming language to analyze contextualized situations 

 

2 / 21 

A review of the literature regarding the teaching 
process of the fundamental theorem of calculus (FTC) 
allows to show the attempt of several researchers to 
glimpse from a technological perspective the conceptual 
elements of the theorem under study. For his part, Meza 
(2009) addressed in his study the problem of how to 
improve the teaching of the FTC by implementing digital 
tools. The main focus is the development of software that 
allows the dynamic visualization of the FTC, facilitating 
a deeper understanding. Through an epistemological 
analysis of the FTC combined with experimental tests in 
educational environments where the assistant software 
is used, the results showed that the use of dynamic 
visualizations significantly increases the understanding 
of abstract concepts in calculus, improving the learning 
experience. Oliveira and Bellemain (2020) addressed the 
difficulty of students to connect theoretical concepts 
with practical applications in learning calculus, focusing 
attention on the teaching of differential and integral 
calculus, particularly the FTC, from a historical and 
praxeological perspective. The results show that this 
approach allows students to acquire a more integrated 
understanding of mathematical concepts, which is 
reflected in greater effectiveness in problem solving. 

Research has pointed out as a central problem the 
analysis of the disconnect between intuitive and formal 
concepts in the learning of calculus (Robles Arredondo 
& Tellechea Armenta, 2014). The study addresses a 
different epistemological and methodological approach 
to teach the FTC, through the use of didactic activities 
focused on exploration and guided discovery, 
combining the history of the development of the FTC 
with key concepts such as variation and accumulation. 
Achieving an alternative approach that facilitates the 
understanding of the FTC by integrating historical and 
epistemological concepts in teaching. Under this 
problem, Grande (2016) analyzed the teaching of the 
FTC from an epistemological perspective, emphasizing 
the use of intuitive and visual approaches. The added 
value of the study showed that the implementation of 
visual techniques and graphical representations to 
reinforce mathematical intuition; achieving that the 
combination of visualization and intuition improves the 
ability of students to connect ideas and solve problems 
related to the FTC. 

Other authors have been concerned with researching 
the concepts of Calculus, especially the derivative and 

the integral, because mathematics and engineering 
students, future mathematics teachers and some in-
service mathematics teachers have difficulties in solving 
intra- and extra-mathematical problems because they do 
not connect the multiple representations of these 
concepts and do not use the meanings appropriately 
(Galindo-Illanes & Breda, 2024; Pino-Fan et al., 2018; 
Rodríguez-Nieto et al., 2022, 2023a). Furthermore, 
understanding of the derivative is not fully achieved, 
because teachers do not propose challenging tasks where 
students interpret graphs and analyze the behavior of 
functions considering the derivative and the 
antiderivative together with modeling processes 
(Elmania et al., 2024; Ledezma et al., 2024; Rodríguez-
Nieto et al., 2023b). 

For their part, Borji et al. (2024) used a previously 
proposed model of the mental constructions that 
students can use to understand partial derivatives, 
considering a set of activities designed to facilitate such 
constructions. The model is based on the local linearity 
of differentiable functions of two variables, and the 
associated activities explore the relationship between 
partial derivatives and the tangent plane through 
various representations. Mastery of limits, continuity, 
and derivatives is crucial for the study of differential and 
integral calculus, which forms the basis of mathematics 
in several university courses. However, many students 
face difficulties in relating theoretical concepts to their 
practical application, which hinders the development of 
essential calculus skills. The abstract nature of this 
discipline can generate a negative perception towards 
mathematics and science, which impacts academic 
performance and decreases interest in advanced courses 
in the subject (de Vera et al., 2022; García-García & 
Dolores-Flores, 2021; Kunwar, 2021; Sofronas et al., 
2015). In this context, the FTC plays a central role in 
establishing the connection between differentiation and 
integration, showing that they are inverse processes. 
However, the lack of a solid foundation in limits, 
derivatives, and continuity makes their understanding 
difficult, underlining the need for more effective 
pedagogical approaches (Munyaruhengeri et al., 2024). 

The collected works of AlAli et al. (2024) offer a 
comprehensive exploration of current challenges and 
innovations in education, particularly in the Middle 
East. In their study on digital transformation in 
Jordanian basic education schools, the authors highlight 

Contribution to the literature 

• The Python programming language is a tool that facilitates the analysis of contextualized situations 
involving differential and integral calculus. 

• The application of mathematical tasks to students generated a deep conceptual development with a 
dynamic and graphical view of the derivative and the integral. 

• The FTC was interpreted and the graphs of the rate of change, the accumulated integral, and the 
relationship between them can be viewed and contrasted when deriving the accumulated integral. 
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how educational wastage–characterized by student 
dropouts and grade repetition–can be mitigated through 
strategic integration of digital technologies and teacher 
training (AlAli & Wardat, 2024a). Another article 
investigates the low performance of students in PISA 
assessments, identifying key contributing factors such as 
inadequate teaching strategies, socio-economic 
conditions, and a lack of student motivation (AlAli & 
Wardat, 2024b). In their analysis of generative AI in 
education, the authors present both opportunities (e.g., 
personalized learning, automation of assessments) and 
challenges (e.g., ethical concerns and teacher readiness), 
emphasizing the need for careful policy and pedagogical 
frameworks (AlAli & Wardat, 2024c). 

In the context of mathematics education, AlAli et al. 
(2024) evaluate the effectiveness of STEM-aligned 
teaching practices among gifted math teachers, revealing 
strong correlations between innovative instruction and 
student engagement. Their work on gamification, 
specifically through the use of Kahoot, demonstrates 
significant improvements in both student motivation 
and academic achievement (Jarrah et al., 2025). 
Additionally, the study by Tashtoush et al. (2023) on 
cyberbullying in Abu Dhabi school’s sheds light on its 
negative impact on students’ willingness to engage in 
learning, stressing the importance of fostering safe 
digital environments. Collectively, these studies 
underscore the transformative potential of technology 
and innovation in addressing persistent educational 
issues while also calling for greater support systems to 
ensure equity and effectiveness in implementation. 

Based on a synthesis of the literature review, this 
study integrates the programming language with the 
analysis of contextualized situations in order to address 
the existing problems in differential and integral 
calculus courses. An alternative that seeks, through the 
experimentation of physical phenomena and the 
construction of basic programming codes in Python, in 
order to enhance the understanding and construction of 
mathematical concepts, emphasizing the FTC. The 
research questions that guide this study are:  

1. How does the design of a sequence of 
mathematical tasks focused on the use of the 
Python programming language allow the analysis 
of contextualized situations that involve 
differential and integral calculus considering the 
case of the FTC?  

2. How does the application of the sequence of 
mathematical tasks designed based on the Python 
programming language facilitate understanding 
in university students regarding the concepts of 
the derivative and the integral?  

In this sense, the activity of experimenting with 
physical phenomena is implemented as a didactic 
strategy that is included in the process of formation of 
mathematical concepts (PFC), which involves a series of 

cognitive actions that students go through when they 
perform mathematical tasks. These activities are 
encouraged by the teacher through questions, 
questioning combined with the didactic intention 
(Cervantes-Barraza, 2021; Díaz, 2007). 

The proposal presented in this paper has a twofold 
objective:  

(1) to design a Python programming language 
proposal to analyze contextualized situations 
involving differential and integral calculus 
considering the case of the FTC and  

(2) to apply the proposal to university students of 
differential calculus to promote the 
understanding of the derivative and the integral 
based on the Python programming language.  

In particular, this study focuses on the construction 
of the concept of derivative and integral of a real variable 
function by integrating the PFC and codes in the Python 
programming language. It should be noted that the 
concepts of derivative and integration are addressed 
with the purpose of concluding the results of the FTC. 

THEORETICAL FRAMEWORK 

Theoretical Bases of Pedagogical Order 

It is focused on addressing the contemporary 
approach of constructivism. Knowledge under this 
approach is considered as a result of individual 
construction processes guided or supported by collective 
interaction processes (e.g., teacher and students) where 
each individual builds based on their own actions from 
the understanding of the concepts, meanings and sense 
attributed. In this order of ideas, the social construction 
of knowledge in mathematics is recognized as a process 
that involves educational actors linked to a didactic 
medium that enhances the learning process of students. 
The position and principle of the theory of symbolic 
interactionism states that the student learns a concept in 
mathematics when he or she is able to construct valid 
mathematical arguments (Schwarz, 2009) and argue in a 
context of interaction with peers with the aim of 
convincing an audience about the veracity of his or her 
claims (Cervantes-Barraza & Cabaña-Sánchez, 2022; 
Cervantes-Barraza et al., 2019a; Knipping & Reid, 2015; 
Krummheuer, 1995, 2015). 

