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Abstract 

A teaching practice consistent with the development of students’ mathematical reasoning 

requires teachers to hold a profound understanding of mathematical reasoning. The aim of this 

research is to study the development of middle and secondary mathematics teachers’ 

understanding about the processes of generalizing and justifying in a professional development 

course. Data collection included observation of the course sessions, with video recordings, and 

document collection of teachers’ and their students’ productions. A qualitative in-depth analysis 

was carried out focusing on the ways and complexity of generalizing identified by the teachers. 

The results indicate that teachers progressively focus their attention on these reasoning processes, 

identifying and characterizing them. The way the course was designed and enacted appears to 

have contributed to enable the teachers to deepen their understanding of two central 

mathematical reasoning processes, generalizing and justifying, in addition to their ability to foster 

and identify such processes in the work with their students. 

Keywords: generalizing, justifying, mathematical reasoning, teacher education, teachers’ 

understanding of reasoning processes 

 

INTRODUCTION 

The claim that the study of mathematics promotes the 
development of reasoning is widely acknowledged. 
However, a narrow and superficial view of 
mathematical reasoning usually underlies this idea. The 
need to look more deeply into the mathematical 
reasoning that can be developed at school has been 
acknowledged in recent years. In their “mathematical 
proficiency” model, Kilpatrick et al. (2001) give 
prominence to adaptive reasoning in which they include 
deductive and inductive processes. In the United States, 
the Common Core curriculum document (NGACBP & 
CCSSO, 2010) highlights eight mathematical practices, of 
which three make explicit reference to aspects of 
mathematical reasoning. More recently, the 
mathematical literacy model for the PISA 2021 Study 
adds mathematical reasoning to problem solving 
(OECD, 2018), thus reinforcing the importance of this 
dimension of the mathematical activity.  

However, it is necessary to know how the importance 
of mathematical reasoning indicated in curriculum 
documents is present in classroom practice. The teaching 
practice of teachers is crucial for students to develop 
their mathematical reasoning. Teachers need to have a 
thorough understanding of mathematical reasoning and 
to be able to create appropriate opportunities for its 
development. In particular, teachers need to know how 
to select tasks, which, while promoting mathematical 
reasoning, are also suited to their students (Brodie, 2010). 
This may require a sustained change in practice (Ellis et 
al., 2019). Research has pointed to the need for further 
studies to understand how teachers may be supported to 
adopt a teaching practice that fosters the development of 
students’ mathematical reasoning (Keaser, 2014). 

With a view to studying ways to promote such 
practice, a professional development course was held for 
middle and secondary school mathematics teachers. The 
present study was undertaken within this context and 
sought to study the development of teachers’ 
understanding about the processes of generalizing and 
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justifying. The following research questions were 
formulated: (i) How do the teachers, along the course, 
understand the process of generalizing, in its ways and 
complexity? (ii) How do the teachers, along the course, 
understand the process of justifying, in its ways and 
complexity? 

MATHEMATICAL REASONING AND 
REASONING PROCESSES 

The term “reasoning” is commonly used in everyday 
language, however this does not suggest that it carries 
the same meaning for those who use it. In fact, in the 
literature on mathematics education, several 
interpretations of the term may be found (Jeannotte & 
Kieran, 2017). From our perspective, reasoning, in any 
domain, is to make justified inferences (Mata-Pereira & 
Ponte, 2017). We reason when, by combining and 
recombining elements from information given, we arrive 
at new conclusions that were not originally explicit.  

There are several types of reasoning. Deductive 
reasoning comes from the Greek tradition and underpins 
Logic and, more recently, Mathematical Logic studies. 
Inductive reasoning derives from Galileo and Bacon and 
is at the root of modern science. Finally, abductive 
reasoning owes its formulation to Pierce. Deductive 
reasoning leads to conclusions that are necessarily true 
on the basis of a set of premises. In mathematics, it is 
closely associated with abstraction, formalization and 
axiomatization (Davis & Hersh, 1986). Inductive 
reasoning leads to draw conclusions from observed 
cases to a possible general law. Through abductive 
reasoning we formulate conjectures or explanatory 
hypotheses about unexpected phenomena (Silva, 2009). 
As highlighted by Pólya (1945, p. ii), “mathematics 
presented in the Euclidean way appears as a systematic, 
deductive science; but mathematics in the making 
appears as an experimental, inductive science”. 

