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ABSTRACT 
This research examined the effects of two instructional treatments on training 
performance in solid volume measurement and potential effects on solving capacity 
and displaced volume problems by two related studies. Fifty-three fifth-graders from a 
public elementary school in Taipei, Taiwan, participated. In the Phase 1 study, the 
children (n = 27) who received a curriculum that integrated geometric knowledge with 
concepts of volume measurement (GKVM) showed greater competence in solving 
problems than did those (n = 26) who received a curriculum that emphasized 
measurement procedures and volume calculation (VM). In the subsequent Phase 2, the 
same two groups received identical instruction in capacity, and the group that received 
the GKVM curriculum showed better problem-solving performance than did the other 
group. The one-on-one interview data showed that the children’s prior knowledge of 
solid volume measurement had a critical influence on the solving of advanced 
problems involving capacity and volume displacement concepts. 

Keywords: geometric knowledge, problem solving, solid volume, volume 
measurement, water volume 

 

INTRODUCTION 
Concepts of volume measurement and their related concepts such as capacity and volume displacement are 
important subject matters in school mathematics (Ministry of Education [in Taiwan], 2010; National Council of 
Teachers of Mathematics [NCTM], 2006). Despite the importance of volume measurement, elementary-school 
children frequently struggle with solving volume problems, such as seeing the structure of 3-dimensional (3D) 
objects in terms of units of measure and integrating information of three linear dimensions of the objects when 
reasoning about volume formulae (Battista & Clements, 1996, 1998; Vasilyeva et al., 2013). Children’s difficulties 
can also be found in solving displaced volume problems (Bell, Hughes, & Rogers, 1975; Dickson, Brown, & Gibson, 
1984). Accordingly, empirical studies on providing effective instructional interventions for supporting children’s 
construction of a comprehensive understanding of volume measurement become significantly important. 

A growing body of research has suggested that demonstrating two-dimensional (2D) or 3D shapes in different 
orientations and their spatial relations via static and dynamic representations through computer technologies may 
assist students in constructing geometric knowledge (Battista, 2007; Guven, 2012). Moreover, previous studies of 
Hsieh and Haung (2013) and Huang (2015a) found that a curriculum integrating geometric knowledge with 
concepts of volume measurement (GKVM), which uses dynamic software to improve students’ acquisition of the 
properties of 2D and 3D shapes and the related procedures required for the conceptual understanding involved in 
the measurement of solid volumes, promotes fourth- and fifth-graders’ understanding of solid volume 
measurement. Whether and to what extent the instructional treatment may facilitate children’s application of 
volume measurement skills obtained to the later solving of advanced volume problems (e.g., capacity and displaced 
volume) remain unclear. The ability to solve capacity and displaced volume problems is critical for successful 
performance in mathematics and science reasoning (Vasilyeva et al., 2013). It is important to go beyond 
documenting children’s learning of solid volume to explore how children see the relationships between solid and 
water volume. 

https://doi.org/10.29333/ejmste/109531
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The current study aimed to support the development of children’s volume measurement concepts by examining 
two aspects: (1) the effectiveness of two computer-based instructional treatments (the GKVM curriculum vs. the 
VM curriculum) on training performance of solid volume measurement, and (2) the potential effectiveness of these 
two instructional treatments on later capacity and displaced volume performance. 

THEORETICAL FRAMEWORK 

Essential Knowledge for the Understanding of Volume Measurement 
Volume measurement includes measuring the volume of the space occupied by a 3D object (exterior volume), 

and the amount of liquid or other pourable material it can hold (interior volume; capacity of a container) (Dickson 
et al., 1984; Van de Walle, Karp, & Bay-Williams, 2012). The terminology used to convey the notion of volume 
differs according to the types of materials such as solids and water.  

For cognitive construction of the structure of 3D cube arrays, Battista and Clements (1996, 1998) and Lehrer 
(2003) have suggested that when children conceptualize and enumerate the cubes in the structure of 3D arrays, they 
should integrate information about different spatial dimensions of the object such as perceiving the proper 
organization of faces representing the same cubes and understand that these cubes describe an orthogonal 
relationship among faces that specifies exactly how they are joined together. Thus, the development of a mental 
construct of a 3D cube array enables children to see such arrays as representations of composite units of cubes and 
to perceive them as space filling via an understanding of layers, which can be vertical or horizontal (Battista & 
Clements, 1996; 1998; Vasileva et al., 2013).  

Furthermore, knowing how to count the number of cubes in a layer and multiplying the quantity by the number 
of layers needed to completely fill in the solid rectangle attribute to procedural knowledge of volume measurement 
(Battista, 2007; Vasileva et al., 2013). All of these examples of conceptual and procedural knowledge of solid volume 
measurement, which form the core of understanding of the volume formula for rectangular solids (volume [v] = 
length [l] × width [w] × height [h], hereafter referred to as the volume formula), are closely related to geometric 
knowledge and 3D spatial reasoning.  

It is noteworthy that counting unit cubes and using the volume formula does not necessarily mean an 
understanding of the conceptual basis of volume measurement. The findings provided by Vasileva et al.’s (2013) 
and Huang’s (2015a) studies indicated that some fifth-grade students used the volume formula without an 
understanding of the conceptual underpinnings of the formula. Accordingly, to succeed in the measurement of 
cuboid volume requires a conceptual understanding integrating 3D geometric knowledge and the unit structure of 
an array and algorithms, which links the layer structure to the volume formula. 

The Conventional Curriculum and Instruction in Volume Measurement 
Previous studies (Battista & Clements, 1998; Tan, 1998) have indicated that the traditional curriculum offered 

for school mathematics cannot adequately develop children’s reasoning about measureable geometric quantities. 
Some previous studies on the conventional approach for teaching volume measurement (Huang, 2015b; Tan, 1998) 
have indicated that teachers are inclined to pay more attention to students’ unit calculations, measuring operations, 
and application of formulae while neglecting discussion of the relationship between numerical calculation of a 
measure and its conceptual structure. 

In line with these studies on volume measurement instruction, Huang (2015b) found evidence to suggest that 
the connections among the attributes of interior and exterior volume measurement and the structure of 3D arrays 
of rectangular solid are rarely addressed in volume lessons. The neglect of in-depth explorations involving space-
filling and layer structure while teaching volume measurement may cause children’s difficulties in solving volume 
problems (Battista & Clements, 1998; Vasilyeva et al., 2013). 

Contribution of this paper to the literature 

• The developed computer-based curriculum that integrated geometric knowledge with concepts of volume 
measurement by using the guided instructional approach provides efficacy to students’ understanding of 
measurement knowledge involving solid volume, water volume, and displacement volume. 

• The effective curriculum facilitated students’ understanding of volume formulae and reasoning in solving 
volume problems that required conceptual understanding of volume measurement. 