In a mathematics class, the learning process is 
mediated by dialogic and argumentative processes, 
guided by didactic instruments and tools, such as 
mathematical tasks, concrete materials, mobile 
applications, dynamic geometry and mathematics 
software, among others (Solar & Deulofeu, 2016). The 
implementations of didactic media seek to enhance the 
learning processes of students, which occur in an 
internal cognitive and social way in a well-situated 
mathematical context. The theory of socio-epistemology 
proposed by Ricardo Cantoral seeks to decentralize the 



Cervantes-Barraza et al. / Promoting the use of the Python programming language to analyze contextualized situations 

 

4 / 21 

mathematical object under study and recreate 
contextualized situations or tasks that allow the student 
to identify how mathematical concepts and their 
operations are linked to the latent reality of the students. 
For them, a deep understanding of the meanings 
associated with mathematical concepts and an 
appropriate implementation of didactic resources and 
tools is required. 

The role of the teacher in relation to pedagogical-
didactic principles involves following work routes with 
their students under a learning process guide approach. 
The teacher, from the design of contextualized 
mathematical tasks (Cervantes-Barraza & Aroca-Araujo, 
2023; Pochulu et al., 2016), allows their students to 
interact with problems posed didactically in contexts 
familiar to the students in order to ensure that they build 
mathematical connections, these play a fundamental role 
in the argumentation process, since the connection is 
important for the establishment and identification of the 
argument and the justification that supports it (Font & 
Rodríguez-Nieto, 2024; Rodríguez-Nieto et al., 2023a), 
argue in collective contexts with peers in the classroom 
(Cervantes-Barraza et al., 2020) and apply what they 
have learned in situations with real problems. 

Theoretical Bases of Didactic Order 

Knowledge from a materialism perspective of the 
theory of knowledge is constituted in sensitive or 
material knowledge and theoretical knowledge. One of 
the premises of this theory is that sensitive knowledge is 
the product of direct reflections of objects (reality) on 
people’s consciousness; in this construction process, 
sensation, notion and perception intervene (Díaz, 2007). 
This type of knowledge is ideal for carrying out the 
processes of interaction and exploration of conceptual 
notions with students during the teaching process. On 
the other hand, the construction of theoretical 
knowledge is the product of indirect reflections of 
subjective reality on man’s consciousness; the process of 
construction of this type of knowledge requires 
cognitive activities that must be enhanced by the teacher 
and involve the concept, judgment and mathematical 
reasoning. 

Within the framework of the construction of 
theoretical knowledge, the author points out that the 
concept formation process (CFP) requires four cognitive 
activities: analyze, abstract, generalize and synthesize 
(Díaz, 2007). It is then verified that a student constructed 
the mathematical concept when he/she goes through 
each of the activities promoted by the teacher, who from 
his/her role as guide of the teaching process forges in the 
students cognitive actions that imply the analysis of the 
invariant characteristics of the concept under study, after 
identifying them, carry out a debugging process to 
determine the essential characteristics, with this the 
student generalizes for other cases and finally, gathers 

the previous elements in order to build a synthesis that 
will consolidate the definition of the concept from a 
conceptual and operational point of view. 

Díaz (2007) defines analysis as the process of 
interaction between a student and a teaching medium 
(i.e., mathematical task, exploration activity, among 
others) in order to identify and describe the invariant 
and common characteristics of mathematical objects. 
Abstraction consists of refining the identified 
characteristics that do not define the mathematical 
concept, generalization involves attributing the 
identified invariant characteristics to other mathematical 
objects that refer to the concept under study. And 
synthesis is the product of gathering the invariant 
properties and characteristics that define the 
mathematical concept and consolidating them into a 
single set. 

In response to the methodological question, how to 
implement the CFP approach in the teaching process of 
university mathematics? the need to design a sequence 
of mathematical tasks that contain as a study center a 
mathematical concept, a learning objective, a slogan 
posed in terms of an investigative situation or 
exploration of a physical phenomenon, is highlighted. 
This must contain the necessary information to empower 
students and involve the activities of analysis, 
abstraction, generalization and synthesis. 

Disciplinary Theoretical Bases of Differential and 
Integral Calculus 

In the history of mathematics, it is recognized that the 
creation of mathematical objects, concepts and 
operations are the product of unsolvable problems that 
motivated more than one mathematician to propose 
possible solutions and with these concepts about objects 
and operations such as geometric figures, arithmetic 
operations, derivative, integration, differential equations 
among others. In contrast to epistemology and the 
process of development of mathematical thinking, it is 
recognized that mathematical concepts are the product 
of indirect reflections of human consciousness, receive 
exclusive treatments with cognitive activities through 
the path of mathematical reasoning and have a path that 
marks their discovery, development and consolidation. 

Researchers such as Ramírez (2009) and Meza (2009) 
highlight that the creation of the derivative began with 
the Greeks as a mathematical community, who 
expressed four major problems that gave life to the 
derivative and integration function, and these were 
related to speed, the problem of the tangent line to a 
curve, the area under any curve and the problem of 
maximums and minimums. The problems described 
above motivated mathematicians such as Leibniz and 
Newton at the end of the 17th century with results that 
allowed them to develop concepts such as fluxion and 
source related to the speed problem. For his part, Leibniz 
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developed the concepts of differential and integral 
framed by the problems of the construction of a tangent 
line to any curve. Under a historical review, Mateus 
Nieves (2011) points out that 

It was not until the end of the 17th century that 
calculus became algebraic, a phenomenon 
comparable to what Viète had done in the theory 
of equations, and what Descartes and Fermat had 
done in geometry. Perhaps the most important 
thing that was achieved was the reduction to 
antidifferentiation of area, volume and other 
problems that had been treated as summations. 
Thus, the four main problems of the time (relative 
change, tangents, maxima and minima and 
summation) were all reduced to differentiation 
and antidifferentiation (p. 116). 

The attempt to solve problems led the above-
mentioned mathematicians to find a relationship 
between their works, they discovered the important 
inverse relationship that is today known as the “FTC”. 
This discovery favored the algorithmic development of 
calculus and provided a generic formulation of the 
relationship between the tangent problem and the area 
problem, or in our modern notation, between the 
derivative and the integral. 

Under the principles of materialism of the theory of 
knowledge, the epistemological position of mathematics 
and the construction of mathematical concepts imply a 
set of pure knowledge that during its development was 
comprehensible only to people with high knowledge in 
mathematics. However, research proposals motivated 
by pure mathematicians and mathematics educators 
interested in teaching advanced mathematics, created 
the opportunity to teach contextualized mathematics 
and purified of formalistic bodies for people who did not 
have advanced knowledge in mathematics, for this 
purpose, the creation of educational mathematics or 
mathematics education as a discipline in Latin America, 
mathematics didactics for Spain, the French school for 
Europe or in North America mathematics education is 
recognized. 

Researchers from all over the world have contributed 
to various lines of research (mathematics teaching, 
history of mathematics, socio-epistemology, 
technologies in mathematics education, among others) 
with the same objective of contributing to the 
improvement of the teaching process of school and 
university mathematics. Theories outside of education 
were used as a basis for the creation of new constructs, 
methods and methodologies specific to the discipline of 
mathematics education. One of the theoretical and 
methodological proposals that showed a change in the 
teaching of mathematics underlines the appearance of 
didactic transposition, seen as the opportunity to extract 
wise knowledge and adapt it to the educational context 
in order to access conceptual constructs through 

contextualization processes that allow the essence of 
mathematics to be rescued without addressing formal 
elements of axiomatic and theoretical mathematics. 

