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ABSTRACT 

Using the binocular stereo vision system, the branches of citrus trees in natural scene were 

reconstructed in virtual environment, to help citrus picking robots recognize and evade 

obstacles in real working scene. During the reconstruction, images were subjected to 

thinning, pruning, and curve fitting successively. We reduced the computational burden 

while guaranteeing the model precision. Then, we adopted the principle of modularized 

modeling and OpenGL for branch reconstruction. It is verified that the method developed 

in this work provides a route planning criterion and a virtual workplace for the robot's 

obstacle evading system.  

Keywords: thinning, pruning, curve fitting, modularized modeling, real-time modeling 

 

INTRODUCTION 

As the main operating component of fruit picking robots, mechanical arm is featured by 

complex structure and high cost. Mechanical arm is prone to damage in collision with thick 

branches and trunks. Hence, it is necessary to perform researches for helping robotic pickers 

evade obstacles and design routes. The general idea is to predict three-dimensional scenes of 

obstacles (fruits, branches, or trunks), and then plan routes for obstacle evasion (Song, Wang, 

& Sheng 2016). The first step is to build a three-dimensional database of obstacles according to 

their locations and to map real scenes onto the virtual world, thus creating a virtual picking 

environment for fruit picking robots. Then route planning is conducted in the virtual scene. 

Finally, simulation result is transmitted to joint motors and end effectors to achieve collision-

free picking. 

As the branches and trunks of fruit trees are major obstacles in the picking 

environment, the accurate construction of branch and trunk model is critical for virtual-scene 

construction. To accurately model a tree, Kempthorne, Turner, Belward, Mccue, & Young, et 
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al. (2015), Fernandes, Armada-Da-Silva, Pool-Goudaazward, Moniz-Pereira, & Veloso (2016), 

and Wang, Sibeck, Merka, Boardsen, Karimabadi, & Sipes, et al. (2013) extracted and analyzed 

tree framework and form by a combined application of image and graphic processing 

methods. Fu, Li, Du, Han & Zhang, et al. (2015) adopted curve fitting to control the collected 

tree data and developed a tree model with controllable precision. However, these studies paid 

less attention to accurate real-time modeling. Thus, their methods cannot be used to create a 

virtual environment for fruit picking robots. Based on the binocular stereo vision system, we 

tried to accurately reconstruct the virtual branches and trunks of citrus trees in real time, 

providing a real-time scene for route planning for fruit picking robots. To generate a dataset 

of key points(Gonzálezjosé, Escapa, Neves, Cúneo, & Pucciarelli, 2008), the information of key 

points was extracted by curve fitting after segmentation, binarization, thinning, and short 

shoot removal for the collected images. Subsequently, basic modules, rotation matrix, and 

translation matrix were generated according to the dataset. Then, using the transformation 

matrix calculated based on rotation and translation matrices, the basic modules were 

transformed spatially to generate standard modules. Finally, a virtual fruit model was 

constructed by the combination of multiple modules (see Figure 1). 

MATERIALS AND METHODS  

Data acquisition and information extraction for key modeling points 

Acquisition tools and computer platform 

The accuracy of data acquisition is vital for precise modeling. In this study, data 

acquisition was based on the binocular stereo vision system. Binocular camera Bumblebee2 

(Point Grey), which adopts IEEE-1394 card to control the camera or transmit videos, was used 

State of the literature 

 The general idea is to predict three-dimensional scenes of obstacles and then plan routes for 

obstacle avoidance. 

 After image acquisition, there are a lot of redundant data, and these data directly reduce the 

subsequent computing speed. 

 The model generation rate hardly meet the requirements of real-time obstacle avoidance for 

harvesting robot. 

Contribution of this paper to the literature 

 Using the binocular stereo vision system, the natural scene was photographed to reconstruct the 

branches of citrus trees in the virtual world. This provides a route planning criterion and a virtual 

workplace for the robot's obstacle evading system 

 Using the method of multi-line fitting, the redundant data is reduced, and the necessary data is 

entered into the modeling stage to improve the overall operation speed. 

 Using the data required by the modeling calculation, the visual effect and obstacle avoidance 

effect of the model are synthetically investigated, and the real-time virtual scene for the robot 

action is provided for the operation. 
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as data gatherer. Bumblebee2 can directly gather RGB color values in current field of view and 

coordinates of the corresponding spatial location (x, y, z), and transmit data to computer (CPU: 

Intel(R) Core(TM) i3-4160, 3.60 GHz; Memory: 2.00 GB) via the IEEE-1394 card. 