• The results demonstrate that children’s prior knowledge of solid volume measurement had a critical 
influence on their ability to solve advanced problems involving capacity and volume displacement concepts. 
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Children’s common difficulties in solving volume problems have been described by several studies (e.g., 
Battista & Clements, 1996, 1998). For example, the findings of Battista and Clements’ (1998) study revealed that 
close to 29% of the fifth-graders (n = 78) considered the rectangular arrays as the faces, but omitted cubes in the 
interiors of the array, and that these fifth-graders were found to use the volume formula incorrectly, in addition to 
five students who used the volume formula merely by rote. Memorizing volume formulae without understanding 
was also found in the study of Vasilyeva et al. (2013). Moreover, Battista and Clements (1996, 1998) suggested that 
students’ difficulty in understanding the structure of 3D rectangular arrays resulted from being less able to see 3D 
cube arrays arranged in coordination. They also argued that only having students stack cubes without reflection 
(e.g., thinking about the spatial structure of the 3D arrays and the layer structuring of the arrays) does not 
sufficiently promote understanding of the structure of 3D arrays because students may only focus on physical 
manipulation rather than on their thinking. 

Developing Children’s 3D Geometric Knowledge by Providing Dynamic Representations 
Providing dynamic representations in a 3D model, for which depth cues are provided in the diagrams and for 

which the dynamic representations are linked, facilitates children’s generation of mental images and mental 
transformation between 2D and 3D representations based on the visual information (Shaffer & Kaput, 1999). 
Specifically, the use of dynamic software for geometry teaching and learning permits students to look for patterns, 
check the properties of figures, and visualize transformation by manipulating a shape (Battista, 2007; Guven, 2012), 
in addition to physical manipulations (Hawes, Moss, Caswell, Naqvi, & Mackinnon, 2017). As the findings of 
Guven’s (2012) study illustrated, eighth-grade students’ understanding of geometric transformation significantly 
benefited more from receiving a curriculum involving the use of the dynamic geometry software Cabri than the 
other group whose curriculum involved only isometric and dotted worksheets. 

To aid children’s understanding of volume measurement, Huang (2015a) examined the effectiveness of two sets 
of computer-based curricula involving solid volume measurement with different amounts of geometric knowledge 
for enhancing fifth-graders’ competence in solving solid volume problems. One experimental group received the 
GKVM curriculum, in which the Cabri 3D software (Cabrilog Company, 2009) and flash media were used in 
PowerPoint® format to demonstrate the geometric properties of solids and the measurement of solid volumes with 
dynamic supports. The other group received the curriculum that involved concepts of solid volume measurement 
(VM curriculum), in which the volume formula was exhibited with static figures and textual descriptions in 
PowerPoint® format, but no dynamic figure was provided. Although both curricula contained similar subject-
matter components and cube-stacking operations regarding volume measurement, the GKVM curriculum 
highlighted the connections between the geometric understanding required to explore the structure of 3D cube 
arrays and the volume formula for volume measurement using dynamic geometric software. In contrast, the VM 
curriculum, similar to the conventional textbook unit on volume, emphasized the naming and measurement of the 
side lengths of three dimensions of a cube and the discovery of the volume formula based on demonstration with 
static figures and arithmetic computation of volume, while de-emphasizing the geometric knowledge embedded 
in volume measurement. The GKVM group outperformed the VM group in solving volume problems as a whole, 
as well as in solving problems that required conceptual understanding of volume measurement such as explaining 
the meaning of the volume formula. 

The promising results presented by the previous study imply that a guided instructional intervention 
highlighting explorations of the properties of 2D and 3D objects and connections between the layer structure of 3D 
arrays and the volume formula through cube-stacking and the use of dynamic geometric programs may facilitate 
children’s conceptual understanding of volume measurement concepts and their ability to solve volume problems. 

Linking Concepts of Solid Volume Measurement to Liquid Volume and Displaced 
Volume 

In a mathematical sense, capacity refers to the amount filling a hollow shape (Kerslake, 1976). Liquid volume 
and capacity are considered conjointly (Dickson et al., 1984; Kerslake, 1976). Dickson, Brown, and Gibson (1984) 
pointed out differences between solid and liquid volume measurement: (a) because liquids have no fixed shape, 
the notion of conservation (i.e., the volume of a liquid remains the same, regardless of the shape of the container) 
is needed to understand liquid volume; (b) different units are used to measure the volumes of solids (i.e., cubic 
centimeters or meters) and liquids (i.e., cubic centimeters or liters). Despite the differences in solid and liquid 
volume measurement, concepts of spatial measure involving notions of spatial extent and the spatial structure of 
3D objects are required for solving solid volume problems and capacity problems.  

Displaced volume, which involves the concept and procedures for volume measurement, is an advanced topic 
(Bell et al., 1975; Dickson et al., 1984). Bell, Hughes, and Rogers (1975) suggested that instruction on displaced 
volume involves the placement of a sinking object into a container of water to displace some of the water, causing 
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the water level to rise. Through observation and displacement experiments — for example, submerging an object 
in a calibrated bottle and describing the difference between the old and new water levels — children can learn that 
an object submerged in water displaces a volume of water exactly equal to the volume of the object (The University 
of Chicago School Mathematics Project, 2012). Specifically, a displacement method is demanded to determine the 
volumes of irregularly shaped objects, for which the use of volume formulae is difficult or impossible. 

Understanding of Mathematical Knowledge for Transfer Problem Solving 
By adopting the metaphors of networks of mental representations, Hiebert and Carpenter (1992) claimed further 

that understanding occurs when relationships between different mental networks are connected into increasingly 
structured networks, including the connections within and between networks. Recognizing similarities and 
differences between pieces of mathematical information may facilitate the growth of mental networks of 
knowledge. Thus, the more organized the mental networks become, the more understanding that develops.  

Most learning involves an enrichment of existing knowledge, which contains inference-making based on prior 
knowledge. This prior knowledge that is well understood and that is connected to related ideas fosters learning 
more than prior knowledge that is less understood (Hiebert & Carpenter, 1992). Accordingly, to support the 
development of children’s ability to solve problems and reasoning, cognitive researchers (e.g., Resnick, 2010) 
heavily emphasize children’s understanding of the domain knowledge of a subject and application of skills that 
they have learned to solve new problems efficiently. 

Concepts of solid volume measurement serve as a base for the understanding of water volume and displaced 
volumes. As Lehrer (2003) suggested, the development of measurement concepts may help students build linkage 
among various measures. Although little evidence is available to support the notion that a conceptual 
understanding of solid volume measurement based on a support of geometric knowledge promotes children’s 
grasping of the notions of capacity (e.g., water volume) and displaced volume, a clear perception of the 
relationships among interior and exterior volumes is expected to facilitate further application for the learning of 
these concepts. 

The Guided Instructional Approach for Teaching Volume Measurement 
Battista (2003) suggested that leading inquiry-based activities through problems which encourage children to 

discover, reflect on and discuss enumeration strategies is critical for strengthening children’s abilities to solve 
volume problems. This perspective serves as fundamental ground for a guided instructional approach, in which 
teachers play the role of facilitator of discussion for supporting students’ engagement in problem-solving activities 
and explaining their mathematical thinking (Hseih & Huang, 2013; Huang, 2015a, 2017). 