The need to present students with other possible 
epistemologies of the concepts that triggered the 
creation of differential and integral calculus is 
highlighted, this favors the teaching and learning 
process, because the usual epistemology of the pure 
mathematical object does not necessarily respond to the 
needs and implications of the relationships between the 
object to be taught, the object taught, the culture, the 
contexts of use and other relationships that underlie its 
teaching (Ramírez, 2009). In this sense, the latent 
problem in differential and integral calculus courses is 
latent, where it has been evidenced that the historical 
development of calculus first emerged integration, then 
the derivation process, after these the limit process and 
finally in 1960 the function as a mathematical object and 
the rigor of mathematical language; while in the 
didactics of mathematics first the function as an object is 
taught from the rigor of mathematical language, then the 
limit, the derivative and finally the integral. In this sense, 
there are epistemological, psychological, didactic 
obstacles or semiotic conflicts (D’Amore et al., 2007; 
Radford, 1997). 

Prior Knowledge 

In order to address the study of the FTC, students 
must have prior knowledge that facilitates the 
development of the learning process under the 
construction of deductive reasoning and construction of 
mathematical arguments (Balacheff, 1999). Prior 
knowledge refers to the concepts of objects and 
operations that connect differential and integral 
calculus. Such concepts are consecutive in nature and 
students are required to have an adequate conceptual 
and operational appropriation. The prior concepts 
necessary for the development of the session are 
functions, limits of functions, continuity of functions, 
calculation of derivatives of functions, calculation of 
indefinite and definite integrals. 

In the framework of the development of differential 
calculus courses, the curricular plans propose to focus 
attention on the teaching of a fundamental concept that 
will be a tool for understanding advanced concepts of 
calculus. The concept of a function of a variable is 
defined as “a rule that assigns to each element x of a 
domain set 𝐷 exactly one element, called 𝑓(𝑥), of an 
arrival set 𝐸” (Stewart, 2010, p. 10). Addressing this 
concept allows students to identify the relationship 
between two numerical sets, which can be translated as 
two variables in the context of experimentation and the 
elements correspond to numerical data that have a 
relationship. 

Functions allow the study of limiting situations in the 
construction of notions of existence of values that the 
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function under study cannot take, but there is an 
approximation in both directions towards that point that 
allows convergence on a numerical value. In this sense, 
the limit of a function is defined as follows: 

Suppose that 𝑓(𝑥) is defined as 𝑥 is close to the 
number 𝑎 (this means that 𝑓 is defined on some 
open interval containing 𝑎, except possibly at 𝑎 
itself). So, we write 𝑙𝑖𝑚

𝑥→𝑎
𝑓(𝑥) = 𝐿 and we say that 

“the limit of 𝑓(𝑥), as 𝑥 approaches 𝑎, is equal to 𝐿” 
if we can make the values of 𝑓(𝑥) arbitrarily close 
to 𝐿 (as close to 𝐿 as we like), by taking values of 𝑥 
sufficiently close to 𝑎 (on both sides of 𝑎), but not 
equal to 𝑎 (Stewart, 2010, p. 87). 

The analysis of the characteristics of functions opens 
an opportunity to determine whether the functions 
modeled or studied present interruptions or 
discontinuity, so the study of continuity and its 
conditions is required. Following the route of 
mathematical concepts of differential calculus, the 
concept of continuity of a function is related to the 
derivation and integration. In this sense, a function f is 
continuous on an interval if it is continuous at each 
number in the interval. If 𝑓 is defined only on one side of 
an endpoint of the interval, we understand continuous 
at the endpoint as continuous on the right or continuous 
on the left. Therefore, a function 𝑓 is continuous at a 
number 𝑥 = 𝑎 if 𝑙𝑖𝑚

𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎). 

The derivative of a function under the geometric 
notion is defined as follows: Given any number 𝑥 for 
which this limit exists, we assign to 𝑥 the number 𝑓(𝑥). 
So, we consider 𝑓’(𝑥) as a new function, called the 
derivative of 𝑓 and defined by means of Eq. (1): 

 𝑓′(𝑥) = 𝑙𝑖𝑚
ℎ→𝑜

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. (1) 

We know that the value of 𝑓′(𝑥) at 𝑥, 𝑓′(𝑥) can be 
interpreted geometrically as the slope of the tangent line 
to the graph of 𝑓 at the point (𝑥, 𝑓 (𝑥)). The function 𝑓′(𝑥) 
is known as the derivative of 𝑓 because it has been 
“derived” from 𝑓 by the operation of finding the limit in 
the equation. The domain of 𝑓′(𝑥) is the set 

(𝑥│𝑓′(𝑥) 𝑒𝑥𝑖𝑠𝑡𝑠) and can be smaller than the domain of 
𝑓 (Stewart, 2010, p. 154). 

As part of integral calculus, the study of techniques 
to calculate the area under curves is manifested through 
the definite integral, a mathematical concept that allows 
determining the area under a curve comprised by the 
upper and lower limits that delimit the integration 
region. The concept of definite integral according to 
Stewart (2010, p. 372) is defined as follows: If f is a 
continuous function defined for 𝑎 ≪ 𝑥 ≪ 𝑏, We divide 
the interval [𝑎, 𝑏] in 𝑛 subintervals of equal width ∆𝑥 =
𝑏−𝑎

𝑛
. Let 𝑥0(= 𝑎), 𝑥1, 𝑥2, … , 𝑥𝑛(= 𝑏) the extreme points of 

these subintervals and let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ the points show 

in these subintervals, so that 𝑥𝑖
∗ are found in the ith 

subinterval [𝑥𝑖−1, 𝑥𝑖]. Then the definite integral of 𝑓, from 
𝑎 to 𝑏 is given in Eq. (2): 

 ∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚
𝑛→∞

∑ 𝑓(𝑥𝑖
∗)𝑛

𝑖=1
𝑏

𝑎
∆𝑥. (2) 

Provided that this limit exists and gives the same 
value for all possible choices of the sample points. If it 
exists, we say that 𝑓 is integrable on [𝑎, 𝑏].  

The indefinite integral is considered to be the 
representative of a whole family of functions, that is, an 
antiderivative for each value of the constant 𝐶. A definite 

integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is a number, while an indefinite 

integral ∫ 𝑓(𝑥)𝑑𝑥  is a function or a family of functions. 
Whenever this limit exists and it has the same value for 
all possible choices of the sample points. If it exists, we 
say that 𝑓 is integrable over [𝑎, 𝑏]. Then, Eq. (3) is given: 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥 ⌉𝑎

𝑏 . (3) 

The Fundamental Theorem of Calculus 

Part I of the FTC 

If f is continuous on [𝑎, 𝑏], then the function 𝑔 defined 
by Eq. (4): 

 𝒈(𝒙) = ∫ 𝒇(𝒕)𝒅𝒕 𝒂 ≪ 𝒙 ≪ 𝒃
𝒙

𝒂
. (4) 

It is continuous on [𝑎, 𝑏] and derivable on (a, b), and 
we get Eq. (5): 

 𝒈´(𝒙) =
𝒅

𝒅𝒙
∫ 𝒇(𝒕)𝒅𝒕

𝒙

𝒂
= 𝒇(𝒙). (5) 

A natural language translation of the first part of the 
FTC implies that the derivative of a definite integral with 
respect to its upper limit is the integrand evaluated at 
that limit. It is worth noting that the FTC not only 
establishes a relationship between integration and 
differentiation but also guarantees that any integrable 
function has an antiderivative. Specifically, it guarantees 
that any continuous function has an antiderivative. This 
theorem was prioritized over other calculus concepts 
because it encapsulates the central ideas of both 
differential and integral calculus–namely, derivatives 
and integrals. It is essential for students to understand 
how these two fundamental concepts are 
interconnected, as this relationship forms the foundation 
of much of the reasoning and problem-solving in 
calculus. 

Demonstration: Graphically, the function 𝑓(𝑥) 
represents a curve on the Cartesian plane 𝑋𝑌, the 
integration region is defined by indicating the interval 
with the integration limits 𝑎 and 𝑏, the values 𝑥 and 𝑥 +

ℎ contained in (𝑎, 𝑏) are established (see Figure 1). 

From the construction of the graph, it is seen that the 
images of the values 𝑥 and 𝑥 + ℎ correspond and form 
an integration region delimited from the lower limit 𝑎 to 
𝑥 + ℎ. Therefore, the geometric meaning of integral is 
applied as the area under the curve 𝑓(𝑥) and we obtain 
Eq. (6): 
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 𝑔(𝑥 + ℎ) − 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥+ℎ

𝑎
. (6) 

Operating and applying properties of integrals, we 
have Eq. (7): 

 
𝑔(𝑥 + ℎ) − 𝑔(𝑥) = (∫ 𝑓(𝑡)𝑑𝑡 +

𝑥

𝑎

 ∫ 𝑓(𝑡)𝑑𝑡 
𝑥+ℎ

𝑥
 ) − ∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
. 

