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Abstract 

The process of semiosis for the conceptual learning of inequalities allows the student to revitalize 

the interpretation, understanding, and solution of problems both in mathematical contexts and 

in everyday contexts. This research designed and applied a didactic strategy based on the semiotic 

theory of semiotic treatments and conversions to develop the semiosis processes of conceptual 

learning of inequalities through the methodology of the semiotic meaning triad and its three 

phases applied in class sessions focused on the solution of inequalities, defining the domain and 

range of functions and interpreting the lipid profile of a person. 
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INTRODUCTION 

The concept of mathematical inequality is frequently 
used in the everyday life of students and its learning 
process in schools takes place at a very early age. Every 
day people make numerical estimates to define 
measurement intervals, conceiving connotative 
meanings for decision making; for example, the 
expressions “she cannot work because she is between 14 
and 16 years old”, “the economic growth of the country 
by 2024 will be around 1.3% and 1.8%”, “her triglyceride 
level is higher than 150 mg/dl”, and “the speed of the 
car before the crash was between 180 and 220 km/h” are 
semantic representations that allow the interpretant to 
create an idea or knowledge that can be transformed into 
symbolic and graphic representations. Now, the formal 
process of teaching and learning the concept of 
mathematical inequality begins curricular at a very early 
age, with the numerical relations “greater than” and 
“less than” and continues throughout schooling, 
expanding its conceptual field level by level until 
reaching more abstract and complex applications, such 
as the analysis of functions and calculus; for example, the 
expressions “the domain of the function 𝑓(𝑥) = sin⁡(𝑥) is 
(-∞, ∞)” and “If 𝑓(𝑥) is continuous on 𝑎 ≤ 𝑥 ≤ 𝑏, then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑎) − 𝐹(𝑏)
𝑏

𝑎
, where 𝐹(𝑥) is any 

antiderivative of 𝑓(𝑥), that is, a function such that 
𝐹′(𝑥) = 𝑓(𝑥)” are symbolic representations denoting 
meanings proper to mathematical functions, which can 

be transformed into graphical and semantic 
representations. According to the above, the teaching of 
inequalities is a great challenge for mathematics 
education, since students, when they come into contact 
with procedures and problem-solving with inequalities, 
experience both ontogenetic and epistemological 
obstacles (Brousseau, 2007) due to the lack of meaning 
and understanding in the conceptual learning process of 
inequalities (Iori, 2017). Therefore, this research 
proposes a didactic strategy to improve the conceptual 
learning of inequalities with meaning by means of the 
triads of semiotic meaning; for this, the study of 
inequalities followed the following order: first, 
characterizing the difficulties of learning inequalities 
studied by Almog and Ilany (2012) and Blanco and 
Garrote (2007); second, analyzing epistemologically the 
conceptual learning of inequalities taking as a reference 
the studies of semiotic representations, treatments and 
conversions by D’Amore (2003) and Duval (2006); and 
third, proposing and applying a didactic strategy for the 
conceptual learning of inequalities with meaning by 
means of Durán Salas’ (2022) triads of semiotic 
significance. 

THEORETICAL FRAMEWORK 

Mathematics is a formal body of ideal, abstract, 
linguistic, and conceptual objects that are externalized 
by means of semiotic representations such as definitions, 
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axioms, collunariums, theorems, graphs, notations, and 
symbols. This is why the conceptualization processes of 
mathematical activity must necessarily pass through 
semiotic representation registers in order to be 
communicated and learned (D’Amore, 2003). Indeed, 
Weiskopf (2008) states that concept learning is 
understood as the ability to represent different 
properties of concepts; therefore, the activity of semiotic 
representations of mathematical concepts recognizes 
two functions:  

(a) semiotic representations, which allow the learner 
to come into contact with the mathematical 
concept (Iori, 2017) and  

(b) semiotic representations, which put the 
mathematical concept on a learning level, so that 
the processing and conversion of semiotic 
representations provide meaning to the concepts 
(Fandiño, 2010).  

This is why semiotic representations play an 
important role in the development and transformation of 
mathematical concepts applied to both every day and 
mathematical contexts. 

PROBLEM STATEMENT 

The concept of inequality, like any mathematical 
concept, has ideal, abstract, and linguistic characteristics, 
and therefore requires specific semiotic representations 
in order to be defined, denoted, and communicated 
(D’Amore et al., 2010), which is why the cognitive 
construction of learning inequalities is closely related to 
the ability to use various registers of semiotic 
representation for their understanding, comprehension, 
and meaning (Balomenou et al., 2017). Indeed, the 
multiplicity of semiotic representations that characterize 
the concept of inequality mathematically makes it 
difficult to learn and its teaching becomes more complex 
with the wide field of its application with other 
disciplines of knowledge. This is evident in classroom 
practices, since “our teaching experience has allowed us 
to observe the difficulties that high school students have 
and the errors they make when they are studying 
inequalities. Many of these problems re-occur year after 
year “ (Blanco & Garrote, 2007, p. 221). Thus, Blanco and 
Garrote (2007) identified two causes that affect students’ 
learning of inequalities:  

(a) they point out that the teaching of inequalities is 
reduced to mechanical tasks and not to the 
appropriation of the semantic content of each 
property of inequalities and  

(b) likewise, students establish limited relationships 
between the different systems of semiotic 
representation of inequalities.  

Similarly, Almog and Ilany (2012) identified three 
other causes that hinder the operative learning of 
inequalities, as students generally make the same 
mistakes when developing inequalities arithmetically; 
for example:  

(a) they do not change the sign when multiplying or 
dividing by a negative number;  

(b) they do not relate the results to their graphical 
representations when solving inequalities, and  

(c) the teaching and learning of inequalities is 
focused on the logical formalism of their 
properties.  

These five factors that hinder the conceptual and 
operational learning of inequalities are the focus of 
attention in this research. Therefore, it is necessary to 
design a didactic strategy that allows students to learn 
multiple semiotic representations and their conceptual 
interrelationships to solve problems of their 
environment, otherwise, any rote or mechanical learning 
can lead students to make mistakes frequently (Blanco & 
Garrote, 2007). 