The guided instructional approach, in which instructors provide organized materials that incorporate children’s 
prior knowledge and learning opportunities in observation, manipulation, and discussion of the problems they 
solved, is based on studies on area measurement instruction (Huang, 2017) and volume measurement teaching 
(Huang, 2015a). The effectiveness of the approach for enhancing children’s ability to solve measurement problems 
involving area and volume is evident in these previous studies. 

The Research and Study Hypotheses 
This research included two related studies, Phase 1 and Phase 2, investigating the same participants’ learning 

outcomes. In both phases, the same teacher, who had 19 years of teaching experience, implemented both curricula 
using the same amount of teaching time and the same guided instructional approach that used teaching manuals 
and PowerPoint® materials.  

The following two questions were posed, with one for each phase: (1) what are the effects of the two 
instructional treatments, which involved the same instructional approach and teaching time but stressed a different 
treatment of volume measurement– namely, a conventional curriculum that emphasizes the numerical notions of 
volume measurement (VM) and an enriched curriculum that highlights the connection between geometric 
knowledge of 2D and 3D shapes and volume measurement (GKVM), with regard to strengthening children’s ability 
to solve solid volume problems? and (2) what are the potential effects of the two instructional treatments mentioned 
above on children’s later performance of solving capacity and displaced volume problems? If there were 
differences, the possible reasons that the children reported as helping them significantly with their later 
performance when solving problems involving capacity and displaced volume were investigated. 

The research tested two hypotheses. For Phase 1, hypothesis 1 tested that children who received the GKVM 
instructional treatment would gain a better understanding of the volume formula for rectangular solids and 
competence to solve volume problems than would children who received the VM instructional treatment. For Phase 
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2, hypothesis 2 tested that children’s performance in solving problems involving water volume and displaced 
volume would differ between the GKVM and VM groups. 

PHASE 1 

Method 
Research Design. A quasi-experimental design, which was conceptually similar to that of Huang (2015a), was 

used to examine the effects of the treatments. Although the two sets of curricula (GKVM and VM) were similar to 
those used in the previous study, the difference between the current and the previous study was that more cube-
stacking physical operations were involved in the VM treatment than were offered by the GKVM treatment. 
Children’s understanding of volume measurement was assessed by paper-and-pencil assessments involving 
concepts of volume measurement and numerical calculations for solid volumes. 

Participants 
The participants were 53 fifth-graders from a public elementary school in an urban district of Taipei, Taiwan, 

inhabited largely by middle-class families. The VM group comprised 26 children (14 boys and 12 girls) with the 
mean age of 11.12 years (133.42 months; standard deviation [SD] = 3.34 months). The GKVM group included 27 
children (13 boys and 14 girls) with the mean age of 10.97 years (131.67 months; SD = 4.57 months). All participants 
had already learned the basic concepts of volume, the meaning of 1 cm3, and the construction of 3D solids using 
unit cubes, but they had received no formal instruction in solid volume measurement or volume formulae. A t test 
revealed no significant difference between groups in terms of their mathematics achievement scores from the 
semester prior to the study (t[51] = 1.13, p = 0.26). 

Materials and Procedure 
Problem types. All treatments involved three types of problem requiring different levels of mathematical 

thinking and responses, based on Huang (2015a, 2017): numerical volume calculation (NVC), mathematical 
judgment (MJ), and explanation (EXP) problems. Examples of the three types of problem are shown in Figure 1. 

NVC problems required knowledge of the arithmetic equations used to determine volume and the output of 
numerical answers, representing calculation skills. MJ problems demanded correct judgment of a given solution 
statement. EXP problems, which aimed to evaluate the children’s understanding of volume measurement, required 
written explanations of responses to corresponding MJ problems. Thus, the MJ and EXP items required conceptual 
understanding and mathematical thinking involving high cognitive demand (i.e., high-level thinking, see 
Henningsen & Stein, 1997; Resnick, 2010) such as explaining, reasoning, and reflections on the problems with which 
they were engaged. 

Mathematical content of instructional treatments. Two sets of curricula (GKVM and VM) in PowerPoint® format 
were implemented. The curricula consisted of different combinations of the following seven subject-matter 
elements underlying the teaching problems: (A) the attributes of volume and the 1-cm3 cubes used to measure 
volume; (B) observation and direct and indirect comparison of the volumes of rectangular solids and 3D solids 

 

Figure 1. Examples of numerical volume calculation (Q1), mathematical judgment (first part of Q2), and explanation (second part 
of Q2) problems 
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represented in two dimensions; (C) the discrete meaning of volume, imparted by building 3D solids (or filling 
containers) with identical cubes and then counting the cubes. Component C was enlightened through the following 
activities: (i) encouraging students to engage in building 3D objects and cube filling in a given rectangular container 
(4 × 3 × 2 cm) by using 1-cm3 cubes and 2 × 2 × 2 blocks, and (ii) defining the base and height of a rectangular solid 
and their measures; (D) deriving the volume formula and using formulae to determine solid volumes; (E1) 
exploring the properties of rectangular prisms and related 3D spatial knowledge, including relations between 2D 
and 3D rectangular prisms; (E2) probing the structure of rectangular arrays through cube-stacking manipulation, 
including exploring separate views (front, top, and side) of rectangular arrays of stacked cubes; and (F) reasoning 
about volume formulae, with a focus on deriving the formulae for the volumes of common shapes, such as 
parallelepipeds and right-angled triangular prisms, based on knowledge of rectangular solid volume measurement 
and its formula. 

In the GKVM treatment, the Cabri 3D dynamic software and flash media were used to illustrate operations for 
teaching problems involving elements E1 and E2, described above, including geometric movements, folding nets 
for rectangular solids to make rectangular prisms, and stacking cubes to build rectangular solids. In contrast, the 
VM curriculum did not include elements E1 and E2. Thus, no illustrations of geometric motions or dynamic figures 
were provided for the VM treatment; static figures with textual descriptions were exhibited. Also, there were more 
cube-stacking physical operations (three manipulation cases) than offered by the GKVM treatment (one 
manipulation case). Examples of the content of the two treatments are shown in Figure 2. 

As for the teaching problems, the GKVM curriculum contained 36 question blocks and incorporated subject-
matter elements A–F. The curriculum consisted of two parts: (1) the first part comprised 21 question blocks 
addressing geometric shapes and movements and concepts of volume measurement and methods for measuring 
solid volumes, and (2) the second part included 15 question blocks addressing volume measurement of right-angled 
triangular prisms and parallelepipeds and reasoning about the formulae of these common shapes based on v = l × 
w × h and v = b × h. 