In practice, mathematical reasoning occurs through 
various processes, such as conjecturing and 
generalizing, investigating why a generalization is true 
or false, justifying and refuting (Lannin et al., 2011). 
Generalizing and justifying are often assumed central to 
the work carried out in the mathematics classroom 
(Brodie, 2010; Stylianides et al., 2013).  

Generalizing is understood as “a process that infers 
narratives about a set of mathematical objects or relation 
between objects of the set from a subset of this set” 
(Jeannotte & Kieran, 2017, p. 9) or about a property 
common to a set of objects (Lannin et al., 2011). In other 
words, it is possible to generalize by broadening the set 
of mathematical objects on which we are working or by 
identifying a common property in this set. Conjecturing 
is a process of formulating non-arbitrary claims “about a 
general mathematical relation based on incomplete 
evidence” (Stylianides, 2008, p. 11). A generalization is 
the product of the process of generalizing. The 
formulation of conjectures and generalizations usually 
occurs through inductive or abductive reasoning.  

Justifying is a mathematical reasoning process “that, 
by searching for data, warrant, and backing, allows for 
modifying the epistemic value of a narrative” (Jeannotte 
& Kieran, 2017, p. 12). Lannin et al. (2011) present the 
concept of justifying in the sense of validating. 
According to these authors, justification occurs through 
the presentation of a logical argument based on already 
understood ideas. This logical argument must be 
constructed through a sequence of arguments based on 
ideas acknowledged as being true for a conclusion to be 
attained. When the conclusion reached stems from the 
falsity of the narrative, this is referred to as refutation 
instead of justification (Lannin et al., 2011). Justifying 
does not have to be formal and does not even have to be 
correct, but it is still a mathematical reasoning process 
(Lannin et al., 2011; Lithner, 2008). A justification is the 
product of the process of justifying. 

TEACHING AND TEACHING 
EDUCATION TO PROMOTE 
MATHEMATICAL REASONING  

A teaching practice that facilitates the development 
of students’ mathematical reasoning is complex and 
demanding (Brodie, 2010). From the outset, an in-depth 
knowledge of mathematical reasoning is essential for 
teachers to plan learning experiences that will foster 
students’ reasoning (Davidson et al., 2019), to support 
students in the classroom by giving them clues to 
proceed, and to recognize opportunities to pose new 
challenges to students, as an extension of the task, as 

Contribution to the literature 

• The article aims to study the development of mathematics teachers’ understanding about the processes of 
generalizing and justifying in a professional development course. 

• The contribution of this study is to present the evolution of middle and secondary school teachers, in 
relation to these two central mathematical reasoning processes, based on a unified analytical framework. 

• The way the course was designed and enacted, giving special relevance to collaboration, to discussion of 
texts and to put tasks into practice to promote students’ mathematical reasoning, appears to have 
contributed to enable the participants to deepen their understanding of generalizing and justifying 
processes. 
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evidenced in studies with early years’ teachers (Herbert 
& Bragg, 2020).  

Models can help teachers analyse students’ 
justifications, identify their level and guide them to more 
complex levels (Sowder & Harel, 1998). The model in 
Figure 1 considers the different levels of complexity and 
formality of the justifying process. In this model, the 
increasing levels of complexity shift from the absence of 
justification to formal justification. Some forms that the 
justification process can take are also indicated, such as 
logical coherence, the use of generic examples and 
mathematical procedures or properties. Increasing levels 
of formality shift from non-formal to formal, depending 
on the representations used. 

It should be noted that the different levels of 
formality should be developed progressively. 
Attributing excessive importance to formal proof will 
exclude students from different age groups, thus 
removing them the opportunity to make sense and 
establish mathematical relationships (Stylianides, 2008). 
A strict focus in formal deductive logic encourages a 
passive attitude towards mathematics, whereby the 
students contact with the finished structure of this 
science instead of viewing it as an activity under 
construction (Watson, 1980). This has resulted in the 
recent tendency to value the undertaking of justification 
through informal language, making it possible to work 
on different mathematical reasoning processes with 
students from the beginning of their schooling. For 
example, a study with students from grades 3 and 4 
showed the importance of involving them in reasoning 
processes, such as conjecturing, generalizing and 
justifying (Widjaja et al., 2020). Comparing and 
contrasting, through observation and construction, 
enabled the students to formulate conjectures and to 
progressively develop their ability to justify by 
identifying counterexamples and, sometimes, by 
constructing logical arguments. In a study by Hoyles 
and Küchemann (2002) with grade 8 students, were 
observed two constrains to formulate justifications: the 
lack of recognition of the need to justify and the lack of 
students’ focus of attention (Mata-Pereira & Ponte, 2012). 
Another study, by Mata-Pereira and Ponte (2012), with 
grade 7-9 students, showed that the justification process 
does not occur spontaneously. It is by means of the 

teacher’s questioning that students are able to justify, 
using properties related to mathematical concepts and 
counterexamples that refute a claim. 