SEMIOSIS OF CONCEPTUAL LEARNING 
OF INEQUALITIES WITH MEANING 

Identifying the errors that students frequently make 
when trying to solve problems with inequalities allows 
us to propose a didactic alternative to improve the 
learning of inequalities with meaning; for this reason, it 
is pertinent to distinguish the concepts of semiosis and 
noesis. To begin with, Duval (2017a) defines semiosis as 
the production of semiotic representations and noesis as 
the conceptual apprehension of an object. That said, 
semiosis is understood as the activity between signs, 
symbols, graphics, and semantic expressions that evoke, 
represent and refer to an abstract or real object; and 
noesis as “the conceptual acquisition of any object has to 
go through the acquisition of one or more semiotic 
representations” (D’Amore, 2003, p. 77). Hence, there is 

Contribution to the literature 

• This research characterizes the different types of semiotic representations of inequalities for the teaching 
and learning of the concept of inequality that can be used in the learning of linear inequalities. 

• This research presents the concepts of treatment and semiotic conversion to develop the processes of 
semiosis in the learning of mathematical concepts. 

• This research proposes the triads of semiotic signification as a methodology to design a didactic strategy 
for the conceptual learning of meaningful inequalities. 
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a close relationship between semiosis and noesis for the 
learning of concepts, as Duval (2017b) states that “there 
is no noesis without semiosis” (p. 47). This means that 
the learning of mathematical concepts necessarily occurs 
through the activity between the semiotic 
representations that characterize the concept. However, 
the learning of mathematical concepts with meaning 
refers to the capacity of an individual or interpretant to 
internalize and externalize the semiotic representations 
that characterize the concept (Godino & Batanero, 1994). 
Thus, the interpretant internalizes the meaning of the 
mathematical concept every time they make 
transformations to the semiotic representations that 
characterize the concept; that is, by the action of 
semiosis; in the same way, the interpretant externalizes 
the meaning of the mathematical concept whenever they 
solve problems correctly by making transformations to 
the semiotic representations of the concept. Therefore, 
by integrating the processes of acquisition and 
development of mathematical concepts through the 

internalization and externalization of semiotic 
representations, the following can be affirmed: the 
learner has achieved conceptual learning with meaning 
whenever they  

(a) characterize the mathematical concept by evoking 
its semiotic representations,  

(b) perform semiotic treatments within the same 
register of semiotic representation, and  

(c) perform semiotic conversions between different 
semiotic representations (D’Amore, 2006; Duval, 
2017b; Fandiño, 2010; Vergnaud, 1998) 

When it comes to the conceptual learning of 
inequalities with meaning, we have to 

(a) characterize concept of inequality in its semantic, 
symbolic, and graphical representations,  

(b) perform semiotic treatments between symbolic 
properties, and  

(c) perform semiotic conversions between semantic, 
symbolic and graphical representations to solve 
everyday problems.  

In the following, the three aspects that account for the 
conceptual learning of meaningful inequalities are 
explained in detail.  

Characterization of Semiotic Representations of the 
Concept of Inequality 

Duval (2017b) states that mathematical concepts are 
invariant once they are defined, however, in order to 
access mathematical concepts, multiple semiotic 
representations are required. For the specific case of 
inequalities, it is possible to characterize them in three 
groups of semiotic representations, as shown in Figure 

1. Figure 1 illustrates that each group of semiotic 
representations refers to a part of the concept of 
inequality and is not related to each other because each 
of them has characteristics that differentiate them from 
one another.  

Table 1 details the different registers that are part of 
each group of semiotic representation.  

 
Figure 1. Graphical, semantic, & symbolic representations 
reference concept of inequality (Source: Author’s own 
elaboration) 

Table 1. Semiotic representation registers of concept of inequality 

Semantic representations Graphical representations Symbolic representations 

   Notation Set builder notation 
 Open interval 

 
(a, b) A = {x ∈ ℝ a⁄ < x < b} 

 Closed interval 
 

[a, b] B = {x ∈ ℝ a⁄ ≤ x ≤ b} 

Semi-open intervals Half-open interval 
 

[a, b) C = {x ∈ ℝ a⁄ ≤ x < b} 

Semi-closed intervals Half-closed interval 
 

(a, b] D = {x ∈ ℝ a⁄ < x ≤ b} 

Infinite intervals Right-open 
 

(−∞, a) H = {x ∈ ℝ x < a⁄ } 

Right-closed 
 

(−∞, a] G = {x ∈ ℝ x ≤ a⁄ } 

Left-open 
 

(a,∞) F = {x ∈ ℝ a < x⁄ } 

Left-closed 
 

[a,∞) E = {x ∈ ℝ a ≤ x⁄ } 
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Table 1 shows that the characteristics of the semantic 
representations are written and spoken. Conceptually, 
“open interval” means that both endpoints of the 
inequality are excluded; whereas “closed interval” 
means that both endpoints of the inequality are 
included. Likewise, the semantic representations “semi-
open intervals” and “semi-closed intervals” include one 
endpoint and exclude the other endpoint of the same 
inequality, therefore, these inequalities can be rewritten 
as half-open intervals or half-closed intervals, and in 
some cases, the sector of the endpoint inclusion is 
specified as left half-closed interval or the other sector of 
the endpoint exclusion is specified as right half-open 
interval. In this way, infinite inequalities have only one 
endpoint either inclusion or exclusion as the other sector 
is unbounded. Graphical representations are a very 
important didactic element, which is usually used as a 
starting point in classroom practice, as students can 
easily visualize the possible values to understand the 
inequality by means of the number line. In this way, the 
two endpoints of inclusion or exclusion of the inequality 
are represented graphically on the number line by two 
types of dots ○ and ●. The meaning of the dot “○” 
corresponds to the exclusion of the bounded and the dot 
“●” corresponds to the inclusion of the bounded of the 
mathematical inequality. On the other hand, symbolic 
representations are written in two ways, notation 
representations, and set builder notation 
representations. Notation representations are 
characterized by the use of punctuation marks such as “( 
), [ ], ( ], [ ], [ )”. The parenthesis represents the exclusion 
of the endpoint in the inequality, while the bracket 
includes the endpoint of the inequality. Notation 
representations are often used to define numerical 
values or conditions in theorems and definitions in 
mathematics. As for set builder representations, these 
are based on the linguistic concepts “... is greater than or 
equal to ...”, “... is less than or equal to ...” and “... is less 
than or equal to ...”, which symbolically correspond to >, 
<, ≥, and ≤ are used to establish the endpoints of an 
inequality defined in the set builder. The meaning of the 
symbols “<“ and “>“ exclude the endpoint, while the 
symbols “≤” and “≥” mean the inclusion of the 
endpoints. Thus, the characterization of the semantic, 
graphical, and symbolic representations that constitute 
the first part of conceptual learning of inequalities ends.  