 
Figure 2. Examples of the dynamic figures exhibited in the GKVM treatment and the static figures displayed in the VM treatment 
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The VM curriculum contained 51 question blocks and incorporated subject-matter elements A–D and F. The 
curriculum included two parts: (1) the first part comprised 30 question blocks involving concepts of measurement 
of rectangular solid volume with static pictorial representations, as well as more cube-stacking opportunities, but 
de-emphasized geometric knowledge, and (2) the second part included 21 question blocks addressing the same 
subject-matter elements as in the second part of the GKVM curriculum. It is noteworthy that the second parts of 
the two sets of curricula were similar, except that no dynamic pictorial representation was supplied in the VM 
treatment.  

A teaching manual and cubes were provided for each treatment. Each manual illustrated a possible learning 
process in which the instructor anticipated students’ ways of thinking and offered ways to provide guidance 
through questioning and answering (see Appendix I). For each instructional session, a research assistant operated 
computers in the classrooms. 

Pre-test and post-test. The pre- and post-tests were equivalent assessments. To evaluate children’s 
understanding of the attributes of volume measurement and their application in daily life, short-answer (SA) 
problems that demanded short descriptions expressing the meaning of various measurements and their 
applications for measures in daily life were included. Each test, which could be completed in 40-45 minutes, 
consisted of four NVC problems, one SA problem, four MJ-EXP problem pairs, and two multiple-choice (MC) 
problems with corresponding SA (MC-SA) problem pairs (see Appendix II). 

The reliability of the pre- and post-tests was examined by administering paper-and-pencil tests to 24 fifth-
graders enrolled in a public school in New Taipei City, Taiwan. The initial mean pre-test and post-test values were 
29.89 (SD = 13.50) and 27.68 (SD = 10.32), respectively. The correlation of the two tests was 0.71 (p < 0.001). 

Procedure. The procedure included four steps. (1) Participants took the pre-test individually prior to the 
treatments. (2) The first parts of the curricula (volume measurement of rectangular solids) were implemented in 
the respective groups in five 40-minute sessions. (3) The post-test was administered immediately thereafter (one 
week after the pre-test). (4) The second parts of the curricula were implemented in one 40-minute session each. All 
class sessions were videotaped. 

Scoring and Data Analysis 
During the intervention period, two independent observers took notes and verified the fidelity of treatment 

implementation using the checklist used by Huang (2015a, 2017). Checklist items were used to assess the 
consistency of the two treatment groups in terms of instructional content, teaching activities, teaching time, use of 
teaching aids, the teacher’s circulation through the classroom, and the type and amount of the teacher’s 
encouragement. All checklist items showed at least 90% inter-observer agreement. 

Two raters and the first author co-operatively developed a rubric scheme for the scoring of the three main 
problem types based on that used by Huang (2015a). NVC problem scores ranged from 0 to 5, based on the 
arithmetic equation and numerical answers provided by the children. For the multiple-choice and MJ problems, 
scores of 0 or 2 were given. Scores for the EXP items corresponding to the MJ items ranged from 0 to 2, based on 
the accuracy and completeness of the written explanations. The corresponding MJ and EXP item scores were then 
summed to obtain a total score for each problem pair. Unweighted scores were used for these three problem types.  

Finally, the SA item scores ranged from 0 to 5, based on the accuracy and completeness of the children’s written 
descriptions. Because knowledge of the attributes of volume measurement, its application to everyday problems, 
and how to measure volume require an understanding of the volume concept and higher-level mathematical 
thinking, the SA item scores were weighted by doubling the raw scores. The total possible pre- and post-test scores 
were 70 each. 

To further examine children’s performance, various subscale scores were defined and compared between 
groups. The NVC subscale consisted of total scores on NVC problems that required arithmetic operations, whereas 
the conceptual understanding (CU) subscale, which was assessed to examine the children’s conceptual 
understanding of solid volume measurement, consisted of total scores on the MJ-EXP pairs, SA item, and MC-SA 
pairs. The pre-test and post-test subscale scores were compared. Children’s ideas for responding to the EXP items 
on the post-test were categorized into written explanations and arithmetical operations (or equations) based on 
their responses. 

Coding Reliability 
Based on two raters’ independent scoring of 27 randomly selected post-tests, inter-rater agreement (Pearson’s 

r) reached 0.99 (p < 0.01) for the NVC and MJ problem scores. Inter-rater reliability (k) for the EXP and SA problem 
scores was 0.83 (p < 0.01). 
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Results 
A t test was conducted to examine the pre-test scores of the two groups. The results showed no significant 

difference (t[51] = 1.23, p = 0.22). Analysis of covariance (ANCOVA), with total pre-test scores serving as the 
covariate, showed a significant main effect of the interventions on the total post-test scores, F(1, 50) = 6.45, p < 0.01, 
partial η2 = 0.11. The GKVM group performed better than the VM group (Table 1). 

The post-test NVC and CU subscale scores of the two groups were compared using ANCOVA, with the pre-
test scores serving as the covariate. The treatment effect on the NVC subscale scores showed that the GKVM group 
obtained slightly higher scores than the VM group. This difference did not reach statistical significance at the 0.05 
level, F(1, 50) = 3.22, p = 0.08, partial η2 = 0.06. The CU subscale scores were significantly higher in the GKVM group 
than in the VM group, F(1, 50) = 6.90, p < 0.01, partial η2 = 0.12 (see Table 1). 

In addition, children’s responses to these items, such as written equations, diagrams, and interpretations of 
mathematical ideas, may manifest their ways of thinking (Goldin, 2003) and, to some extent, their understanding 
obtained from the interventional curricula. To illustrate the tendency in the ways of children’s explanations of 
solving solid volume problems in the two groups, examples of children’s written explanations for the MJ-EXP items 
Q2 (comparison of the volumes of two rectangular solid figures) and Q4 (making mathematical judgements of a 
solution statement in terms of the given base area and height of a rectangular solid frame) in the post-test are shown 
in Figure 3. 

As shown in Figure 3, in response to Q2, child GKVM_A in the GKVM group explained her understanding of 
conceptual knowledge of volume measurement, including comparison of the base areas and heights of the two 
rectangular solids and the idea that two different solid shapes may have similar volume measures. In contrast, child 
VM_C in the VM group used formulae and numerical calculations to represent the use of procedural knowledge 
of volume measurement to explain her reasoning, without detailed explanation. In response to Q4, child GKVM_B 
in the GKVM group sought to explain his spatial reasoning based on the figure provided, which represented the 
geometric knowledge underlying volume measurement, and used equations as well as numerical calculations to 
justify his ideas. In contrast, child VM_D in the VM group provided an equation, which represented procedural 
knowledge of volume measurement, and briefly communicated his disagreement with the solution statement. 