Focusing on the work of teachers, Brodie (2010) 
monitored the teaching practices of a group of 
mathematics teachers who were working collaboratively 
in secondary school, and the results showed “how 
difficult the task of engaging learners in genuine 
discussion about reasoning really is” (p. 55). In addition, 
El Mouhayar (2020), in a study with grade 7 teachers, 
shed light upon two factors that may contribute to 
fostering the emergence of different levels of students’ 
generalizations, namely the performance of multiple 
roles by the teacher (initiator of the interaction and 
asking for clarifications and justifications), and 
alternation of the type of knowledge 
(factual/conceptual/procedural-algorithmic and 
procedural-inquiry). 

In order to develop practices that foster the 
development of students’ ability to reason, the teacher 
must be attentive to a number of factors, such as the 
task’s potential to promote reasoning, suitable actions to 
explore reasoning with students, and understanding the 
work produced by the students in order to support them 
in the most appropriate manner (Davidson et al., 2019). 

The main aim of highlighting the importance of 
deepening the teacher’s understanding of reasoning is so 
that he/she may be suitably equipped with the tools 
required for a change in practices. In this regard, a study 
carried out with secondary teachers pointed to “the 
importance of a perturbation to foster awareness of the 
need for a change” (Keazer, 2014, p. 177). In addition, 
Brodie (2010) indicates that “to improve practice, 
teachers need to recognize the shifts that they have made 
and those they still need to make” (p. 200).  

Thus, teachers should be enrolled in professional 
development processes that provide opportunities to 
enhance their knowledge about how to develop 
students’ mathematical reasoning (Borko et al., 2010; 
Weiss & Pasley, 2006). In one hand, such professional 
development processes should be based on knowledge 
about teaching and learning mathematical reasoning 
and reasoning processes (Weiss & Pasley, 2006). On the 
other hand, these professional development processes 
should enroll the participant teachers in exploring 

 
Figure 1. Levels of formality and complexity of justification (Mata-Pereira & Ponte, 2018) 
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classroom tasks and how to enact those in the classroom, 
contributing to opportunities for reflection on their 
learning and the effectiveness of strategies they may use 
as teachers (Borko et al., 2010). Additionally, 
professional development processes must be supported 
over time, aiming teachers to integrate new knowledge 
into practice (Weiss & Pasley, 2006). Therefore, it is 
expected that such professional development processes 
consider the articulation with the teachers’ practice, 
which translates into opportunities to explore and 
experience the knowledge on how to promote the 
students’ mathematical reasoning in their own 
classroom. 

THE PROFESSIONAL DEVELOPMENT 
COURSE  

The professional development course, from the 
responsibility of the authors of this paper, took the form 
of a workshop, and was conducted in eight face-to-face 
sessions (Sx) with a total of 20 hours, plus a further 20 
hours of autonomous work by the teachers. To create a 
favourable context for the professional development of 
teachers and to have an effect on their practices, the 
course was designed to create opportunities for sharing 
and reflecting on ideas and for promoting teaching 
practice experiences, in a collaborative context in face-to-
face sessions and in autonomous work moments (Borko 
et al., 2010; Smith, 2001).  

Three different types of tasks were proposed to the 
teachers: to solve professional development tasks (PDT), 
to read and discuss texts, and to put into practice tasks 
to promote students’ mathematical reasoning (Table 1). 

The three first PDT included mathematical tasks to be 
proposed to students, their solutions and classroom 