Semiotic Treatments of Inequalities 

Semiotic treatment is defined as the transformation of 
an initial semiotic representation into another terminal 
semiotic representation of the same type (Duval, 2006, 
2017b). Act of transformation between representations is 
performed by the interpretant (Duval, 2017a; Peirce, 
1986), as shown in Figure 2. Figure 2 shows the semiosis 
process of semiotic treatments, which starts from an 
initial semantic, graphical, or symbolic representation 
and the interpretant transforms it, applying the rules of 
operation of semiotic treatments, in order to create 

another terminal representation of the same semantic, 
graphical or symbolic type (Duval, 2006, 2017a).  

For the case of inequalities, the rules of operation of 
semiotic treatments follow the following arithmetic 
properties described in Table 2. Learning the properties 
of inequalities should be an essential and consistent 
classroom practice, since semiotic treatments strengthen 
memory, affirm logical processes and develop strategic 
thinking (Fandiño, 2010). Thus, semiotic treatments 
apply the operations of addition, subtraction, 
multiplication, and division to inequalities, as shown in 
Table 2. The arithmetic properties of addition and 
subtraction do not alter the sense of the inequality; 
however, multiplication and division change the sense 
of inequalities when they are operated by a negative real 
number; this last case is relevant in the study of the 
conceptual learning of inequalities, due to the fact that 
students frequently make mistakes when applying these 
properties (Balomenou et al., 2017).  

Now, functionally, inequalities are used to model 
inequalities in both mathematical and everyday 
contexts; and the semiotic treatments allow the solution 
to the inequality to be applied step by step in the model. 
An example of the application of semiotic treatments of 
inequalities is shown in Table 3. Table 3 shows four 
semiotic treatments referenced in Table 2 necessary 
inequation −4𝑥 + 5 > 25 until the set of numerical 
solutions 𝑥 < −5 is obtained. Table 3 shows the main 
rule of semiotic treatments, which consists of carrying 
out transformations within the same group of semiotic 
representations (Duval, 2017b); that is if the initial 
representation is a symbolic register, the result of the 
semiotic treatment is another symbolic register. It is 
necessary to clarify that the development of semiosis for 
the treatment of the semiotic registers of inequalities 
must be carried out with great care and precision in 

 
Figure 2. Treatment between semiotic representations 
(Source: Author’s own elaboration) 

Table 2. Arithmetic properties of inequalities 

Property Definition 

Property of addition If a<b then a+c<b+c 
Property of subtraction If a<b then a-c<b-c 
Property of multiplication If a<b & c>0 then ac<bc 

If a<b & c<0 then ac>bc 
Property of division If a<b & c>0 then a/c<b/c 

If a<b & c<0 then a/c>b/c 

Note. a, b, & c real numbers 
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order to avoid errors in their applications, as it is evident 
in classroom practice as the main difficulty in the 
learning of mathematical concepts in the treatment since 
many students lack the tools or the mastery of the 
properties to relate and construct new semiotic registers 
from the initial register (D’Amore, 2004).  

Semiotic Conversions of Inequalities 

Semiotic conversion is defined as the transformation 
of an initial semiotic representation into another 
terminal semiotic representation of a different type 
(Duval, 2017a, 2017b). This means that the interpretant 
coordinates the semiotic conversion between a semiotic 
representation of inequality and other representations, 
as shown in Figure 3. Figure 3 shows the interpretant 
carrying out the semiotic conversion in two ways:  

(a) converting an initial representation into another 
terminal representation (Figure 4) and  

(b) converting an initial representation into two 
terminal representations (Figure 5).  

An example for case (a) of semiotic conversion 
applied to inequalities is shown in Figure 4. Case (a) 
shows two semiotic conversions; the first one is the 
conversion of an everyday context represented 
semantically and transformed into a symbolic 
representation; the second one is the semiotic conversion 

of a mathematical context transformed into a graphical 
representation with the domain and range conditions.  

Now, case (b) is the conversion of an everyday 
context transformed semantically, symbolically, and 
graphically, as shown in Figure 5. Figure 5 shows the 
possible semiotic conversions that the initial semantic 
representation has when transformed into the three 
types of representations of inequalities, as well as the fact 
that the graphic, semantic, and symbolic representations 
have their own relationship without being connected to 
the initial register. Therefore, the coordination between 
equivalent representations allows the learner to select 
the most relevant representation to interpret 
mathematical or everyday contexts of inequalities and to 
give meaning to problem situations. To conclude, given 
the relevance of inequalities inside and outside the 
classroom, this research proposes a didactic strategy for 
the conceptual learning of inequalities, with the aim of 
understanding the meaning that students give to the 
treatment and conversion to semiotic representations of 
inequalities applied in different contexts, taking as a 
reference three phases of triads of semiotic signification. 

METHODOLOGY 

This research studied the semiosis process of 
conceptual learning of inequalities by analyzing the 
integration between multiple transformations of 
semantic, graphical, and symbolic representations made 
by students to solve problems of inequalities used in 
both every day and mathematical contexts in didactic 
strategies applied in class.  

Table 3. Application of properties of inequalities to solve inequalities 

Inequality −4𝑥 + 5 > 25 Explanation of treatments 

Treatment 1: Subtraction property −4𝑥 + 5 − 5 > 25 − 5 Sense of inequality does not change. 
Treatment 2: Subtraction result −4𝑥 > 20 

Treatment 3: Property of division −4𝑥

−4
<
20

−4
 

Sense of inequality changes. 