(7) 

Similar terms are simplified to get Eq. (8): 

 𝑔(𝑥 + ℎ) − 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑎
. (8) 

If we analyze non-zero values for ℎ, we have Eq. (9): 

 𝒈(𝒙+𝒉)−𝒈(𝒙)

𝒉
=

∫ 𝒇(𝒕)𝒅𝒕 
𝒙+𝒉

𝒂

𝒉
. (9) 

Suppose that ℎ >0, and since 𝑓 is continuous on 
[𝑥, 𝑥 + ℎ] and implementing the mean value theorem, 
which allows us to identify that there exist two numbers 
𝑢 and 𝑣 in [𝑥, 𝑥 + ℎ] such that 𝑓(𝑢) = 𝑚 and 𝑓(𝑣) = 𝑀, 
where, 𝑚 and 𝑀 are the minimum and maximum values 
of 𝑓 on [𝑥, 𝑥 + ℎ] (see Figure 2). 

Based on the comparison property of integrals, we 
have Eq. (10): 

 𝑚ℎ ≪ ∫ 𝑓(𝑡)𝑑𝑡 
𝑥+ℎ

𝑎
≪ 𝑀ℎ. (10) 

Replacing the values of the function evaluated at 
points 𝑚 and 𝑀, we have Eq. (11): 

 𝑓(𝑢)ℎ ≪ ∫ 𝑓(𝑡)𝑑𝑡 
𝑥+ℎ

𝑎
≪ 𝑓(𝑣)ℎ. (11) 

Under the condition that ℎ > 0, the entire expression 
can be multiplied by the multiplicative inverse of ℎ, 
implying Eq. (12):  

 𝒇(𝒖) ≪  
𝟏

 𝒉
∫ 𝒇(𝒕)𝒅𝒕 

𝒙+𝒉

𝒂
≪ 𝒇(𝒗). (12) 

Replacing the value obtained in Eq. (9) in Eq. (12), we 
have Eq. (13):  

 𝑓(𝑢) ≪  
𝒈(𝒙+𝒉)−𝒈(𝒙)

𝒉
≪ 𝑓(𝑣). (13) 

Now with ℎ → 0, we have that 𝑢 → 𝑥 and 𝑣 → 𝑥 since 
u and 𝑣 ∈  [𝑥, 𝑥 + ℎ]. Therefore, by applying the 
definition of a limit of functions we have Eq. (14) and Eq. 
(15): 

 𝑙𝑖𝑚
𝑢→0

𝑓(𝑢) = 𝑙𝑖𝑚
𝑥→𝑢

𝑓(𝑥) = 𝑓(𝑥). (14) 

 𝑙𝑖𝑚
𝑣→0

𝑓(𝑣) = 𝑙𝑖𝑚
𝑥→𝑣

𝑓(𝑥) = 𝑓(𝑥). (15) 

Based on Eq. (14) and Eq. (15) and by the 
comprehension theorem, it is concluded Eq. (16): 

 𝒈′(𝒙) = 𝑙𝑖𝑚
ℎ→0

𝒈(𝒙+𝒉)−𝒈(𝒙)

𝒉
= 𝒇(𝒙). (16) 

According to Leibniz’s notation for derivatives, the 
first part of the FTC can be expressed, as Eq. (17): 

 𝒅

𝒅𝒙
∫ 𝒇(𝒕)𝒅𝒕

𝒙

𝒂
= 𝒇(𝒙). (17) 

Part II of the FTC 

If 𝑓 is continuous on [𝑎, 𝑏], then we have Eq. (18): 

 ∫ 𝒇(𝒙)𝒅𝒙 = 𝑭(𝒃) − 𝑭(𝒂)
𝒃

𝒂
, (18) 

 

where 𝐹 is an antiderivative of 𝑓, that is, a function such 
that 𝑭′(𝒙) = 𝒇(𝒙) . 

Proof: Let 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 
𝑥

𝑎
 According to the first 

part of FTC, it is known that 𝑔′(𝑥) = 𝑓(𝑥), that is, 𝑔 is an 
antiderivative of 𝑓. If 𝐹 is any other antiderivative of 𝑓 
on [𝑎, 𝑏], then the difference between 𝐹 and 𝑔 is a 
constant 𝑐 (Eq. [19]): 

 𝐹(𝑥) = 𝑔(𝑥) + 𝑐. (19) 

For 𝑎 < 𝑥 < 𝑏, but both 𝐹 and 𝑔 continue on [a, b] and 
thus, when obtaining the limits of both sides of Eq. (19), 
that is, when 𝑥 → 𝑎+ y 𝑥 → 𝑏−, we see that it is also 
fulfilled when 𝑥 = 𝑎 and 𝑥 = 𝑏. 

If we let 𝑥 = 𝑎 in the formula for 𝑔(𝑥), we get Eq. (20): 

 𝑔(𝑎) = ∫ 𝑓(𝑡)𝑑𝑡 = 0
𝑎

𝑎
. (20) 

So, when evaluating Eq. (19), with 𝑥 = 𝑎 and 𝑥 = 𝑏, 
we have Eq. (21): 

 

𝐹(𝑏) − 𝐹(𝑎) = [𝑔(𝑏) + 𝑐] − [𝑔(𝑎) + 𝑐] 

𝐹(𝑏) − 𝐹(𝑎) = 𝑔(𝑏) − 𝑔(𝑎) 

𝐹(𝑏) − 𝐹(𝑎)=∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
. 

(21) 

Newton’s Law of Cooling 

This law describes the process where the temperature 
t of an object changes with time due to heat transfer 
between the object and its environment. In the theory of 
differential equations this cooling law is expressed, as 
follows in Eq. (22): 

 𝑑𝑇(𝑡)

𝑑𝑡
= −𝑘(𝑇(𝑡) − 𝑇𝑎𝑚𝑏), (22) 

where 𝑻(𝒕) is the temperature of the object at time 𝑡, 
𝑻𝒂𝒎𝒃 is the ambient temperature, which is assumed to be 
constant, 𝒌 is a constant of positive proportionality that 

 
Figure 1. Graph of the function f(x) and the integration 
limits (Source: Authors’ own elaboration) 

 
Figure 2. Graph of the function 𝑓(𝑥) and the values of 𝑢 and 
𝑣 (Source: Authors’ own elaboration) 
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depends on the properties of the object and the medium, 

and 
𝒅𝑻(𝒕)

𝒅𝒕
 is the rate of change of the temperature of the 

object of the properties of the object and the medium. 

By solving the differential equation that models the 
heat transfer phenomenon by applying the method of 
separation of variables and operating, the general 
solution of the ODE can be described in terms of a 
function 𝑇(𝑡) in terms of the temperature transferred in 
a given time 𝑡 (Eq. [23]): 

 𝑻(𝒕) = 𝑻𝒂𝒎𝒃 + (𝑻𝟎 − 𝑻𝒂𝒎𝒃)𝒆−𝒌𝒕, (23) 

where 𝑇0 is the initial temperature of the object at 𝑡 =

0 (see Figure 3). 

For the particular case of calculating the temperature 
at 30 minutes, we proceed to evaluate 𝑇(30), which 
generates Eq. (24): 

 

𝑻(𝟑𝟎) = 𝟐𝟎 + (𝟗𝟎 − 𝟐𝟎)𝒆−(𝟎.𝟏).𝟑𝟎 

𝑻(𝟑𝟎) = 𝟐𝟎 + 𝟕𝟎𝒆− 𝟑 

𝑻(𝟑𝟎) = 𝟐𝟎 + 𝟑. 𝟒𝟖 

(24) 

𝑻(𝟑𝟎) = 𝟐𝟑, 𝟒𝟖°. 