Information extraction for key points of modularized modeling 

A fruit tree consists of branches, trunk, leaves, and fruits, which vary greatly in 

morphology. As branches and trunks are hard wooden structures, they are considered as 

obstacles of the mechanical arm in route planning for robots (Kim & Jeong, 2014). Leaves and 

shoots are soft and flexible, so they are not considered as obstacles. Fruits are picking objects 

of the mechanical arm, namely, targets in route planning (Urrutia, Lara, Villalba, Christie, 

Quesne & Cuq, 2011). Therefore, branches and trunks are main components of the virtual 

scene to be constructed. 

In modularized modeling, cylinder and conical frustum can be taken as modules 

because most of branches and trunk have such shapes (Yang, Shen, Yuan, & Gao, 2015). The 

most concise information describing these modules is radii of the circles at both ends and 

spatial locations of centers of circles. Take the branch in Figure 2 as an example. As long as the 

spatial locations of O1, O2, O3, and O4 as well as radii of the circles at both ends are got, the 

branch can be described fully. Essentially, the information extraction for key points of 

modularized modeling is to acquire the information of key points such as O1, O2, O3, and O4 

from the image of real scene. 

Image acquisition

Image processing

Dataset of key points

Basic module

Standard module

Module combination

Fruit tree model

Rotation matrix Translation matrix

Transformation matrix

 

Figure 1.  Flow chart of real-time construction of virtual fruit tree model 
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Coordinate and radius acquisition for points on the center line of branch 

All key points are on the center line of branch image. The radius of the corresponding 

circle of a key point refers to its distance to the edge. Hence, we need to extract the center line 

of branch from the image at first. Then the coordinates of key points and the corresponding 

radii can be solved. Citrus trees were the modeling objects in the present work. The 

information concerning branches, trunks, leaves, fruits, and background was gathered. To 

extract the information of key points, branches and trunks needed to be segmented from the 

background to generate a separate image. Figure 3 shows the process of gradual segmentation 

(Agrawal, Barnwell & Raskar, 2010; Letsch & Kjer, 2011;  Mccraig, Osinski, Cloutis, Flemming, 

Izawa, & Reddy, et al, 2017; Yang, Shen, Yuan, & Gao, 2015;). 

To obtain the information concerning the center line of branch or trunk, the separate 

image should be binarized firstly (Figure 4a), followed by distance transformation and 

thinning (Tan, Jamdagni, He, Nanda, Liu, & Hu, 2015). Figure 4b shows the branches thinned 

by Yokoi's eight-connectivity-number algorithm (Morrison, Huckvale, Corish, Dorn, 

Kontschieder & Hara, et al., (2016)). 

 

Figure 2.  Tree morphology analysis 

 

Figure 3.  Branch information extraction from the real scene 
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Data optimization 

After distance transformation and thinning, the coordinates of any pixel on the center 

line and the corresponding radius (set as {(x, y, z), R}) can be solved according to known spatial 

locations (Štefan & Strnad, 2015). But there were some redundant points. Hence, data 

optimization should be performed to remove redundant points (Mossel, Roch & Sly, 2011), so 

as to avoid their impact on real-time modeling. 

The branches of fruit trees occupy a small space at intersections and bifurcations, which 

are insignificant for route planning. So the nodes where branches are connected can be 

removed (Zhang, Yuan, Gao, Wei & Diushen, et al., 2015). That is, the pixel (node) surrounded 

by over two pixels in the thinned image was regarded as redundant point and removed. 

Branches were no longer connected after redundant points were eliminated. 

In the meantime, there were a number of short branches at the periphery, which had 

little influence on the overall structure of a tree (List & Mashayekhi, 2016). Hence, they were 

also pruned as a bunch of redundant points (Schmitt, Shahzad, & Zhu, 2015). The specific 

operations were as follows. According to a preset threshold (the ratio of branch length to 

branch radius), whether the disconnected branches were too short were judged. The branch 

should be pruned if its ratio of length to radius was smaller than the threshold (Escamez, 

Sirois, Lahtinen, Stenvall, Badel & Tixador, et al.). Figure 5a shows the result of pruning. 