Treatment 4: Result of division 𝑥 < −5 
 

 
Figure 3. Conversion between semiotic representations 
(Source: Author’s own elaboration) 

 
Figure 4. Case (a) of conversion between semiotic 
representations of inequalities (Source: Author’s own 
elaboration) 

 
Figure 5. Case (b) of conversion between semiotic 
representations of inequalities (Source: Author’s own 
elaboration) 
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For this reason, this research is framed within the 
qualitative approach, as qualitative studies aim to carry 
out in-depth studies of interpretative phenomena based 
precisely on the practices carried out by students 
(Hernández et al., 2010). Thus, the methodological 
development of this study follows the three phases of the 
triad of semiotic meaning: the literal meaning triad, the 
semiotic treatment triad, and the semiotic conversion 
triad, as shown in Figure 6. 

The triad of semiotic meaning methodology is a 
semiotic macrosystem that develops processes of 
semiosis by integrating three different types of semiotic 
triads for learning mathematical concepts (Durán Salas, 
2022); each of the three triads of the methodology is a 
semiotic system made up of a semantic, symbolic and 
graphic representation, so each phase develops the 
learning of the mathematical concept in a different way 
(Durán Salas, 2022). The three phases of the triad of the 
semiotic meaning methodology for the conceptual 
learning of meaningful inequalities are described below: 

Phase 1–Literal Meaning Triad 

It is an ordered triadic semiotic system (𝑅𝐼 , 𝑅2, 𝑅3), 
which establishes an initial representation RI that 
integrates another representation 𝑅2 and another 
representation 𝑅3, all three of different type (Durán 
Salas, 2022). As an example, 𝑅𝐼 is defined as the semantic 
representation, 𝑅2 as the graphic representation, and 𝑅3 
as a symbolic representation, thus forming the triad 
(semantic, graphic, and symbolic) (Durán Salas, 2022). 
However, the literal meaning triad for conceptual 
learning of inequalities takes as a reference the semiotic 
representations characterized in Table 1. Two examples 
are shown in Figure 7 and Figure 8. 

As can be seen in Figure 7 and Figure 8, different 
types of literal meaning triads can be formed, as it is 
possible to permute the order of the initial 
representation, the order of 𝑅2 and 𝑅3 (two-way arrows). 
In Figure 7, literal meaning triad (semantic, graphic, 
symbolic), which integrates the semiotic representations 

according to Table 1 [open interval, , (a, 
b)] is defined; in Figure 8 the literal meaning triad 
(symbolic, semantic, and graphic) is defined with 
reference to Table 1 ([a, b], closet interval, 

). Literal meaning triad strengthens the 
development of semiosis for conceptual learning of 
inequalities by integrating multiple semiotic 
representations between intervals. 

Phase 2–Semiotic Treatment Triad 

Like literal meaning triad, it is an ordered triadic 
semiotic system (𝑅𝐼 , 𝑅2, 𝑅3), but it is the symbolic 
representation that develops the semiosis process by 
performing semiotic treatments to the inequalities 
applying the properties characterized in Table 2. 
Example: Solve the inequality 2𝑥 + 4 < 6 and graph 
your solution on the straight line. 

Figure 9 shows that, in order to solve the inequality 
2𝑥 + 4 < 6, four semiotic treatments were necessary, 

 
Figure 6. Phases of triads of semiotic meaning (Source: 
Author’s own elaboration) 

 
Figure 7. Literal meaning triad of concept inequality 
(semantic, graphic, & symbolic)-2 (Source: Author’s own 
elaboration) 

 
Figure 8. Literal meaning triad of concept inequality 
(symbolic, semantic, & graphic)-2 (Source: Author’s own 
elaboration) 



EURASIA J Math Sci Tech Ed, 2023, 19(12), em2375 

7 / 15 

which are integrated to the semantic and graphic 
representation of its solution to give meaning to the 
inequality, thus forming semiotic treatment triad 
(semantic, symbolic, and graphic).  

Phase 3–Semiotic Conversion Triad 

As in the previous phases, semiotic conversion triad 
is an ordered triadic semiotic system (𝑅𝐼 , 𝑅2, 𝑅3) that 
integrates literal meaning triad and semiotic treatment 
triad to solve problems with meaning; its main 
characteristic consists of permuting 𝑅𝐼 with the semantic, 
symbolic and graphic representations to define different 
semiotic conversion triads. The permutable triadic order 
leads to the development of semiosis and for this reason, 
multiple answers can be given to the problem to be 
solved, enhancing conceptual learning (Durán Salas, 
2022). Example: Today the temperature in Istanbul is 
between 50°F and 77°F. What is the temperature in 
Istanbul today in degrees Celsius? 

As shown in Figure 10, the semantic representation 
defines a problem of conversion of temperature 
measurements; whose solution lies in the symbolic 
representations by developing semiotic treatments until 
the answer is obtained, which is represented graphically 
in the straight line as a closed interval.  

In synthesis, the triads of semiotic signification as a 
research methodology are successive, and cohesive and 
integrate the necessary characteristics to acquire the 
conceptual learning of inequalities in classroom 
practices.  

Sample 

The didactic strategy to develop semiosis in the 
conceptual learning of inequalities was applied to two 
tenth-grade classes with 37 students aged between 15 
and 16 years from an educational institution in the city 
of Barrancabermeja (Colombia).  

RESULTS 

Statistically the conceptual learning progress of the 
inequalities of the 37 students is measured with the 
“Cohen’s d” coefficient. The statistical interpretation of 
Cohen’s d defines the effect size intervals, as shown in 
Table 4 (Cohen, 1988). 

Cohen’s d coefficient allows us to measure the 
didactic effect of learning in each of the methodological 
phases by contrasting the results of the means and 
standard deviations between pre- and post-test after 
didactically intervening the classroom practices with the 
group of students.  

The didactic strategy was designed and applied 
following the methodology of triad of semiotic meaning 
(Figure 6) for the conceptual learning of inequalities 
whose semiosis process is developed in three 
consecutive phases; literal meaning triad, semiotic 
treatment triad, and semiotic conversion triad whose 
results are the following: 

Literal Meaning Triad 

The students performed multiple transformations 
between the three groups of semantic representations, 
symbolic and graphical representations, as shown in 
Figure 11.  