The temperature for minute 30 corresponds to 23.48°. 
It is also noted that the function that models the cooling 
behavior of the coffee cup is given in Eq. (25): 

 𝑻(𝒕) = 𝟐𝟎 + 𝟕𝟎𝒆−𝟎.𝟏𝒕. (25) 

The rate of temperature changes with respect to time 
would be in Eq. (26) (Figure 4): 

 𝒅𝑻(𝒕)

𝒅𝒕
= −𝟕𝒆−𝟎.𝟏𝒕. (26) 

Verification of the FTC applied to the coffee cup 
experiment and Newton’s law. Calculation of the rate of 
change integral gives us the accumulated change in 
temperature in Eq. (27) (Figure 5): 

 ∫
𝒅𝑻(𝒕)

𝒅𝒕
= ∫ −𝟕𝒆−𝟎.𝟏𝒕 𝒅𝒕 =  −𝟕𝒆−𝟎.𝟏𝒙𝒙

𝒂
. (27) 

PFC and Programming 

In this section we made the map in Python using the 
coding steps and related with the PFC stages (from 
analysis, abstraction and generalization to→ synthesis). 

STAGE 1: ANALYSIS OF THE REAL DATA 

#Import math libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import cumtrapz 

#Upload the Excel file 

#Replace ‘file.xlsx’ with the name of 

your Excel file 

df = 

pd.read_excel(‘/content/datosgrupo1.xlsx’) 

#Asumiendo que el archivo tiene columnas 

llamadas ‘Tiempo’ y ‘Temperatura’ 

tiempo = df[‘Tiempo (minutos)’] 

temperatura = df[‘Temperatura (°C)’] 

 
Figure 3. Graph of the function 𝑇(𝑡) when 𝑇0 = 90°, 𝑇𝑎𝑚𝑏 =

20° and 𝑘 = 0.1 (Source: Authors’ own elaboration) 

 
Figure 4. Graph of the function 𝑇(𝑡) and its respective rate 
of change (Source: Authors’ own elaboration) 

 
Figure 5. Graph of the function 𝑇(𝑡), its respective rate of 
change and the integral of the rate of change (Source: 
Authors’ own elaboration) 
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STAGE 2: ABSTRACTION PROCESS  

#Calculate the derivative of temperature 

with respect to time (rate of change) 

tasa_cambio = np.gradient(temperatura, 

tiempo) 

#Calculate the accumulated integral of 

the rate of change to obtain the total 

change in temperature 

integral_acumulada = 

cumtrapz(tasa_cambio, tiempo, initial=0) 

#Calculate the derivative of the 

accumulated integral (it should 

approximate the original rate of change) 

derivada_integral = 

np.gradient(integral_acumulada, tiempo) 

STAGE 3: GENERALITATION OF FINDINGS  

#Create new columns in the DataFrame for 

the results 

df[‘Tasa de Cambio (dT/dt)’] = 

tasa_cambio 

df[‘Integral Acumulada de la Tasa de 

Cambio’] = integral_acumulada 

df[‘Derivada de la Integral Acumulada’] = 

derivada_integral 

#Display the first rows of the DataFrame 

print(df.head()) 

df[‘Tasa de Cambio (dT/dt)’] = 

tasa_cambio 

df[‘Integral Acumulada de la Tasa de 

Cambio’] = integral_acumulada 

df[‘Derivada de la Integral Acumulada’] = 

derivada_integral 

print(df.head()) 

STAGE 4: SYNTESIS OF THE FINDINS 

#Plot the temperature, the rate of 

change, the accumulated integral, and the 

derivative of the integral 

plt.figure(figsize=(12, 8)) 

plt.subplot(3, 1, 1) 

plt.plot(tiempo, temperatura, 

label=‘Temperatura (°C)’, color=‘blue’) 

plt.ylabel(‘Temperatura (°C)’) 

plt.title(‘Análisis de Temperatura y Tasa 

de Cambio’) 

plt.subplot(3, 1, 2) 

plt.plot(tiempo, tasa_cambio, label=‘Tasa 

de Cambio (dT/dt)’, linestyle=‘--’, 

color=‘red’) 

plt.plot(tiempo, derivada_integral, 

label=‘Derivada de la Integral’, 

linestyle=‘:’, color=‘green’) 

plt.ylabel(‘Tasa de Cambio (°C/min)’) 

plt.legend() 

plt.subplot(3, 1, 3) 

plt.plot(tiempo, integral_acumulada, 

label=‘Integral Acumulada de la Tasa de 

Cambio’, linestyle=‘-.’, color=‘purple’) 

plt.xlabel(‘Tiempo (minutos)’) 

plt.ylabel(‘Cambio Acumulado (°C)’) 

plt.legend() 

plt.tight_layout() 

plt.show() 

METHODOLOGY 

The methodology of this research follows a 
qualitative approach (Cohen et al., 2018), aiming to 
describe and interpret the results of educational 
phenomena involved in the mathematics teaching 
process. The descriptive qualitative approach serves as 
an appropriate means to construct a framework of 
descriptors that can consolidate and thoroughly explain 
the educational phenomenon under study. This research 
focuses on integrating an analytical framework for 
recognizing students’ computational and statistical 
actions with the fundamental concepts of differential 
and integral calculus. This is realized through the design 
and implementation of interactive mathematical tasks 
based on the analysis of real data. 

Participants 

The participants were selected voluntarily, based on 
their own interest in taking part in the implementation 
of the didactic proposal described in this study. It is 
recommended that they be undergraduate students 
enrolled in a mathematics degree program, academically 
registered in the fifth semester or higher. Additionally, 
some minimum participation criteria are outlined, which 
require students to have basic knowledge of differential 
and integral calculus and familiarity with some open 
databases. Another selection criterion was the prior 
programming experience of students, and calculus 
proficiency. Students were selected and asked about the 
level of programming and its interest in participating in 
a research study. About the calculus proficiency, 
students took a basic mathematics course and have the 
basic calculus concepts in mind. Some demographic 
information about the participants are the sample size 
were 38 students, their academic level was higher 
education, gender balance: female 40% and male 60%. 
All the students are from different socioeconomic levels 
and they did not come from ethnic groups.  

Didactic Instruments 

The didactic instruments to be implemented during 
the session include: 

(1) an OVA (virtual learning object) projected onto 
the board using a video beam, 

(2) a cup of hot coffee and a mercury thermometer, 

(3) a mobile phone or a laptop, and 

(4) a table of values in Excel to be analyzed in Python. 
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Recognition of Students’ Computational and 
Statistical Actions 

The adaptation of the analytical framework for 
recognizing students’ computational and statistical 
actions will be implemented as a fundamental part of the 
data science learning process, as proposed by Woodard 
and Lee (2021). To this end, students are expected to 
engage in the four categories of action as follows:  

(1) automation of computational procedures,  

(2) computational thinking,  

(3) application of new methods, and  

(4) pattern recognition and decision-making.  

Table 1 presents the corresponding actions for each 
category. The integration of computational actions for 
learning data science is linked to the definitions and 
interpretations of the fundamental concepts of 
differential and integral calculus. To materialize this 
integration, interactive mathematical tasks are designed 
to provide students with contextualized experiences 
using real databases and problem scenarios where the 
definitions of differential and integral calculus concepts 
are applied. 

Designing Contextualized Mathematical Tasks With 
Real Data 

Recent studies in the field of mathematical task 
design research (Cervantes-Barraza & Aroca, 2023) 
highlight the need to develop interactive and argument-
based mathematical tasks in both school and university 
contexts. These tasks should incorporate technological 
tools (e.g., geometry software and mobile mathematics 
applications), interactive environments (e.g., interactive 

presentations and OVAs), videos, and open databases, 
among others. 

Mathematical tasks are designed following a 
methodological structure described by Cervantes-
Barraza and Aroca (2023). Each task follows a basic 
structure, including the task name, learning objective, 
mathematical concept, instructions, research question, 
and Python code implementation. In this context, five 
mathematical tasks are presented with the objective of 
applying fundamental concepts of differential and 
integral calculus while introducing students to data 
analysis using Python and practical tools such as pandas, 
numpy, and matplotlib, which are essential for handling 
open data analysis (Lasso Cardona et al., 2022). The 
students did not create programming codes, they were 
given some wrote codes or interacted with pre-built 
scripts in order to understand their structure and could 
modify them into the experimental context.  