Table 1. Mean Pre-Test and Post-Test Volume Measurement Scores by Treatment Group 

Group n 
Pre-test Post-test 

F   P   ES M SD M SD Adjusted M 
Total score 

GKVM 27 39.85 13.45 54.72 9.04 53.30 6.45   < 0.01   0.11 
VM 26 35.08 14.72 46.14 13.78 47.56 

NVC subscale 
GKVM 27 15.19 5.61 18.76 1.75 18.37 

3.22   0.08   0.06 VM 26 12.56 6.21 16.37 4.85 16.76 
CU subscale 

GKVM 27 24.67 8.84 35.96 8.30 35.26 6.90   < 0.01   0.12 
VM 26 22.52 10.50 29.77 9.85 30.47 

Note. M = mean; SD = standard deviation; ES = effect size; GKVM = geometry and volume measurement intervention; VM = volume measurement 
intervention; NVC = numerical volume calculation; CU = conceptual understanding 
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Taken together, the way children responded to the MJ-EXP items in the two groups were dissimilar. In 
explaining and providing justification, the children in the GKVM group showed stronger tendency than those in 
the VM group to describe notions of how to obtain the solution and reasons for their suggestions, which represented 
conceptual knowledge of volume measurement. The children in the VM group were prone to using arithmetic 
equations (or numbers) or short statements to explain their reasoning. 

Discussion 
The main result of the Phase 1 study was that the GKVM treatment yielded better student performance in 

problem solving than did the VM treatment under the same implementation conditions, in terms of computer-
based instruction, teaching time, and guided instructional approach. The results supported hypothesis 1.  

 
Figure 3. Example of children’s written explanations for their reasoning in Phase 1 study 
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The findings are consistent with the perspectives that students’ understanding of mathematics can be 
constructed through the design of learning environments where curricula embedded with coherently organized 
subject matters are given by guided instruction that calls for students’ thinking and reasoning (Hiebert & Carpenter, 
1992; Resnick, 2010). With the guided instruction approach, children in the GKVM group engaged in physical 
manipulations (cube stacking) and exploring (e.g., the separate views [front, top, and side] of rectangular arrays of 
stacked cubes) and discussing the layer structure of 3D cube arrays exhibited via static and dynamic software. 
These cognitive processes, which involve constructing referential connections between corresponding elements 
(e.g., geometric knowledge and volume measurement concepts) and matching structures in different 
representations, lead to conceptual understanding (Braithwaite & Goldstone, 2015; Seufert, 2003). This in turn 
promotes an enrichment of mental network of knowledge.  

Children’s understanding of solid volume measurement (i.e., seeing the connections among units, arrays, and 
dimensionality) in the geometric context supported by GKVM treatment facilitates their spatial and measurement 
reasoning, which in turn leads to a deeper understanding of the measurement of common prism volumes and 
volume formulae. This understanding also promoted the ability of the GKVM group to solve problems requiring 
conceptual understanding (the CU subscale). In contrast, the VM group’s performances on the post-test as a whole 
and the CU subscale were inferior to those of the other group even though cube-stacking physical operations were 
provided for the VM treatment. These results may be due to a lack of support involving the elements related to 
geometric explorations in the VM interventional curriculum. 

As for solving the NVC problems, the results showed no difference between the two groups. The current result 
is in accordance with the previous findings (Huang, 2015a), which indicated equivalent abilities in the two groups 
to solve the NVC problems similar to volume calculation problems in textbook exercises. Children who understand 
dimensionality and who are able to determine the side lengths of figures can calculate volumes using formulae 
(Dorko & Speer, 2015). Indeed, the VM group obtained procedural knowledge of solid volume measurement for 
solving numerical volume calculation problems from the VM treatment. However, such procedural knowledge and 
calculation skills in determining solid volumes were not strong enough to advance the VM group’s performance 
on the CU subscale. 

PHASE 2 

Description of the Phase 2 Study and Participants 
All 53 participants took the capacity pre-test and received a similar set of capacity instruction after Phase 1. The 

pre- and post-tests consisting of capacity and displaced volume measurement problems were administered before 
and after the capacity curriculum was implemented. Additionally, to obtain the children’s viewpoints on applying 
previously learned volume measurement knowledge to the solving of advanced volume problems, one-on-one 
interviews were conducted. 

Materials and Procedure 
Mathematical content of the capacity curriculum and instruction. A capacity curriculum in PowerPoint® format 

with dynamic pictures was developed and then implemented. The curriculum addressed the following four 
subject-matter elements underlying the teaching problems: (A) exploring the relationships between solid and liquid 
volume measurement; (B) using a calibrated bottle filled with water to measure the volumes of 3D objects (prisms 
and irregularly shaped objects); (C) measuring the volumes of irregularly shaped objects by water displacement; 
and (D) determining the interior and external volumes of a container with thickness, including measuring the 
exterior and interior bases and depth of a container with thickness and boxes with and without lips. 

Procedure. The procedure comprised three steps similar to those used in Phase 1. The capacity curriculum was 
implemented in three 40-minute sessions in one week. All class sessions were videotaped. 

Pre-test and post-test. The pre-test and post-test were equivalent assessments. Each test consisted of eight NVC 
items, one SA item, three MJ-EXP pairs, and three SA-EXP pairs (see Appendix III). The skills needed to solve the 
NVC, MJ, EXP, and SA problems were similar to those required in Phase 1.  

The reliability of the pre-test and post-test was examined by 24 fifth-graders enrolled in a public school in New 
Taipei City, Taiwan. Two raters independently scored the tests; the inter-rater agreement (Pearson’s r) reached 0.99 
(p < 0.01) for the NVC and MJ item scores. Inter-rater reliability (k) for the SA and EXP problem scores was 0.93. 
The initial mean pre-test and post-test scores were 48.06 (SD = 23.47) and 46.42 (SD = 26.37), respectively. The 
correlation between the two tests was 0.79 (p < 0.001). 

To obtain children’s viewpoints on the benefits of the previous volume measurement lesson for solving 
advanced volume problems, one-on-one interviews were conducted after the post-test by asking the questions “Did 
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the volume measurement lesson taught previously help you solve the problems involving water volume and 
displaced volume measurements? Why or why not?” The interviewees included 29 children who were randomly 
selected from the two groups (GKVM, n = 15; VM, n = 14). The interviewees’ responses were audio-taped and 
transcribed for analysis. 

Scoring and Data Analysis 
The procedures and checklist for verifying the fidelity of curriculum implementation were the same as those 

used in Phase 1. All checklist items showed at least 90% inter-observer agreement. 
Two raters and the first author cooperatively developed a rubric scheme for the scoring of the four problem 

types. As in Phase 1, the NVC problem scores ranged from 0 to 5. As the domain of displaced volume is more 
complicated than that of solid volume measurement (Bell et al., 1975; Dickson et al., 1984), and because a higher 
level of mathematical thinking was required to solve the SA, MJ, and EXP problems, the scores for these problems 
ranged from 0 to 5, based on the accuracy and completeness of the students’ answers. For the MJ problems, scores 
of 0 or 5 were given. The procedure for obtaining the total scores for the MJ-EXP and SA-EXP pairs was the same 
as that used in Phase 1.  

In the current study, the SA-EXP scores were weighted by doubling the raw scores for two reasons: (1) solution 
of the SA-EXP items demanded multiple mathematical concepts and volume measurement skills (e.g., 
understanding of interior and exterior volumes, comparing volumes of various containers with and without lids, 
explaining reasons for the mathematical judgements made for volume comparison, and how to measure the 
volumes of solid objects by using water displacement), and (2) these skills are the application of volume 
measurement concepts for solving complex daily life problems. Accordingly, the total possible pre-test and post-
test scores were 140 each. 