Part (1) in Figure 11 shows that the symbolic 
representation −2 ≤ 𝑥 < 5 is the 𝑅𝐼 representation, 
which the students transformed into four equivalent 
representations, as follows: 𝑅1 graphical representation, 
𝑅2 set builder notation representation, 𝑅3 notation 
representation, and 𝑅4 semantic representation. Part (2) 

 
Figure 9. Semiotic treatment triad of concept inequality 
(semantic, symbolic, & graphic) (Source: Author’s own 
elaboration) 

 
Figure 10. Semiotic conversion triad of concept inequality 
(semantic, symbolic, & graphic) (Source: Author’s own 
elaboration) 

Table 4. Magnitude of Cohen’s d 

Cohen’s d coefficient intervals Effect size interpretation 

0.2<d Negligible effect 
0.2≤d<0.5 Small effect 
0.5≤d<0.8 Medium effect 
d≥0.8 Large effect 
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in Figure 11 has, as the initial representation 𝑅𝐼, the 
graphical representation, which the students 
transformed into 𝑅1 set builder notation (short) 
representation, 𝑅2 set builder notation representation, 𝑅3 
notation representation, and 𝑅4 semantic representation. 
Part (3) in Figure 11 has, as the initial 𝑅𝐼 representation, 
the notation representation (-∞, 9], the students 
transformed it into, 𝑅1 set builder notation (short) 
representation, 𝑅2 set builder notation representation, 𝑅3 
graph representation, and 𝑅4 semantic representation.  

 As it can be seen, literal meaning triad is a semiotic 
system that integrates the transformations of an initial 
representation of inequalities into equivalent 
representations that have the same meaning (see Table 

1); thus, the processes of semiosis are generated for the 
conceptual learning of inequalities. 

 Table 5 shows the progress of conceptual learning of 
inequalities by contrasting the results of the pre- and 
post-test obtained in the phase 1–literal meaning triad. 
Table 5 shows that when applying the pre-test, the 
students had a greater difficulty in the semiotic 
transformation of inequality representation into 

Semantic representation, since only eight out of 37 
managed to relate these two representations, while the 
most effective literal transformation was with notation 
representation, since 13 out of 37 managed to carry out 
the transformation correctly.  

After the didactic intervention, it can be observed in 
Table 6, the increase of students who correctly transform 
inequality representation with notation representation 
retaining the highest number of correct literal 
transformations together with semantic representation, 
which significantly increased its pass rate. 

The results of the pre-test show that nine students did 
not perform any semiotic transformation correctly or did 
not write a possible transformation (Table 7). But two of 
students performed four correct literal transformations 
of inequality representation. After didactic intervention, 
the post-test results show that nine students performed 
four correct literal transformations of inequality 
representation and 12 students performed three correct 
semiotic transformations, i.e., 56.7% of sample managed 
to elaborate networks between semiotic representations 
to give meaning to the concept of inequality. Semiosis 
process of literal meaning triad strategy for learning 
concept of inequality representation showed a progress 
of 0.56 as observed in Cohen’s d.  

 
Figure 11. Three transformations of literal meaning triad 
(Source: Student 8 from field study) 

Table 5. Pre-test results: Literal meaning triad of inequality 
representation 

Inequality 
representation 

Transformations 

Correct Incorrect 

-2≤x≤5 Graphic representation 

10 27 

Set builder notation representation 

12 25 

Notation representation 

13 24 

Semantic representation 

8 29 
 

Table 6. Post-test results: Literal meaning triad of inequality 
representation 

Inequality 
representation 

Transformations 

Correct Incorrect 

-2≤x≤5 Graphic representation 

22 15 

Set builder notation representation 

24 13 

Notation representation 

24 13 

Semantic representation 

23 14 
 

Table 7. Comparison of pre- & post-test results inequality 
representation (Cohen’s d=0.56) 

Results Frequency ranges 

Pre-test Not perform any correct transformation 9 
 1 correct transformation 10 
 2 correct transformations 11 
 3 correct transformations 5 
 4 correct transformations 2 
 Total 37 
 Mean 4.98 
 Standard deviation 3.70 

Post-test Not perform any correct transformation 3 
 1 correct transformation 3 
 2 correct transformations 10 
 3 correct transformations 12 
 4 correct transformations 9 
 Total 37 
 Mean 5.20 
 Standard deviation 4.15 
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It is observed from the results in Table 8 that the 
highest number of correct literal transformations of 
graphic representation is among notation representation 
with an index of 21 out of 37 while, among graphic 
representation and inequality representation shows that 
14 out of 37 is the lowest index of correct 
transformations. 

Didactic intervention modified conceptual learning 
of the graphical representations of inequalities, since, as 
seen in Table 9, the number of correct transformations 
increased in all their equivalent representations.  

The literal transformation of the graphical 
representation with the highest correct response rate is 
notation representation with 33 out of 37; and the one 
with the lowest correct response rate is set builder 
notation representation with 26 out of 37. 

Table 10 contrasts the frequencies of correct 
transformations obtained by the students in the pre- and 
post-test. In the pre-test it is observed that three students 
do not perform any correct literal transformation or do 
not write any literal transformation of the graphic 
representation and only four students performed all the 
semiotic transformations correctly.  

On the other hand, it is notorious that after the 
didactic intervention most of the students manage to 
establish semiotic connections of the semiosis process 
between the graphic representation and its equivalent 
representations, which is observed in the post-test 
results, as all students perform at least one correct 
transformation and 20 out of 37 students correctly 
performed all transformations of the graphic 

representation of the inequality. The effect of the 
intervention of the literal significance triads shows a 
Cohen’s d coefficient of 0.51, which measures progress in 
the conceptual learning of graphical representations. 

The results of the pre-test of the semiotic literal 
transformations of notation representation show that 
inequality representation and graphic representation 
have the highest rate of correct answers and set builder 
notation representation has the highest rate of incorrect 
answers (Table 11). 