Mathematical task: “The cup of coffee and differential 
and integral calculus” 

For effective teaching and learning of differential 
calculus, it is essential that instruction is both structured 
and engaging. Educators should aim to harmonize the 
two key components of calculus teaching: the heuristic 
component and the specific mathematical thinking 
content, which involves the concepts to be taught 
(Mateus Nieves, 2011). The planned activities will take 
place in a virtual learning environment facilitated by an 
interactive OVA created by the session instructor.  

The OVA can be accessed at: https://view.genially. 
com/67c8c05e3d96d5c9d32d6477/learning-experience-
didactic-unit-ftc-experimentation 

Table 1. Students’ computational and statistical actions in a data science course (adapted from Woodard & Lee, 2021) 

Computational and 
statistical actions 

The student is able to 
Integration of differential and integral 
calculus concepts 

Automation of 
computational 
procedures 

• Uses technology to create graphs, summarize, and 
interpret datasets.  
• Uses technology to perform statistical calculations 
and applies the results to make appropriate decisions. 

• Derivative as a rate of change: Calculates 
the population growth rate of a country over 
different periods using derivatives, analyses 
periods of higher or lower growth, and links 
them to historical events. 

Computational 
thinking 

• Develops a solution strategy and communicates it 
through software, programs, or code.  
• Demonstrates critical and abstract thinking in 
computing.  
• Reviews existing code to improve it and apply it to 
new tasks. 

• In addition to loading and cleaning data, 
writes code for computing numerical 
derivatives and integrals to fit the data. 

Application of new 
methods 

• Develops various solutions to statistical questions.  
• Proposes original methods for analysis while using 
technology.  
• Identifies and understands organized information to 
use it in solving a new problem. 

• Writes code to visualize solutions of 
derivatives and integrals in order to answer 
specific questions. 

Pattern recognition 
and decision-making 

• Identifies patterns in statistical analysis and uses the 
information to determine the next step.  
• Recognizes patterns in code structure to aid in 
problem-solving. 

• Analyses and interprets the results of 
graphs generated from data to recognize 
patterns, variations in the phenomenon, or 
the situation under study. 

 

https://view.genially.com/67c8c05e3d96d5c9d32d6477/learning-experience-didactic-unit-ftc-experimentation
https://view.genially.com/67c8c05e3d96d5c9d32d6477/learning-experience-didactic-unit-ftc-experimentation
https://view.genially.com/67c8c05e3d96d5c9d32d6477/learning-experience-didactic-unit-ftc-experimentation
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The OVA includes four mathematical tasks that will 
guide the lesson development. Students will be able to 
access the OVA on their mobile devices once a QR code 
is shared with them. The design of these mathematical 
tasks involves a conceptual construction process that 
requires students to engage in analysis, abstraction, 
generalization, and synthesis. Table 2 describes the 
activities to be carried out during the teaching session. 

RESULTS 

The first objective proposed in this research involved 
designing a didactic approach consisting of 
mathematical tasks that utilize the Python programming 
language to analyze contextualized situations requiring 
differential and integral calculus, particularly 
considering the case of the FTC. The lesson development 
focused on students’ interaction with the three designed 
mathematical tasks and an initial scenario presented in 
the OVA. The initial stage of the lesson engaged students 
in the analysis of conceptual questions aimed at 
connecting their prior knowledge with the new concepts 
introduced in the session. It is important to clarify that, 
as the presentation was interactive (see Figure 6), 
students accessed it on their mobile devices and actively 
interacted with the OVA while the teacher provided 
specific guidance for each slide of the interactive 
presentation. 

The initial questions of the session were designed to 
relate the concepts of functions with differentiation and 
integration. In the first question (see Figure 7), students 
were asked to identify the correct algebraic expression of 
a function from an algebraic perspective. The answer 
options were intentionally designed to manage common 
student misconceptions. Specifically, the options 
omitted the conventional function notation f(x) to 
encourage students to recognize the uniqueness 
property of functions and the one-to-one relationship 
between each element in the domain and the range. 

In this sense, the expressions y² = x² + 2 and y² + x² = 
4 do not meet the definition of a function but rather 
represent relations, as their algebraic rules generate two 
outputs for the same domain value. 

In the second question (see Figure 8), students were 
asked to identify the equation that models the geometric 
interpretation of the derivative concept. The possible 
answers included mathematical expressions related to 
the definition of the indefinite integral of a function and 
the first part of the FTC. However, these options were 
incorrect, as they did not correspond to the algebraic 
expression of the derivative of a function. 

The third question (see Figure 9) aims to connect the 
concepts of derivatives and integrals through the 
calculation of the antiderivative of a quadratic function.  

Table 2. Description of planned activities for the teaching session 

Activity Description Duration 

Initial questions Conceptual questions will be posed to connect students’ prior knowledge with the topic 
under study. 

10 minutes 

Initial task Analyze how the temperature of the liquid changes over time using prior concepts. 10 minutes 
Task 1 Experiment with how the derivative (rate of change) relates to the original function 

(temperature) and how the coffee’s temperature decreases over time, illustrating 
Newton’s law of cooling. 

20 minutes 

Task 2 Intuitively understand the FTC by demonstrating how the integral of the rate of change 
provides the accumulated change in temperature and how the derivative of this integral 
returns the original rate of change function. 

20 minutes 

Task 3 Conclude on the relationship between differentiation and integration, including a 
description of the FTC. 

20 minutes 

 

 
Figure 6. Start page of the interactive OVA format (Source: 
Authors’ own elaboration) 

 
Figure 7. First question in the initial stage of the lesson 
(Source: Authors’ own elaboration) 
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 The possible answer choices are algebraically 
similar, but the correct option is the antiderivative F₂(x) 
= x³/3, since differentiating this function returns the 
original function f(x) = x². 

 Regarding the initial task (see Figure 10) in the 
teaching session, an experimental situation involving the 
phenomenon of cooling, specifically Newton’s law of 
cooling, is introduced. Students will measure the 
temperature of a cup of coffee using a thermometer to 
analyze how the temperature changes over time. The 
objective of this initial task is to encourage students to 
seek mathematical tools that allow them to model the 

situation and mathematically predict the temperature 
after 30 minutes. 

 Once students have completed the initial task and 
discussed their findings with the class, they proceed to 
task 1, which aims to integrate programming language 
into the modelling and analysis of the rate of 
temperature change over time (Figure 11). Once 
students have entered the data into an Excel file, they 
will construct the necessary code for Google Colab to 
read the data, calculate the derivative (rate of change) of 
the temperature, and formulate a conclusion based on 
their analysis. 

 The codes required for data analysis can be copied 
and pasted in order from the interactive presentation 
slides before being executed in Google Colab (see Figure 

12). This process enables students to visualize the data 
and interpret the variations in the coffee’s temperature 
over time. 

 For task 2 (see Figure 13), following the same 
approach described earlier, students are required to 
analyze the same dataset. However, this time, they will 
focus on examining the accumulated change in 
temperature and its relationship with its rate of change. 
The objective of this task is for students to identify the 
relationship between differentiation and integration of a 
function. 

 
Figure 8. Second question in the initial stage of the lesson 
(Source: Authors’ own elaboration) 

 
Figure 9. Third question in the initial stage of the lesson 
(Source: Authors’ own elaboration) 

 
Figure 10. Initial task of the teaching session (Source: 
Authors’ own elaboration) 

 
Figure 11. Task 1 of the teaching session (Source: Authors’ 
own elaboration) 

 
Figure 12. Python codes for implementation in Google 
Colab (Source: Authors’ own elaboration) 
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The data analysis conducted in this task enabled 
students to observe how the temperature function 
relates to the rate of change and its corresponding 
derivative. This facilitated a deeper understanding of the 
FTC. Through the analysis of an experimental situation 
using real data, the aim was for students to recognize the 
practical application of university-level mathematical 
concepts. 

In Figure 14, the graphs generated using Python 
display the temperature data, rate of change, and 
accumulated integral, modelling the phenomenon 
described by Newton’s law of cooling and providing 
evidence of the relationship between differentiation and 
integration. 

To conclude the lesson, task 3 (see Figure 15) was 
introduced. Here, students were asked to summarize 
their conclusions based on their analysis of the 
completed tasks and to provide a synthesis addressing 
the question: Is there a relationship between differentiation 
and integration? This key question was intended to guide 
students towards formulating the statement of the FTC 
and its two parts. The task provided an opportunity to 
approach the teaching of the FTC within the context of 
an experimental situation using real data, programming, 
and the Python language. 