The pre-test and post-test NVC and CU subscale scores of the two groups were compared. The total CU subscale 
scores were calculated by summing the scores of the MJ-EXP pairs, SA item, and SA-EXP pairs. The procedure for 
calculating the total NVC and CU subscale scores was the same as used in Phase 1.  

The categorization of the interviewees’ viewpoints and reasons included three categories: (1) the concepts of 
volume and capacity are related, (2) the volume of a sinking object equals the volume of the displaced water, and 
(3) the water volume which rises is directly related to the volume of the immersed item (see Appendix IV). All of 
the interview data were independently analyzed by two raters.  

Based on the two raters’ independent scoring of 27 randomly selected post-tests, the inter-rater agreement (r) 
on the NVC and MJ problem scores reached 0.99 (p < 0.01), and the inter-rater agreement (r) on the SA and EXP 
problem scores was 0.96 (p < 0.01). The inter-rater agreement on the coding of the 29 interviewees’ responses to the 
interview questions reached 95%. 

Results 
The pre-test scores of the two groups did not differ, t(51) = 0.39, p = 0.70. ANCOVA of total post-test scores, 

with pre-test scores serving as covariates, showed a significant difference in total performance between the GKVM 
and VM groups, F(1, 50) = 4.29, p < 0.05, partial η2 = 0.08 (see Table 2). The GKVM group outperformed the VM 
group. 

ANCOVA of the post-test NVC subscale scores, with pre-test scores serving as the covariate, showed no 
difference between groups, F(1, 50) = 1.26, p = 0.27, partial η2 = 0.02. ANCOVA of the post-test CU subscale scores 

Table 2. Mean Pre-Test and Post-Test Capacity Scores by Treatment Group 

Group n 
Pre-test Post-test 

F   P   ES M SD M SD Adjusted M 
Total score 

GKVM 27 48.43 28.32 106.35 35.50 105.73 4.29   < 0.05   0.08 
VM 26 44.37 45.30 81.65 47.69 82.28 

NVC subscale 
GKVM 27 14.82 10.92 28.02 9.61 27.96 

1.26   0.27   0.02 VM 26 14.46 14.50 24.64 12.44 24.69 
CU subscale 

GKVM 27 33.61 23.64 75.93 27.37 75.36 5.18   < 0.05   0.09 
VM 26 29.90 35.62 55.48 35.97 56.05 

Note. M = mean; SD = standard deviation; ES = effect size; GKVM = geometry and volume measurement intervention; VM = volume measurement 
intervention, NVC = numerical volume calculation; CU = conceptual understanding 
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showed a significant difference between groups, F(1, 50) = 5.18, p < 0.05, partial η2 = 0.09. The GKVM group showed 
superior performance (see Table 2). 

The results showed that performance in the GKVM group was superior to that in the VM group. Furthermore, 
the mathematical ideas underlying the children’s written explanations in response to the SA-EXP and MJ-EXP items 
on the post-test revealed differences in the groups’ use of conceptual and procedural knowledge of volume 
measurement. Figure 4 shows examples of children’s written explanations in the post-test for the SA-EXP item Q4-
2 (comparison of the capacities of two prisms) and the MJ-EXP item Q6-4 (making mathematical judgements of a 
solution statement in terms of comparing the rising water levels of two prisms submerged in a measuring cup). 

Responding to the SA-EXP item Q4-2, child GKVM_E in the GKVM group tended to apply conceptual 
knowledge of volume measurement to explain his reasoning through explaining why the interior capacity of one 
prism was larger than the exterior capacity of another prism. In contrast, child VM_G in the VM group was prone 

 
Figure 4. Example of children’s written explanations for their reasoning in Phase 2 study 
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to use procedural knowledge such as equations and numbers to explain his ideas without interpretations (see 
Figure 4).  

In response to the MJ-EXP item Q6-4, child GKVM_F in the GKVM group used a fraction and volume concepts 
to justify his disagreement with the solution statement. In contrast, child VM_H in the VM group briefly expressed 
his disagreement with the solution statement because of the results of his calculations (see Figure 4). The observed 
differences between groups in the children’s use of conceptual and procedural knowledge of capacity seem to be 
consistent with the results of Phase 1. 

Interview Data 
All the interviewees from the two groups expressed that the treatment they had received in Phase 1 supported 

them in solving advanced volume problems because of close connections between measurements of solid volume 
and water volume. The interviewees’ reasons for explaining the relationships between measurements of solid 
volume and water volume included: (1) the need for volume measurement skills for capacity calculation, (2) similar 
measuring methods, and (3) the equivalence between the volume of a sinking object and the volume of displaced 
water or the amount of water level rise (see Appendix IV). 

For the GKVM group, 12 interviewees strived to describe the attributes of volume and capacity learned in the 
previous volume lesson to explain the relationships between measurement of solid volume and capacity. 
Furthermore, three interviewees described the differences between measuring volume and capacity, regardless of 
the relationships between the two measurements. For example, interviewee GKVM_G expressed: 

“… There are differences in measuring interior volume and exterior volume [of an object] … For 
volume calculations, the determination of external length, width, and height is needed, whereas 
calculation of a capacity should consider whether [the container] has or is without a lip. Also, you will 
get an incorrect calculation of capacity without considering the thickness [of that container].” 

All interviewees from the GKVM group considered that solid volume measurement skills served as the base of 
capacity calculation, although three interviewees were less able to explain the relationships well. For example, 
interviewee GKVM_C indicated:  

“If we jump to capacity without [learning] volume, this may lead to difficulty in understanding what 
the teacher taught. For instance, in the class we used and filled cubes in the rectangular box. When 
measuring the capacity of the box, the use of volume measurement learned earlier is needed. Put the 
white cubes into the box and then calculate the volume, and then the capacity of the box can be found.” 

It is noteworthy that no interviewees from the GKVM group addressed the conversions between units of 
volume and capacity such as “1 cm3 = 1 ml.” Additionally, four interviewees from the GKVM group pointed out 
the materials used or manipulations in the volume intervention, including the dynamic pictures in the PPTs and 
cube-stacking activities when they reported the benefits of the volume lesson taught previously. 

As for the VM group, 11 interviewees endeavored to describe the relationships between volume measurement 
and capacity via pointing out that volume measurement skills served as the foundation of capacity calculations, 
although there was a lack of complete description in their statements. For example, interviewee VM_O used cursory 
terms such as “outer” and “inner” for describing the differences between measuring volume and capacity. He 
indicated:  

“Volume and capacity are related. I think that the general meaning of capacity is about … umm … 
counting the number of items inside. Volume is the outer [measurement]. There are a few relationships 
between volume and capacity. That is, volume measurement counts the outer only, whereas capacity 
counts the inner.” 