Next, curve fitting was performed to further remove redundant points. Figure 6 is the 

schematic of curve fitting. Suppose AC is the center line of a branch. The curve AC could be 

described with segments AB and BC, as the distances of all points on curves AC and BD to 

these segments would not exceed the preset threshold. Except for points A, B, and C, all the 

points on curve AC were eliminated as redundant points after fitting (Feng, Kim, Yu, Peng & 

Hart, 2010; Zeng, Zhao, Zheng & Liu, 2013; Menon, Ma, Hewitt, Science, Styner & Gerig, et al, 

2011). 

Figure 5b shows the image subjected to curve fitting and thinning successively. After 

curve fitting, branch data were stored as {(x’, y’, z’), R’, (x’’, y’’, z’’), R’’}, wherein {(x’, y’, z’), R’} 

and {(x’’, y’’, z’’), R’’} represent the coordinates and radius of points on two center lines, 

 

(a) Binary image     (b) Graph thinning 

Figure 4.  Branch images after binarization (a) and thinning (b) 
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respectively. These data were critical for modeling (Lindsay, Maxwell, Rosenberg & Tucker, 

2007). 

Modeling for branch modules 

By extracting the information of key points, we have simplified branch data into the 

datasets essential for conical frustum (Méndez, Rosell-Polo, Sanz, Escolà & Catalán, 2014) 

construction. Modularized modeling would be performed based on these datasets (Wright, 

Guan, Tseng, Cook, Wei & Chang, 2015) in the following section. 

Solving of transformation matrix 

The fundamental element to describe a model is the vertices of the model. For the 

branch model in Figure 2, its vertices situated on the edges (Côté, Widlowski, Fournier & 

Verstraete, 2009)) of circles O1, O2, O3, and O4. As branches are shaped like a cylinder or conical 

frustum, polygon approximation was adopted for modeling such shape (Meseguer, Lobo, Ree, 

Beerling & Sanmartín, 2015). In the cylinder modeling by prism approximation, the prism 

would be closer to a real cylinder if it had more sides. The number of sides of a prism is called 

transverse precision. In the present work, the transverse precision of models was set as a 

variable to satisfy varying precision demands (Tang, Dong & Buckles, 2013). Meanwhile, the 

points of equal division were taken as vertices to guarantee the smoothness of each model. 

The following can be known according to the rule of spatial transformation: the 

cylinder or conical frustum (for which the radii of circles at two ends were R’ and R’’, and the 

centers located at P’(x’, y’, z’) and P’’(x’’, y’’, z’’) was obtained after two spatial rotations (Figure 

 

(a) Short branch culling image      (b) Curve fitting image 

Figure 5.  Branch images after pruning (a) and curve fitting (b) 

 

Figure 6.  Schematic of curve fitting 
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7) and one spatial translation were carried out on the cylinder or conical frustum (Jew, 

Hendrich & Zhang, 2010) at height D, for which the circle of initial end (its center was exactly 

the origin) was in the plane XOZ. Therein, the height D is calculated as follows. 

2 2 2( ) ( ) ( )    D = x' x'' y' y'' z' z''  (1) 

According to radii R’ and R’’, it can be known that the center of circle located at the 

origin (Shi, Liang & Liu, 2011; Liang, Gong, Li & Ibrahim, 2014). The matrix P1 containing the 

homogeneous coordinates of points equally dividing the circle in plane XOZ into n equal parts 

(center of circle: (0, D, 0), and its parallel matrix P2 are described as follows (Raveh & Zaide, 

2006). 

 
 
 
 
 
 
 
 

 
 
  

R' 0 0 1

1

2kπ 2kπ
R' cos( ) 0 R' sin( ) 1

P1 n n

1

2π( n 1) 2π( n 1)
R' cos( ) 0 R' sin( ) 1

n n  (where 𝑘 ∈ {0, 1, 2, … , 𝑛 − 1}) 

 

 
 
 
 
 
 
 
 

 
 
  

R'' D 0 1

1

2kπ 2kπ
R'' cos( ) D R'' sin( ) 1

P2 n n

1

2π( n 1) 2π( n 1)
R'' cos( ) D R'' sin( ) 1

n n (where 𝑘 ∈ {0, 1, 2, … , 𝑛 − 1}) 

(2) 

 

First rotation: Rotating by 𝜙(0 ≤ 𝜙 ≤ 180) around the X axis. There is the following 

result according to Figure 7. 




y'' y'
cosΦ

D ，   2sinΦ 1 cos Φ  
(3) 

 

Figure 7.  Schematic of spatial transformation of conical frustum 
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Second rotation: Rotating by θ(0 < θ < 360)around the Y axis. There is the following 

result according to Figure 7. 