The second objective of this research involved 
applying the didactic approach, comprising three 
interactive tasks, to university students enrolled in a 
differential calculus course. The aim was to promote an 
understanding of differentiation and integration 
through the Python programming language in the 
context of experimental situations, such as the law of 
liquid cooling. The participants, along with the 
instructor–one of the authors of this research–developed 
the lesson following five key stages: 

Experimenting Newton’s Law of Cooling 

In this initial stage, students gathered the required 
materials (thermometer, plastic cups, hot coffee, mobile 
phone, and/or laptop) with the aim of analyzing how 
the temperature of the liquid (coffee) changes over time. 
This analysis was conducted using prior knowledge of 
differential calculus, without the use of programming 
language (see Figure 16). 

At this stage, students used thermometers to measure 
the temperature of the liquid every minute, while some 
groups opted to take measurements every 30 seconds to 
analyze the results from a different perspective using 
Excel tables. During this phase of the lesson, students 
observed a noticeable decrease in temperature, noting 
that it was dropping towards the ambient temperature 
of 23 °C. Without yet introducing differential and 
integral calculus concepts, students sought 
mathematical relationships to establish connections and 
draw conclusions about the behavior of the phenomenon 
(Rodriguez-Nieto et al., 2024). 

 
Figure 13. Task 2 of the teaching session (Source: Authors’ 
own elaboration) 

 
Figure 14. Graphs of temperature analysis, rate of change, 
and accumulated integral from real experimental data 
(Source: Authors’ own elaboration) 

 
Figure 15. Task 3: Presentation of the FTC and its two parts 
(Source: Authors’ own elaboration) 

 
Figure 16. Photographic record of the cooling law 
experiment (Source: Authors’ own elaboration) 
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Recording Temperature Data in Excel Tables 

Using an Excel spreadsheet, students recorded the 
temperature data from the thermometer every minute 
and every 30 seconds over an average period of 25 
minutes. Figure 17 shows how some groups used their 
mobile phones to log the data into Excel, creating tables 
and graphs to visualize temperature trends. This 
allowed them to validate their initial observations from 
the lesson–that the coffee’s temperature decreases over 
time. 

This experimental stage reflects the first component 
of Woodard and Lee’s (2021) analytical framework: 
students demonstrated the ability to use technology to 
create graphs, summarize and interpret datasets, and 
develop their own methods for analysis while using 
technological tools. 

Data Analysis Using Prior Calculus Concepts 

The dataset collected by the five student groups 
revealed that the first group identified that the 
temperature of the coffee over time follows a decreasing 
curve, confirming that the coffee cools as time progresses 
(see Figure 18). 

Group 1. By comparing the recorded 
temperatures, it became evident that measuring 
the coffee’s temperature every minute provides 
greater accuracy, as it allows for a clearer 
observation of temperature fluctuations. 

Below are some of the conclusions drawn by the 
student groups. 

Group 2. As time progresses, the temperature of 
the coffee decreases due to a process known as 
thermal equilibrium. The initial temperature was 
47 °C. After 5 minutes, the temperature remained 
within the range of 46.2 °C to 40 °C. After another 
5 minutes, it dropped to a range of 38.2 °C to 30 

°C, and within the next 4 minutes, it decreased 
further to a range of 28 °C to 25 °C. From this, we 
can conclude that 

(1) in the first 5 minutes, the temperature 
decreased by an average of 1.4 °C per minute, 

(2) in the first 10 minutes, the average drop was 
1.3 °C per minute, and 

(3) over the last 15 minutes, the temperature 
decreased by 1 °C per minute. 

Group 3. As time passes, the temperature of the 
coffee decreases continuously. It is evident that 
the rate of temperature decline is faster in the 
initial minutes. However, as time progresses, the 
cooling process slows down, as shown by the 
smaller temperature differences recorded after the 
seventh minute. This observation aligns with 
cooling theory, which states that cooling is faster 
when the temperature difference between the 
liquid and its environment is greater. 

 
Figure 17. Tabulation and graphs generated in Excel from recorded data (Source: Authors’ own elaboration) 

 
Figure 18. Graphs representing the cooling law of a liquid (Source: Authors’ own elaboration) 
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Group 4. The temperature of the coffee follows an 
exponential pattern, progressively decreasing 
over time. According to the temperature data 
recorded every minute (part a in Figure 19) and 
using the GeoGebra app (part b in Figure 19), the 
plotted data revealed a decreasing curve 

approaching an asymptote–in this case, the 
ambient temperature of 23 °C. 

It is important to note that synchronizing 
temperature measurements precisely each 
minute was challenging, which introduced a 

degree of deviation in the data and 
corresponding graphs. To account for this, the 
sample standard deviation was incorporated into 
the calculations (part c in Figure 19). 

The responses from the five student groups 
demonstrated prior concepts related to differential 
calculus, such as fluctuations and differentials in the 
context of increments. It was also verified that when the 
time differential approaches zero, the value 
approximates a real number. Group 4 applied the second 
principle of Woodard and Lee’s (2021) analytical 
framework–using technology to perform statistical 
calculations and applying the results to make informed 
decisions. Additionally, the algebraic and analytical 
aspects of the temperature function were implemented 
by integrating the differential equation that models the 
physical phenomenon of Newton’s law of cooling. 

Interpreting Data Using Python Code 

In this final stage, students explored how the 
derivative (rate of change) relates to the original function 
(temperature) and how the coffee’s temperature 
decreases over time, reflecting Newton’s law of cooling 
through the execution of Python code. 

According to Woodard and Lee’s (2021) analytical 
framework, students demonstrated the ability to 

(1) engage in critical and abstract computational 
thinking, 

(2) review existing code to improve and adapt it for 
new tasks, and 

(3) develop multiple solutions to statistical problems. 

The first four lines of code, shown in Figure 20, 
correspond to importing the necessary libraries to 
interpret the datasets. The second line of code loads the 
dataset, while the third declares the study variables. In 
the fifth line of code, the derivative function of the 

 
Figure 19. Table, graph, and curves generated using the GeoGebra application (Source: Authors’ own elaboration) 

 
Figure 20. DataFrame of collected and tabulated data with 
the derivative (Source: Authors’ own elaboration) 
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temperature variable with respect to time is applied. 
Printing the derivative results as part of the DataFrame–
tabulated by students–generated a column containing 
the cooling rate (dT/dt). 

This step aligns with the analytical framework 
principle: creating a solution strategy and communicating it 
through software, programming, or coding (Woodard & Lee, 
2021). 

Jupyter Notebook template: https://colab.research. 
google.com/drive/1sp45iiv4CSf-Hx7LJLCstXpfLSAIy 
LKU?usp=drive_link  

The fifth line of code is relatively simple, as it only 
visualizes the data loaded in the DataFrame under a 
curve that fits the values provided. Figure 21 illustrates 
this curve, where the blue line represents the 
temperature function, and the segmented lines depict 
the rate of change of temperature. 

The next line of code calculates the rate of change of 
temperature, the accumulated integral, and the 
derivative of the integral using the gradient function. 
Figure 22 presents the implemented code for this step, 
demonstrating its relationship with predefined variables 
and functions from the NumPy (np) library. 

The seventh line of code (see Figure 23) was executed 
to generate tables containing values for both the rate of 
change and the accumulated integral. The objective was 
to visually compare these data points through a 
comparative curve and facilitate drawing conclusions. 

In the final stage of this phase (see Figure 24), the 
primary objective of implementing programming code 
was to intuitively understand the FTC. This was 
achieved by demonstrating how 

(1) the integral of the rate of change provides the 
accumulated change in temperature and 

(2) the derivative of this integral returns the original 
rate of change function. 