Conceptual learning of notation representation 
improved the rate of correct answers in all its semiotic 
transformations after the didactic intervention. Table 12 
shows that set builder notation representation had a 
significant increase in the post-test and Inequality and 
graphic representations maintained the highest rate of 
correct answers. 

It is observed in Table 13 that nine out of 37 students 
do not perform any semiotic transformation of the 
representation (-∞, 9], i.e., 24.0% of the sample and 35.0% 
of the students, i.e., 13 out of 37 correctly performed only 
one semiotic transformation.  

Table 8. Pre-test results: Literal meaning triad of graphic 
representation 

Graphic representation 
Transformations 

Correct Incorrect 

 

Graphic representation 

14 23 

Set builder notation representation 

18 19 

Notation representation 

21 16 

Semantic representation 

20 17 
 

Table 9. Post-test results: Literal meaning triad of graphic 
representation 

Graphic representation 
Transformations 

Correct Incorrect 

 

Graphic representation 

28 9 

Set builder notation representation 

26 11 

Notation representation 

33 4 

Semantic representation 

30 7 
 

Table 10. Comparison of pre- & post-test results graphic 
representation (Cohen’s d=0.51) 

Results Frequency ranges 

Pre-test Not perform any correct transformation 3 
 1 correct transformation 9 
 2 correct transformations 12 
 3 correct transformations 9 
 4 correct transformations 4 
 Total 37 
 Mean 7.40 
 Standard deviation 3.78 

Post-test Not perform any correct transformation 0 
 1 correct transformation 5 
 2 correct transformations 4 
 3 correct transformations 8 
 4 correct transformations 20 
 Total 37 
 Mean 9.25 
 Standard deviation 7.36 

 

Table 11. Pre-test results: Literal meaning triad of notation 
representation 

Notation 
representation 

Transformations 

Correct Incorrect 

(-∞, 9] Graphic representation 

17 20 

Set builder notation representation 

10 27 

Notation representation 

14 23 

Semantic representation 

13 24 
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The result obtained in the post-test, after the didactic 
intervention the semiosis process, calculates that 15 out 
of 37 students performed four correct transformations 
and 10 out of 37 performed three correct semiotic 
transformations of the representation (-∞, 9] i.e., 68.0% of 
sample correctly relate notation representation with at 
least three equivalent representations. Results mean that 
effect on conceptual learning of notation representation 
by means of literal meaning triad has been progressive 
considering Cohen’s d coefficient of 2.54. 

Semiotic Treatment Triad 

Students solved different types of linear inequalities 
by applying the arithmetic properties described in Table 

2, transforming the symbolic representation, by means of 
successive treatments until the set of solutions of the 
inequality was calculated. The result of the class activity 
is shown in Figure 12. Figure 12 shows the succession of 
semiotic treatments employed by the student to solve the 

inequality 
4𝑥+1

3
≤

12𝑥−3

7
 (𝑅𝐼), which has as answer 2 ≤ 𝑥. 

The students transforms the symbolic answer 2 ≤ 𝑥 to its 
equivalent representations: (𝑅1) set builder notation, (𝑅2) 

notation, (𝑅3) graphic, and (𝑅4) semantic following the 
characteristics of the literal meaning triad.  

 Table 14 shows the progress of conceptual learning 
of inequalities by analyzing the results between the pre- 
and post-test of didactic phase 2–semiotic treatment 
triad. Table 14 shows the progress of the conceptual 
learning outcomes of inequalities when applying their 
numerical properties to solve inequalities measured 
with a Cohen’s d coefficient of 0.66. The results of 
semiotic treatment triad phase measure the relationship 

between the correct solution of the inequation 
4𝑥+1

3
≤

12𝑥−3

7
 and the number of semiotic transformations the 

student performs on his numerical answer.  

Table 12. Post-test results: Literal meaning triad of notation 
representation 

Notation 
representation 

Transformations 

Correct Incorrect 

(-∞, 9] Graphic representation 

29 8 

Set builder notation representation 

26 11 

Notation representation 

32 5 

Semantic representation 

23 14 
 

Table 13. Comparison of pre- & post-test results notation 
representation (Cohen’s d=2.54) 

Results Frequency ranges 

Pre-test Not perform any correct transformation 9 
 1 correct transformation 13 
 2 correct transformations 7 
 3 correct transformations 5 
 4 correct transformations 3 
 Total 37 
 Mean 7.40 
 Standard deviation 3.84 

Post-test Not perform any correct transformation 0 
 1 correct transformation 4 
 2 correct transformations 8 
 3 correct transformations 10 
 4 correct transformations 15 
 Total 37 
 Mean 9.25 
 Standard deviation 4.57 

 

 
Figure 12. Semiotic treatment triad of linear inequality 
(Source: Student 15 from field study) 

Table 14. Comparison of results between pre- & post-test of 
linear inequality triad semiotic treatment (Cohen’s d=0.66) 

Results Frequency ranges 

Pre-test Did not solve inequality 14 

 
Solves inequality & does not perform any 

transformation 
4 

 
Solve inequality & perform 
1 transformation of result 

5 

 
Solve inequality & perform 
2 transformations of result 

8 

 
Solve inequality & perform 
3 transformations of result 

3 

 
Solve inequality & perform 
4 transformations of result 

3 

 Total 37 
 Mean 4.60 
 Standard deviation 2.07 

Post-test Did not solve inequality 3 

 
Solves inequality & does not perform any 

transformation 
0 

 
Solve inequality & perform 
1 transformation of result 

3 

 
Solve inequality & perform 
2 transformations of result 

11 

 
Solve inequality & perform 
3 transformations of result 

7 

 
Solve inequality & perform 
4 transformations of result 

13 

 Total 37 
 Mean 6.80 
 Standard deviation 5.40 
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In Table 14, it is observed in the results of the pre-test 
that 14 out of 37 students do not solve the inequation; 
therefore, they do not perform any semiotic 
transformation of the answer 2≤x likewise, four students 
solve the Inequality correctly, but do not manage to 
semiotically transform their answer. Also in the pre-test 
it is calculated that the majority of students eight out of 
37 who solve the inequality correctly transform their 
solution into two equivalent representations. After the 
didactic intervention, the processes of semiosis are 
extended and the students are more accurate in their 
transformations, which can be observed in Table 14, 
since only three students do not solve the inequality 
while, 34 out of 37 students solve the inequality correctly 
and at least perform a correct semiotic transformation of 
their answer, highlighting that 13 out of 37 solve the 
Inequality correctly and transform their answer into four 
equivalent representations. 