 




  
2 2

z'' z'
cosθ

x'' x' ( z'' z')




  2 2

x'' x'
sinθ

( z'' z') ( x'' x')
 

(4) 

Translation: The center of the circle at initial end was shifted to (x’, y’, z’). 

Matrix Y was obtained after the three transformations above. 

     
     


     
     
     
     

1 0 0 0 cosθ 0 sinθ 0 1 0 0 0

0 cosΦ sinΦ 0 0 1 0 0 0 1 0 0
Y

0 sinΦ cosΦ 0 sinθ 0 cosθ 0 0 0 1 0

0 0 0 1 0 0 0 1 x' y' z' 1

 
 


 
 
 
 

cosθ 0 sinθ 0

sinθ sinΦ cosΦ cosθ sinΦ 0

sinθ cosΦ sinΦ cosθ cosΦ 0

x' y' z' 1      

 

(5) 

Matrix Y was the synthetic transformation matrix of vertex location data. 

Solving of vertices of a model 

After obtaining the synthetic transformation matrix, calculation was conducted (Sati, 

Rossignac, Seidel, Wyvill & Musuvathy, 2016) according to the coordinates {(x’, y’, z’), R’} of 

P’ and its corresponding radius R’, as well as the coordinates {(x’’, y’’, z’’), R’’} of P’’ and its 

corresponding radius R’’ (Jacob, Colby, Kabilan, Einstein & Carson, 2013; Kilgard & Bolz, 2012; 

Mateo, Zaro, Nchez Navarro, Garc & AGil, et al., 2014; Pulli, Baksheev, Kornyakov & 

Eruhimov, 2012). Thus, the vertex coordinates corresponding to P'  can be described as 

' 1 P P Y  (6) 

The coordinates of 12 vertices corresponding to P''  can be described as 

'' 2 P P Y  (7) 

After determining each vertex of a conical frustum, they were linked by the sequence 

in standard model to form a module eventually. 

DISCUSSION, CONCLUSION AND SUGGESTIONS 

Modules needed to be assembled after all modules were built (Wang & Pai, 2012; Kim, 

2013; Henderson, Gerber, Hilinski, Falcucci, Ojima, & Salvatore, et al., 2015). Before the 

assembly of modules, the module constructing velocity (Skalski, Townsend & Gilbert, 2015) 

should be assessed, to achieve a balance between modeling velocity and model precision. Then 

a suitable model precision was selected to satisfy the demand of real-time modeling and 

visualization (Jungblut, Vlachos, Schuldt, Zahn, Deller & Wittum, 2012). 

The precision of modules is adjustable (Vankipuram, Kahol, Mclaren & Panchanathan, 

2010). Hence, in overall branch modeling, we can determine the optimal precision under 

current hardware conditions (Foley & Hanrahan, 2011; Janoos, Mosaliganti, Xu, Machiraju, 

Huang & Wong, 2009) by measuring the relationship between module constructing velocity 

and precision (Bo, Bartoň, Plakhotnik, & Pottmann, 2016). In this article, 194 datasets of key 
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points were obtained after image processing. The modeling time (Decost, Jain, Rollett, & Holm, 

2016) at varying model precision was measured and listed in Table 1. 

Table 1 shows that modeling time increased linearly with model precision. The model 

created at the precision of 12 had satisfied human visual demand, and the corresponding 

modeling time was short enough to achieve the timely obstacle evasion of robots. Hence, we 

chose 12 as the model precision. Figure 8 shows the final model, which cost 516 ms. 

Using the binocular stereo vision system, the natural scene was photographed to 

reconstruct the branches of citrus trees in the virtual world. Branch reconstruction was 

achieved via two steps. Firstly, branch obstacles were segmented from the image and data 

were optimized by removing redundant points, followed by information extraction on key 

points. Secondly, modules were constructed according to the information of key points and 

then assembled to generate a complete model. 

Due to the complexity of natural scene, the acquisition of valuable information from 

pictures requires the assistance of image processing software. The final modeling result 

heavily depends on data processing. Therefore, the optimization of image processing methods 

and exploration of more targeted processing methods will be the emphases of future study. 

Table 1.  Relationship between model precision and modelling time 

Model precision 

(Number of sides) 
6 8 10 12 24 50 

Modeling time (ms) 258 341 451 516 1121 2371 

Ratio of modeling time 

to model precision 
43 42.6 45.1 43 46.7 47.4 

 

 

 

Figure 8.  Display of final modeling result from several angles 
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