The analysis of students’ responses before and after 
the instructional intervention revealed significant 
conceptual growth. During the pre-interviews, most 
participants could execute procedural steps related to 
coding tasks (e.g., plotting a function or computing 
derivatives using Python) but struggled to explain the 
underlying mathematical ideas. For instance, one 
student stated, “I know the code gives me the slope, but 
I’m not sure why that’s useful.” In contrast, in the post-

 
Figure 21. Graph of temperature function vs. rate of 
temperature change (Source: Authors’ own elaboration) 

 
Figure 22. Code for calculating the rate of change of 
temperature, accumulated integral, and derivative of the 
integral (Source: Authors’ own elaboration) 

 
Figure 23. Tables displaying values for the rate of change 
and accumulated integral (Source: Authors’ own 
elaboration) 

 
Figure 24. Graphical representation of the FTC in an 
experimental context: The case of Newton’s law of cooling 
(Source: Authors’ own elaboration) 

https://colab.research.google.com/drive/1sp45iiv4CSf-Hx7LJLCstXpfLSAIyLKU?usp=drive_link
https://colab.research.google.com/drive/1sp45iiv4CSf-Hx7LJLCstXpfLSAIyLKU?usp=drive_link
https://colab.research.google.com/drive/1sp45iiv4CSf-Hx7LJLCstXpfLSAIyLKU?usp=drive_link
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interviews, the same student reflected a deeper 
understanding, saying, “Now I see that the derivative 
tells me how the function is changing at each point–it’s 
not just a number; it’s describing behavior.” This shift 
illustrates a move from rote application toward 
conceptual insight into calculus principles. 

Furthermore, while procedural fluency improved 
uniformly among participants, conceptual 
understanding evolved more variably but meaningfully. 
Several students began to articulate connections 
between code outputs and theorems discussed in class. 
One participant noted, “When I coded the integral 
approximation, I finally understood what the area under 
the curve really meant–the fundamental theorem links it 
all.” This ability to link computational procedures with 
formal mathematical reasoning demonstrates not only 
increased proficiency but also the development of 
reflective understanding, indicating a meaningful 
integration of theoretical and practical knowledge. 

Figure 25 visually illustrates the FTC applied to a 
real-world phenomenon: the change in temperature over 
time. The first plot shows how the temperature decreases 
progressively. The second plot displays the rate of 
change of temperature (derivative), highlighting how 
the slope of the upper graph varies; it also compares this 
derivative with the numerical derivative of the integral, 
showing that they match. Finally, the third plot 
represents the accumulated integral of the rate of 
change, that is, the total temperature changes over time. 
Together, these three plots demonstrate that 
differentiating an integral returns the original function, 
thus validating the first part of the FTC. Then, 
programming allows us to model and visualize data that 
might otherwise be voluminous and difficult to 
interpret. In this experiment, a smaller dataset was used 
due to time constraints for the students. Ultimately, 
students concluded on the relationship between 

differentiation and integration, reinforcing their 
understanding of the FTC. 

DISCUSSION 

This research contributes to the design of a sequence 
of mathematical tasks focused on the use of the Python 
programming language. These tasks enabled 
participating university students to analyze 
contextualized situations involving fundamental 
concepts of differential and integral calculus, specifically 
considering the case of the FTC. Within this 
experimental setting, authors such as Cervantes-Barraza 
and Aroca-Araujo (2023) and Pochulu et al. (2016) argue 
that designing mathematical tasks grounded in real-life 
and familiar contexts enhances students’ learning 
processes. Indeed, mathematical tasks designed with 
well-defined didactic objectives create direct 
opportunities for students to integrate mathematical 
reasoning with the mathematical concepts under study. 

From the results aligned with the second objective of 
this research, it was confirmed that experimentation 
allows students to practically consolidate their 
understanding of the second part of the FTC, while also 
serving as a dynamic and innovative approach for 
implementation in university education. In this regard, 
Woodard and Lee (2021) assert that when students relate 
the data collected in the experimental stage, consolidate 
them for analysis through the lens of prior calculus 
concepts, and verify their conclusions, they enhance 
their comprehension of the results obtained from the 
Python-executed codes. 

More specifically, reflecting on the responses from 
the five groups regarding their prior knowledge of 
differential calculus–such as fluctuations and 
differentials in the context of increments–it was verified 
that when the time differential approaches zero, the 

 
Figure 25. Graphical representation of the function and the FTC in an experimental context: The case of Newton’s law of 
cooling (Source: Authors’ own elaboration) 
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value approximates a real number, thus introducing the 
concept of limits. According to Rodriguez-Nieto et al. 
(2024), without explicitly addressing differential and 
integral calculus concepts in earlier stages, students need 
to connect prior concepts and explore mathematical 
relationships that allow them to establish formal 
mathematical connections and draw conclusions about 
the physical phenomenon under study. 

Researchers such as Cervantes-Barraza et al. (2019) 
argue that university-level courses in differential and 
integral calculus and differential equations often focus 
on algorithmic procedures and memorization of rules or 
formulas, rather than on achieving a deep 
understanding of conceptual definitions. However, by 
incorporating Python programming and using the 
correct coding approach to analyze the derivative and 
integral of a function in a real-world context, the 
participating groups demonstrated computational 
competencies aligned with Woodard and Lee’s (2021) 
analytical framework. These skills enabled students to 
perform statistical calculations and use the results to 
make informed decisions by constructing and adapting 
programming codes. Consequently, they successfully 
applied algebraic and analytical procedures to the 
temperature function once they solved the differential 
equation modelling Newton’s law of cooling. 

CONCLUSIONS 

The research findings demonstrate that designing a 
sequence of mathematical tasks focused on the Python 
programming language allowed participating university 
students to analyze contextualized situations involving 
fundamental concepts of differential and integral 
calculus, specifically within the framework of the FTC. 

Through this approach, students related the data 
collected during the experimental stage, consolidated 
them for analysis using prior calculus concepts, and 
verified their conclusions by comparing them with the 
results generated by the Python-executed codes. These 
codes enabled students to visualize how the derivative 
of the temperature function represented the rate of 
change over time, leading to the calculation of the 
accumulated integral and demonstrating how the 
derivative of the integral returned the original 
temperature function. This process reinforced the second 
part of the FTC in a practical and experimental setting, 
offering a dynamic and innovative proposal for 
university-level mathematics education. 

Regarding the second research question, it was 
identified that implementing the sequence of Python-
based mathematical tasks facilitated students’ 
comprehension of differentiation and integration. The 
analysis of the responses from the five groups revealed 
prior differential calculus concepts, such as fluctuations 
and differentials in the context of increments. This 
confirmed that when the time differential approaches 

zero, the value approximates a real number, introducing 
the concept of limits. 

Furthermore, the participating groups demonstrated 
computational competencies within the Woodard and 
Lee (2021) analytical framework, using technology to 
perform statistical calculations and make informed 
decisions through the construction and adaptation of 
programming codes. They also applied algebraic and 
analytical procedures to the temperature function, 
solving the differential equation that models Newton’s 
law of cooling. 

In conclusion, this study materializes the integration 
of mathematical task design within real-world scenarios, 
engaging students in data collection, result analysis, and 
programming adaptation using Python. This approach 
fostered collaborative learning, as student groups 
analyzed and mathematically explained how 
temperature variations are governed by the negative rate 
of change experienced by a liquid exposed to ambient 
temperature. 

Programming languages enabled students to model 
and visualize the data they collected, allowing them to 
make informed predictions about temperature changes 
based on Newton’s law of cooling. One limitation of this 
approach is the potential learning curve associated with 
Python programming. For some students, especially 
those without prior coding experience, the complexity of 
writing and debugging code may have overshadowed 
the primary goal of understanding calculus concepts. 
This could lead to cognitive overload, where the focus 
shifts from mathematical reasoning to technical 
problem-solving. Additionally, the generalizability of 
this method to non-STEM students is uncertain, as they 
may lack the foundational skills or interest in 
programming needed to fully engage with this type of 
learning experience. As such, while Python can be a 
powerful tool for visualizing and exploring calculus, its 
integration must be carefully scaffolder to ensure that it 
enhances rather than hinders conceptual understanding. 

Graph comparisons between rate of change and 
accumulation played a crucial role in deepening 
students’ understanding of calculus concepts. By 
visually analyzing how the derivative (rate of change) 
corresponds to the slope of the original function and 
how the integral (accumulation) reflects the total change 
over time, students were able to connect abstract 
mathematical definitions to concrete visual 
representations. This side-by-side comparison allowed 
them to observe, for example, that when the rate of 
change is negative, the accumulation graph decreases, 
reinforcing the inverse relationship between these two 
operations. Such dynamic visualization not only 
clarified the meaning of differentiation and integration 
but also highlighted their interdependence, effectively 
supporting comprehension of the FTC in an intuitive 
and meaningful way. 
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