situations. The focus of these tasks was the process of 
reasoning and its relation to the tasks’ characteristics and 
the teachers’ actions to promote it. For example, PDT 1 
begun with the presentation of two tasks to propose to 
grade 7 students. The first task asked to discover a 
property of numbers that we get by adding three 
consecutive natural numbers, and the justification of the 
validity of that property. The second task required to 
show that adding four consecutive natural numbers the 
sum is an even number. Besides solving the tasks, the 
teachers’ role was to indicate the characteristics that, in 
their view, made these tasks well fit to promote students’ 
reasoning and to analyse students’ productions and 
episodes of the mathematics class. In PDT 4, the teachers 
wrote a reflection, in groups, about the course. The three 
texts focus in different topics (see Table 1) and were 
written a professional style (two of them were published 
in professional journals). They have similar 
characteristics, such as developing some theoretical 
ideas illustrated by examples that are either 
mathematical tasks with students’ solutions or 
mathematics classroom episodes. The objective of 
including these texts in the course was to help 
participants to construct a theoretical framework about 
mathematical reasoning. The texts were previously read 
by the teachers in autonomous work, and then discussed 
in face-to-face sessions, addressing in each case which 
were the main ideas, what was new or difficult to 
understand, and which implications could be drawn to 
teaching practice. 

For the two Into Practice moments, the teachers were 
divided into four groups, according to the grades they 
were teaching at the time (grades 7, 8, 9, and grades 10-
12). Each group planned two classes, one for each Into 
Practice moment aimed at promoting students’ 

Table 1. Work developed in the professional development course 

Session/work Tasks developed 

S1 Solving and discussing PDT 1 
Individual autonomous work Reading of text 1 (Meaning of mathematical reasoning, types of reasoning, and 

reasoning processes) 
S2 Discussion of text 1/Solving and discussing PDT 2 
Individual autonomous work Reading of text 2 (Teachers’ practices that promote mathematical reasoning) 
S3 Discussion of text 2/Construction of the lesson plan for Into Practice I 
Group autonomous work Conclusion of the lesson plan and its implementation by all teachers of each group 

Preparation of the oral presentation 
S4 Oral presentations of Into Practice I and discussion 
Individual autonomous work Reading of text 3 (Principles of design of tasks to promote mathematical reasoning) 
S5 Discussion of text 3/Solving and discussing PDT 3 
Individual autonomous work Collection of materials for planning Into Practice II 
S6 Construction of the lesson plans for Into Practice II 
Group autonomous work Conclusion of the lesson plan and its implementation by the teachers of each group 

Preparation of the oral presentation 
S7 Oral presentations of Into Practice II and discussion 
Group autonomous work Conclusion of the implementation by the teachers of each group 

Preparation of the oral presentation 
S8 Oral presentations of Into Practice II and discussion/Resolution and discussion of PDT 4 
Individual autonomous work Final written reflection 
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mathematical reasoning, including the design or 
selection of a task to propose in their classrooms. The Into 
Practice moments finished with an oral presentation by 
each group to the whole group that included an 
explanation of the main objectives of the proposed task, 
the dynamics of the class, and the analysis of students’ 
solutions focused in their features related to 
mathematical reasoning. 

METHODOLOGY 

This research adopted an interpretive approach 
(Schwandt, 1994), since it sought to study the 
development of teachers’ understanding about the 
processes of generalizing and justifying during a 
professional development course. More specifically, it 
aimed to ascertain the ways and complexity considered 
by teachers in the processes of generalizing and 
justifying. 

The selection of the participants initiated by a 
dissemination of this offer for an in-service teacher 
education workshop. A group of 16 mathematics 
teachers who teach students from grades 7 to 12 showed 
interest in participating within the proposed schedule. 
These were teachers with a diversified professional 
experience and whose teaching experience ranged 
between 4 and 33 years. Most of these teachers had 
invested in their professional development beyond their 
initial academic education for teaching, and seven had 
completed an academic master’s degree in the field of 
Didactics of Mathematics. Most of these teachers had 
received their teaching degree at University of Lisbon. 

All the teachers, the students from their classes and 
their respective parents/guardians and school heads 
were informed of the study’s aims and of how the data 
collection would be carried out. Except the students, 
they all signed a document giving their informed 
consent. To guarantee anonymity, all the participating 
teachers were given a fictitious name. 

The data collection included observation of the 
course sessions, with video recordings, and document 
collection of the answers given by the teachers to PDT, 
teachers’ plans designed by the groups, students’ 

productions during the Into Practice classes and teachers’ 
written final reflection. 