Semiotic Conversion Triad 

The main application of this semiotic system is to 
solve problems or questions from both mathematical 
and everyday contexts. Two semiotic conversion triad 
activities carried out in class are shown below. The first 
one refers to solving a question in a mathematical 
context, it consisted of analyzing graphically the rational 

function 𝑓(𝑥) =
2

(𝑥+2)(𝑥−1)
 and determining its domain 

and range, as shown in Figure 13. 

The second one is developed in an everyday context, 
it consisted of analyzing the table of numerical values of 
the lipid profile to define if a person is ill due to high 
levels of cholesterol and triglycerides, as shown in 
Figure 14. 

The graphical representation of the rational function 

𝑓(𝑥) =
2

(𝑥+2)(𝑥−1)
 is the initial representation (𝑅𝐼); 

however, the semantic representation (𝑅1) defines the 
task that the student must perform “According to the 
graph determine its domain and range” and the 
symbolic representation (𝑅2) is the result of semiosis 
between the semantic representation and the graph to 
obtain the domain and range of the function forming the 
semiotic conversion system. The results of the process of 
semiotically transforming graphical and semantic 
representations into notation representations are shown 
in Table 15. Before didactic intervention, 14 students 
transformed the domain and range correctly; after the 
didactic intervention, the post-test showed that 31 
students correctly performed the semiotic graphical and 
semantic transformation of the domain and range in 
notation representation. This means that the use of the 
semiotic representations of inequalities was effective in 
the application of the didactic strategy of triads of 
semiotic meaning since Cohen’s d coefficient is 3,89. 

In the second part of the semiotic conversion triads, 
the students carried out the analysis of a lipid profile of 
a person, as shown in Figure 14. 

The semiosis of the lipid profile analysis had two 
moments; the first one was the recognition of the 
“optimal”, “optimal limit”, “high” and “very high” 
levels of cholesterol and triglycerides from which four 
conversions were made: the semiotic conversion (𝐶1), 
which consists of transforming HDL-cholesterol: high 
level to a set builder notation representation; the 
semiotic conversion (𝐶2), that transforms the numerical 
data of triglycerides: optimal level to a notation 
representation; the semiotic conversion (𝐶3), which 
transforms the numerical data of total cholesterol very 
high level to a semantic representation; and the semiotic 
conversion (𝐶4), that transforms the numerical data of 
LDL-cholesterol: optimal limit level to a graphic 
representation.  

 
Figure 13. Analysis of domain & range of a rational function 
(Source: Student 27 from field study) 

 
Figure 14. Semiotic analysis of lipid profile (Source: Student 
3 from field study) 

Table 15. Results of semiotic transformations of domain & range of a rational function (Cohen’s d=3.89) 

Analysis of graphical representation of function 
Notation representation domain & range 

Pre-test Post-test 

𝑓(𝑥) =
2

(𝑥 + 2)(𝑥 − 1)
 

Correct 14 31 
Incorrect 23 6 

Mean 0.37 0.83 
Standard deviation 0.49 0.37 
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In the second moment, students had to define if a 
person was sick or not according to the result of their 
lipid profile. The task says: “experts define that a person 
is sick if the levels of total cholesterol and triglycerides 
are very high. Below is a total cholesterol and 
triglyceride test of a woman, for you to explain whether 
she is sick or not according to the data”.  

A student answers (Ans), as follows: “The woman is 
not sick because she has cholesterol values at the optimal 
or high limit and triglycerides at optimal levels”, 
furthermore, the student converts the cholesterol and 
triglyceride levels into symbolic representations of set 
builder notation. The overall results of the second part of 
the semiotic conversion triads focused on assessing the 
comprehension of the lipid profile table by performing 
the C1, C2, C3, and C4 conversions, as shown in Table 

16.  

Cohen’s d coefficient 1.42 shows that the didactic 
strategy of the semiotic meaning triads practiced in class 
had a positive effect, as contrasted in the averages of 
correct answers between the pre-test with 0.60 
modifying and the 0.92 of the post-test; it is for this 
reason that a considerable decrease in incorrect answers 
can be seen when performing semiotic conversions to the 
lipid profile table after the didactic intervention.  

Finally, the students achieved positive results since 
the progressive development of the semiosis for the 
conceptual learning of inequalities by means of the 
semiotic meaning triad was in accordance with the 
learning times because multiple classroom activities 
were harmoniously integrated into each phase. 

DISCUSSION & CONCLUSIONS 

 This study investigated the processes of semiosis 
that students develop when conceptually learning about 
inequalities, using the triads of semiotic signification as 
a methodological reference. Thus, the results of this 
research were obtained at two points in time: the pre-test 
before the didactic intervention and the post-test after 
the didactic intervention. The analysis of the results 
obtained in the pre-test showed that students frequently 
made the following three mistakes:  

(a) error in the interpretation of inequality sign: 
students give the meaning of equality to the signs 
<, >, ≤, and ≥,  

(b) errors in solving inequalities algorithmically: the 
students do not perform skillfully the four 
arithmetic operations between fractions, mainly 
addition and subtraction, and  

(c) error in changing the sense of inequality: the 
students multiply correctly on both numerical 
sides of the numerical inequality, but do not 
effectively transform the sense of inequality sign, 
they keep it the same.  

These three errors are consistent with Almog and 
Ilany’s (2012) and Blanco and Garrote’s (2007) research 
on inequalities. These errors limit the creation of new 
meanings of inequalities and confuse the processes of 
semiotic treatments of inequalities that are quite 
necessary for problem solving. 

Therefore, it is necessary to create didactic 
alternatives and sequentially structured methodologies 
that allow students to correct their mistakes and 
strengthen the learning of inequalities (Balomenou et al., 
2017).  