Similar to those notions addressed by the GKVM group, the connections between measurements of solid 
volume, water volume, and displacement volume were indicated by the interviewees of the VM group such as “the 
approaches for measuring volume and capacity are similar” and ways of observing the changes in water levels to 
find the volume of a sinking item. Note that five interviewees of the VM group addressed “1 cm3 = 1 ml” when 
they expressed the reasons. For example, one interviewee (VM_I) stated: 

“Learning volume measurement will help us know ways to calculate the size of an object, the inner 
space of an object. As ‘1 cm3 equals 1 ml,’ calculating the volume is also measuring its capacity.” 
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Moreover, one interviewee (VM_H) indicated:  

“Learning volume measurement helps people know ‘1 cm3 = 1 ml.’ This is because I threw it [a 1-cm3 
white cube] into the water [in a container].”  

Looking closely at the explanations stated by the interviewees of the VM group who highlighted ‘1 cm3 = 1 ml,’ 
it seemed they considered that the relationships between volume measurement and capacity are generated from 
the conversions between units of volume and capacity.  

Taken together, the interview data showed some similarities in the benefits of the two treatments, including (1) 
the recognition that concepts of volume and capacity are related, and (2) understanding that the approaches to 
calculating solid and liquid volumes look alike despite some differences between the two measurements, and (3) 
the volume of displaced water and the amount of water volume rise equal the volume of a sinking object. Despite 
these similarities, some differences existed in the verbal explanations expressed by the two groups. The 
interviewees from the GKVM group tended to describe the 3D characteristics of a solid, differences and 
relationships between measuring solid volume and water volume and the displacement method, instead of 
conversions between units of volume and units of capacity. In contrast, interviewees from the VM group were more 
likely to address the category acquiring conversions between units. Ideas about counting and calculation seemed 
to be the core of their descriptions of solid volume measurement and capacity. 

Discussion 
The results of Phase 2 showed that previous treatment using the GKVM curriculum improved the children’s 

performance in solving capacity and volume displacement problems after receiving identical capacity instruction, 
relative to treatment using the VM curriculum. These results support hypothesis 2. These profits were manifested 
in superior performance on the CU subscale. The VM treatment aided the children’s acquisition of the liquid and 
displaced volume measurement skills, such as the calculation of a liquid volume that pertains to procedural 
knowledge, but it was less beneficial than the GKVM curriculum in terms of overall and CU subscale performances.  

Generally, interviewees from the two groups considered that the curricula provided were helpful for later 
problem solving. In spite of some similarities in the benefits of the two treatments, differences between the two 
groups appeared in the interviewees’ verbal responses. As the two groups received identical capacity instruction, 
these differences can be attributed to the varied volume measurement learning experiences in Phase 1.  

The interview data showed that the interviewees from the GKVM group were more likely than those from the 
VM group to describe the 3D characteristics of a solid, and differences and relationships between volume 
measurement and capacity as well as the displacement method. Specifically, four interviewees from the GKVM 
group explicitly pointed out the dynamic representations and cube-stacking activities in the previous volume 
curriculum, which impressed them while learning about solid volume measurement. This in turn may facilitate the 
comprehension of procedural knowledge demanded for the conceptual understanding involved in solid volume 
measurement (Battista, 2007) and measurement reasoning.  

In contrast, the interviewees from the VM group were prone to pay attention to measurement procedures and 
conversion units between volume and capacity, rather than the attributes of volume and capacity. To some extent, 
the interview data supported the observed differences between the two groups in terms of the children’s written 
explanations responding to the SA-EXP and MJ-EXP items.  

The results support Hiebert and Carpenter’s (1996) and Novick and Hmelo’s (1994) perspectives that a deeper 
understanding of the subject being taught, by knowing what method worked out and why, enables a student to 
relate the method to the subject (or problem). Such understanding can facilitate application performance in problem 
solving. These findings also suggest that children construct knowledge based on prior knowledge and experience 
(Braithwaite & Goldstone, 2015; Seufert, 2003), and that the level of understanding of a new domain (e.g., capacity 
and displaced volume) depends on previous knowledge of related procedures and concepts (e.g., solid volume 
measurement). 

GENERAL DISCUSSION 
This research focused on curricula and instruction for spatial measurement, more specifically approaches to 

enhancing fifth-grade children’s understanding of volume measurement for various materials. Findings 
demonstrate, compared to a control group receiving the volume measurement treatment that emphasized 
measurement procedures and volume calculations, the efficacy of implementing an enriched curriculum involving 
geometric knowledge and volume measurement for improving students’ learning of volume measurement. Phase 
1 showed that the fifth-graders who received the GKVM treatment obtained greater gains on the measures 
demanding a conceptual understanding of volume measurement and ability to solve volume problems than the 
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VM group that received the VM treatment. The Phase 2 study showed that children in the GKVM treatment group 
also demonstrated gains relative to the control group on the advanced volume task involving water volume and 
displacement volume. This is an advanced finding and one that provides preliminary evidence that solid volume 
measurement training may facilitate learning achievement of advanced volume measurement. Furthermore, the 
two related studies demonstrated the effectiveness of implementing an integrated curriculum incorporating 
volume measurement with 2D and 3D geometry knowledge through dynamic software to volume measurement 
instruction, an approach that aims at developing children’s understanding of measurement concepts pertaining to 
spatial measurement. 

On Enhancing Children’s Ability to Understand Solid Volume Measurement 
Our findings add to a growing body of research which has found that geometric knowledge is important for 

learning measurements involving spatial notions such as geometric conceptualization and reasoning (Battista, 
2007). A greater degree of mental adeptness in terms of geometric knowledge of shapes and layer structure of 3D 
cube arrays, in addition to numerical calculation skills, is a significant prerequisite for children’s development of 
measurement skills for volume measurement. 

Providing problem-solving activities integrating effective media can evoke children’s intuitive understanding 
and transformational reasoning (Guven, 2012; Shaffer & Kaput, 1999). For example, the children who received the 
GKVM treatment with a strong emphasis on developing the structure of 3D arrays of cubes through dynamic 
programs technology, in addition to concrete cube-stacking operations, which allowed them to “envision the 
transformations that these objects undergo and the sets of results of these operations” (Simon, 1996, p. 201). Such 
activities that provide visual and kinesthetic supports for the acquisition of cognitive representations may aid 
operations executed in mental images and reasoning (Shaffer & Kaput, 1999), which in turn facilitates linking the 
layer structure of 3D arrays and understanding of the volume formula (Hsieh & Huang, 2013; Huang, 2015a).  

Like the conventional curriculum, the VM treatment stressed numerical volume calculations with concrete 
cube-stacking operations without the aid of elements of geometric knowledge through dynamic software. The VM 
group obtained skills for determining solid volumes by using the volume formula but had limited gains on 
constructing a comprehensive understanding of solid volume measurement. The VM treatment assisted the VM 
group to acquire the procedural knowledge of volume measurement. Nevertheless, without supports of the 
elements of geometric knowledge, the aid of the VM treatment showed insufficiency to help children construct a 
high-level understanding of solid volume measurement, such as seeing the layer structure and linking it to the 
volume formula. All these concepts pertain to conceptual knowledge of volume measurement.  