The data analysis has been made by the four authors 
of this paper, in pairs, each of these being responsible for 
one of the two reasoning processes considered in the 
study. After a systematic reading of the data, the most 
relevant data was selected and object of content analysis 
(Bardin, 2003), considering as units of analysis the 
intervention of a teacher or production of a teacher or a 
group of teachers. To be able to gain evidence of possible 
development of the teachers’ understanding in both 
reasoning processes, the analysis of data was organized 
in two phases: a first one, that focuses on the session 1, 
when the first discussion about reasoning processes 
occurred, and a second one, that centres on data from 
sessions 4, 7, and 8 where the presentations of the two 
Into Practice moments took place. After analysing the 
data according to the subcategories considered (Table 2), 
to guaranty quality of content analysis, such as 
exclusivity, homogeneity and pertinence (Bardin, 2003), 
each researcher selected a set of data that was discussed 
by the four authors. We had in some cases difficulty in 
interpreting what the teachers were saying, because the 
way they expressed themselves. These situations were 
solved by discussion among the four authors. 

Focused on the mathematical reasoning processes of 
generalizing and justifying and considering the 
literature review and the collected data, the categories 
and subcategories of analysis were developed as 
presented in Table 2, representing a unified framework 
to study both reasoning processes. In particular, we 
considered two main kinds of generalizations – rules 
underlying patterns and properties of mathematical 
objects (Ellis, 2007; Jeannotte & Kieran, 2017). It is to be 
noticed that only justification by exhaustion did not 
emerge in the analysis. 

TEACHERS’ UNDERSTANDING OF 
GENERALIZING 

The Ways of Generalizing 

In session 1, while identifying task characteristics that 
promote students’ mathematical reasoning and aspects 
of students’ mathematical reasoning, most teachers’ 

Table 2. Categories and subcategories of analysis of reasoning processes 

Categories 
Subcategories 

Generalizing Justifying 

Ways - Identifying a pattern 
- Identifying a property 

- Empirical evidence 
- Generic example 
- Mathematical procedures or property of objects 
- Logical coherence 
- Proof by contradiction 
- By exhaustion 

Complexity - Formal 
- Formal but incomplete 
- Not formally presented 
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references to generalizations where not clearly related to 
generalizing as a reasoning process. For example, Isabel 
points out an incorrect generalization from a student not 
explicitly as a generalization but rather as a first step into 
reasoning: 

When he says, “Oh, if I sum the first with the 
second it always yields the third”, it does not 
work, but it that case he is already beginning to 
reason. (Isabel, S1) 

Also, in the first session, other teachers rely on other 
expressions as “discover” or “exploring”, to refer to 
conjectures or generalizations. 

However, some teachers occasionally made explicit 
references to generalizing. When doing so, they 
identified generalization or conjecture as a component of 
mathematical reasoning and associated this feature with 
the identification of a pattern or regularity:  

“When they are looking for a pattern, a 
generalization, they begin by making initial 
attempts, and this is how they start to put their 
reasoning together.” (Julia, S1) 

Teachers also make reference to conjectures or 
generalizations as the identification of patterns or 
regularities in most situation of the presentation of Into 
Practice I. These references considered mostly 
conjectures or generalizations based on specific cases:  

In general, they all tested one, two or three 
examples, and then they tried to formulate a 
conjecture [generalization]. (Maria, grade 9 group, 
S4) 

Then, in question 2 [ the aim was] for them to 
check alternately the number of edges of the 
prisms, sometimes they were even, sometimes 
odd, depending on how many sides the polygon 
had, and then to generalize a relationship between 
the parity of the number of edges of the prism and 
the [number of] sides of the polygon. (Vitor, grade 
8 group, S4) 

Although sometimes the identification of patterns 
was linked to conjecturing, the conjectures referred by 
the teachers had a general nature, thus being implicitly 
related to the generalizing process. 

The reference to generalization as the identification of 
a pattern was again evident in the presentations of Into 
Practice II, but with a more consistent formulation, such 
as in grade 8 group’s planning task regarding an issue 
that aimed to obtain the general term of a sequence 
(Figure 2). This teachers’ reference to generalizing also 
seems to reflect the principles to task design as it refers 
to construction and one of the principles proposed by 
text 3 (S4) is to include questions that promote 
generalizations based on construction. 

This idea of generalizing as an identification of a 
pattern was then reinforced during the presentation: 

We will infer a rule based on the observation of 
what is constant in some specific cases. 
Generalization, in this case we expected what 
actually happened, by construction, after 
recognition of a pattern. (Sonia, grade 8 group, S7) 

From the very first session, teachers also referred to 
generalizing as the identification of a property. The task 
proposed in the first session included a generalization as 
an identification of a property. Whereas the teachers 
rarely referred to generalizing in this first session, a 
single situation emerged where one teacher (Teresa) 
indicates that a generalization may be formulated by the 
identification of a property (Figure 3). 