In fact, the methodology of semiotic meaning triads 
allowed to intervene didactically in the conceptual 
learning of inequalities in three sequential phases:  

(a) literal meaning triads,  

(b) semiotic treatment triads, and  

(c) semiotic conversion triads.  

The findings in the phases of the semiotic treatment 
and semiotic conversion triads are similar to the findings 
of Blanco and Garrote (2007) who agree that the ideal 
would be the use of more than one semiotic 
representation system, which would benefit the 
understanding of inequalities, since the different 
systems provide alternative and complementary 
strategies to the students, as they only use arithmetic and 
algebraic language to tackle the different problems they 
have as a task.  

Hence, the triads of semiotic meaning are relevant for 
the conceptual learning of inequalities, as they manage 
to integrate graphic, semantic and graphical 
representations in the same inequality and in the same 

Table 16. Results of semiotic transformations of lipid profile (Cohen’s d=1.42) 

 C1 C2 C3 C4 

Analysis of symbolic representation of lipid profile Pre-test Correct 23 21 22 23 
Incorrect 14 16 15 14 

Mean 0.60    
Standard deviation 0.49    

Post-test Correct 34 33 34 35 
Incorrect 3 4 3 2 

Mean 0.92    
Standard deviation 0.26    

Note. C1: Inequality representation; C2: Notation representation; C3: Semantic representation; C4: Graphic representation 
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problem with inequalities. In effect, semiotic meaning 
triads methodology provides a new perspective for the 
conceptual learning of inequalities in students by 
developing semiosis processes integrating multiple 
graphic, semantic and symbolic representations to solve 
problems with inequalities, and whose effectiveness in 
learning is observed in the results obtained after the 
didactic intervention. When comparing the results 
between the pre- and post-test, the following advances 
by phases are found. 

Literal Meaning Triads Phase 

Table 17 shows that the number of students 
performing four correct semiotic transformations in the 
pre-test was low, but after the didactic intervention, the 
number of students performing four correct 
transformations of the same semiotic representation 
increased considerably. 

Semiotic Treatment Triads Phase 

Table 18 compares the number of students who 
solved the inequation correctly and who semiotically 
transformed their answer into four different types of 
representations. In the pre-test only three students out of 
37 were able to do so, however, after the didactic 
intervention the number of students who were able to 
perform assigned task correctly increased significantly. 

Semiotic Conversion Triad Phase 

Table 19 shows that the number of students who 
solve inequalities correctly in the pre-test has increased 
in relation to two previous phases. This is since semiotic 
conversion triads phase is the final phase of the didactic 
methodology; therefore, the students have already 
corrected some of their previous obstacles in phase (a) 
and phase (b). Likewise, the increase in the number of 
students who effectively solve the problems in the post-
test stands out for having the highest effectiveness rate 
regarding the previous phases. It means that semiotic 
meaning triads is a methodology that positively 

impacted the conceptual learning of inequalities through 
didactic strategies applied in class. 

The process of semiosis of conceptual learning of 
inequalities is slow and allows us to observe the personal 
progress of each student because, as the didactic 
strategies were developed, the interweaving between 
semantic, graphic, and symbolic representations 
solidified and widened the field of conceptual 
application in both mathematical and conceptual 
contexts. 

Graphical representations are key in the literal 
meaning triad phase of inequalities as students easily 
integrated symbolic and semantic representations; 
therefore, it is recommended to start the conceptual 
learning of inequalities with graphical representations.  

Most of the students focused the semiosis of their 
learning on the transformation of the extreme values of 
the inequalities and thus managed to give meaning to 
the graphical, inequality and notation representations; 
however, this caused great difficulties in learning the 
meaning of set builder notation representation as the 
symbolism {x/x …} and its semantics focuses its 
understanding on the numerical content that the “x” in 
the set of inequality may have, which varies its semiotic 
interpretation.  

When examining the students’ performance in both 
the pre- and post-test, it is evident to note that notation 
representation had the best rates of correct answers, 
since it was clear to the students the symbolic 
relationship of the brackets and braces with the 
graphical representation of empty point and full point; 
however, during the didactic intervention in the three 
phases of the semiotic meaning triads the students had 
difficulties in interpreting infinite intervals as (-∞, 9]. 

The semiosis process of the semiotic treatment triad 
phase allowed for a precise didactic analysis of the 
successes and errors that the students wrote when 
applying arithmetic properties to solve inequalities, thus 

Table 17. Findings from literal meaning triads phase 

Initial representation Pre-test 4 correct transformations Post-test 4 correct transformations 

Inequality representation: -2≤x≤5 2 students 9 students 
Graphic representation:  

 4 students 20 students 

Notation representation: (-∞, 9] 3 students 15 students 
 

Table 18. Findings from semiotic treatment triads phase 

Initial representation 
Pre-test: Solve inequality & 

perform 4 transformations of result 
Post-test: Solve inequality & 

perform 4 transformations of result 

Inequality representation: 
4𝑥+1

3
≤

12𝑥−3

7
 3 students 13 students 

 

Table 19. Findings from triads phase of semiotic conversion 

Initial representation Pre-test problem-solving skills Post-test problem-solving skills 

Analysis of domain & range of function: 
2

(𝑥+2)(𝑥−1)
 14 students 31 students 

Analysis of symbolic representation of lipid profile 21 students 35 students 
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planning a new didactic activity to strengthen the 
semiotic treatments in class.  

The students stated that the difficulty in solving 
inequalities was related to arithmetic between fractions 
but not to the application of the arithmetic properties of 
inequalities. For this reason, it is recommended to 
dedicate some class sessions to deepen the arithmetic of 
fractions prior to the semiotic treatment triad phase. 

Semiotic conversion triad revitalizes the conceptual 
learning of inequalities from a mathematical and 
everyday perspective. Proof of this was the 
mathematical understanding of the table of cholesterol 
and triglycerides, as the students had already heard 
about it, and this aroused their interest in learning.  

Semiotic meaning triads methodology for concept 
learning develops students’ processes of semiosis and 
noesis, broadening the spectrum of opportunities for 
teachers and schools to design didactic strategies to be 
employed in their classroom practices and include them 
in their curricula. 
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