Indeed, the effectiveness of the GKVM treatment was evident in the GKVM group’s performance in solving the 
volume problems as a whole and the subscale requiring explaining reasoning and justification. The findings of 
Phase 1 imply that children following different curricula may focus their attention on different elements of 
knowledge highlighted in the received curricula, which in turn leads to their construction of knowledge with 
different levels of understanding (Henningsen & Stein, 1997). 

On Strengthening Children’s Ability to Measure Water Volume and Displacement 
Volume 

The findings of Phase 2 showed that children in the GKVM group also achieved better problem-solving 
performance in capacity and volume displacement, which requires a deeper level of understanding of volume 
measurement (Bell et al., 1975; Dickson et al., 1984). They reflected this deeper understanding in their 
interpretations of solid and water volumes and in their reasoning and justification. These findings suggest that the 
previously gained understanding of volume measurement did boost the children’s problem-solving performance 
in the context of identical capacity instruction. As Hiebert and Carpenter (1992, p. 80) explained, “because 
understanding is generative, prior knowledge that has been understood is more likely to generate new 
understandings in new situations; relationships between prior knowledge and new material are more likely to be 
built.” The quality of students’ understanding of mathematics knowledge strongly influences what they learn and 
how they apply it to solve problems. 

On the basis of the findings, children’s ability to solve problems involving capacity and displacement volume 
can be fostered through providing sufficient mathematical experiences that are intended to encourage them to 
explore geometric knowledge underlying the volume measurement of a 3D object and discuss principles of volume 
measurement incorporated with their application to problem solving. Such in-depth explorations include 
indicating similarities (or correspondence) and differences between solid and water volume measurement and 
applications for displacement volume. 
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The findings of Phase 2 showed that, compared to the GKVM group, the VM group was inclined to pay more 
attention to the calculation procedures and conversions between units of solid volume and units of capacity for 
volume measurement, which pertains to procedural knowledge of volume measurement, rather than to the 
attributes of various types of volume. These results perhaps emerged from the experience obtained from the VM 
treatment. That is, a previous learning situation in which procedural knowledge of volume measurement (e.g., 
volume determination and calculations) was emphasized may have led the children to focus on finding suitable 
formulae for numerical calculations but desalinating a conceptual understanding of volume measurement (Huang, 
2015a). Prior experience in learning a subject may affect later outcomes of learning in a related domain (Seufert, 
2003). Thus, we argue that children’s abilities to understand advanced concepts and learn new materials depend 
strongly on their previously constructed knowledge, including what knowledge they construct and how they 
construct it at the beginning. Still, this viewpoint requires further examination. 

Limitations 
One limitation of the current study was that the number of participants in each group is insufficient to meet 

Creswell and Creswell’s (2018) recommendation for an experimental study in which at least 30 participants are 
needed for statistical significant tests. It would be interesting to replicate this study while increasing the number of 
fifth-grade students.  

Conclusion 
The findings of the study indicate that geometric knowledge plays an essential role in children’s learning of 

solid volume measurement. Furthermore, the understanding of solid volume measurement may have an important 
influence on later learning of capacity and displacement volume and performance in solving volume problems. 
Effective computer-based curricula integrated with geometric knowledge and volume measurement via the guided 
instruction approach, supported by empirical research, may contribute to the enhancement of students’ ability to 
handle solid and water volume measurement. 
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APPENDIX I 

Examples of Teaching Manuals of Geometric Knowledge and Volume Measurement 
(GKVM) Curriculum and Volume Measurement (VM) Curriculum in the Phase 1 Study 

Example of the Teaching manuals of GKVM curriculum 
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Example of the Teaching manuals of VM curriculum 
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APPENDIX II 

The Pre-test and Post-test Used in the Phase 1 Study 

The pre-test used in the Phase 1 study 
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The post-test used in the Phase 1 study 
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Problem type and numbers of items used in the pretest and post-test in the Phase 1 study 
Table 1. Problem type and numbers of items used in the pretest and post-test in Phase 1 

Problem type 
and item 

Numerical volume 
calculation (NVC) 

Mathematical judgement and 
explanation (MJ-EXP) 

Short answer (SA) Multiple choice and short 
answer (MC-SA) 

Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test 
Item 3-(1) 3-(2)  

4-(2) 
5-(1) 

3-(1) 3-(2)  
4-(2) 
5-(1) 

2 
4-(1) 
5-(2) 

7 

2 
4-(1) 
5-(2) 

7 

1 1 6-1 
6-2 

6-1 
6-2 

Total 4 4 41 41 1 1 22 22 
Note. 1. The footnote number, 1, represents a mathematical judgement and explanation item pair. 
 2. The footnote number, 2, represents a multiple choice and SA item pair 
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APPENDIX III 

The Pre-test and Post-test Used in the Phase 2 Study 

The pre-test used in the Phase 2 study 
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The post-test used in the Phase 2 study 
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Problem type and numbers of items used in the pretest and post-test in the Phase 2 study 
Table 2. Problem type and numbers of items used in the pretest and post-test in Phase 2 

Problem type 
and item 

Numerical volume 
calculation (NVC) 

Mathematical judgement and 
explanation (MJ-EXP) 

Short answer (SA) SA and explanation 
(SA-EXP) 

Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test 
Item 2-(1) 

2-(2) 
3-(1) 
3-(2) 
3-(3) 
5-(2) 
6-(1) 
6-(2) 

2-(1) 2-(2) 
3-(1) 3-(2)  

4-(2) 
5-(2) 
6-(1) 
6-(2) 

4-(3) 
5-(1) 
6-(4) 

4-(3) 
5-(1) 
6-(4) 

 

1 1 4-(1) 
4-(2) 
6-(3) 

4-(1) 
4-(2) 
6-(3) 

Total 8 8 31 31 1 1 32 32 
Note.  
1. The footnote number, 1, represents a mathematical judgement and explanation item pair. 
2. The footnote number, 2, represents a SA and explanation item pair. 
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APPENDIX IV 

Reasons Responded by the Interviewees’ of the GKVM and VM Groups in the Phase 2 
Study 

Table 1. Reasons responded by the interviewees of the GKVM group (n = 15) 

 
Note.  
1. GKVM = geometry and volume measurement instructional treatment. The alphabet after GKVM represents the code of one interviewee. 
2. The footnote numbers (e.g., 1, 2, and 3) represent the frequency of a description indicated by one interviewee who stated that more than one 
viewpoint was categorized. 
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Table 2. Reasons responded by the interviewees of the VM group (n = 14) 

 
Note.  
1. VM = volume measurement instructional treatment. The alphabet after VM represents the code of one interviewee. 
2. The footnote numbers (e.g., 1 and 2) represent the frequency of a description indicated by one interviewee who stated that more than one 
viewpoint was categorized. 
3. The superscript letters (e.g., milligrama and millimeterb) represent errors saying the word ‘milliliter.’ 
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