In this situation the teacher recognizes not only the 
identification of a property as a generalization, but also 
the difference between this and generalizing as the 
identification of a pattern by “beginning from particular 
cases”. 

In the presentation of Into Practice I and II, the 
reference to generalization as an identification of a property 
also emerged. In Into Practice I, in the context of grade 8 
task, Luisa referred to the identification of a property, 
implicitly common to a set of objects, corresponding to 

 
Figure 2. Part of grade 8 group’s planning in Into Practice II 

 
Figure 3. Teresa’s answer about characteristics of the task in 
S1 
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the generalization present in the answer of a group of 
students (Figure 4). 

In the second question, they had already worked 
out it was triple, they had immediately concluded 
that the total number of edges of the prism was the 
triple of the number of sides of the polygon base 
and when they got to the third [question] they 
called me: “what am I supposed to do here? I’ve 
already answered, what more can I do?” and I said 
“OK, but can you explain this property better?” 
(Luisa, grade 8 group, S4) 

On the other hand, in Into Practice II, when analysing 
the generalization presented by the students (Figure 5), 
Vitor explained that they had identified a regularity 
which enabled the construction of the sequence (“a 
division by 2”), but he also referred to the students’ 
recognition of a mathematical property of the numbers 
obtained, which allowed them to arrive at the 
generalization. 

The students recognise from one day to the next 
that a division by 2, because here they have ½ 
divided by 2, here ¼ divided by 2, will lead to 
these fractions. And then they recognise the 
powers of 2 property of the denominator and 
generalize. (Vitor, grade 8 group, S7) 

For some of the teachers, considering generalizations 
as the identification of a pattern and the identification of 
a property was, in fact, a novelty or a relevant learning 
aspect of the teacher professional course, as they refer in 
their final written reflections: 

During the course I had the opportunity to learn 
about mathematical reasoning processes . . . 
[namely] generalization [that] . . . can assume 
several forms as recognizing a pattern or a 
property common to a set of objects, [and] 
broaden the domain of validity of a property to a 
broader set of objects. (Margarida, final reflection) 

The reflection about reasoning processes and their 
implications in teaching was also an important 
moment of learning. Generalizing . . . goes from 
the observation, construction, or transformation 
of previous knowledge to recognizing a common 
pattern or property, broadening the domain of 
validity of a property. (Isabel, final reflection) 

In summary, the meaning of generalization is mostly 
associated with the identification of a pattern or the 
identification of a property. Whereas some of these 
meanings emerged occasionally in the first sessions, 
there were also situations in these first sessions where 
the meaning of generalizing was not clear and this 
process was not identified as such, but instead with the 
processes of exploring or trying some particular cases. 
Regarding the identification of a pattern or regularity, 
this association seems to be present from the very 
beginning of the course, but the association is more 
explicit during the presentations of experiences of the 
two Into Practice moments. Generalization by 
identification of a common property of a set of objects 
was most salient in Into Practice II, albeit it also emerged 
in a situation in the first session and also in a more 
implicit form in Into Practice I.  

As such, the ways of generalizing identified by the 
teachers emerged from their activities in the first task, 
but were more visible as they moved towards Into 
Practice I and later to Into Practice II. There were even 
teachers that recognized that these were new ideas for 
them. Along this path, it is visible the enactment of some 
of the ideas discussed in the course, as the principles of 
design of tasks to promote mathematical reasoning (text 
3) in planning and presenting Into Practice II (e.g., Figure 
2 and subsequent teacher’s comment). 

The Formality of Generalization 

Teachers’ identification of a close relationship 
between generalization and representation in algebraic 
language became clear early on in the course. This 
relationship began to emerge with reference to 
“algebraic generalization”: 

 
Figure 4. Solution of a group of students, commented by 
Luisa 

 
Figure 5. Students’ solution, commented by Vitor 
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We are talking about numbers and they take 
numbers, in examples with numbers, instead of 
going straight to an algebraic generalization. 
(Vitor, S1) 

In the first presentation of Into Practice I, the grade 7 
group did not refer to the process of generalizing (or 
conjecturing) at any time in their presentation. In view of 
this situation, during the discussion of the presentation, 
the teacher educator asked a question related to this 
process. The teacher’s response reflects the strong 
connection assumed between generalizing and 
representation in algebraic language:  

Teacher educator: And did any of the students 
generalize? 

Marta: No (…) In my case, they didn’t work at all 
on algebraic expressions. (grade 7 group, S4) 

This association was also highlighted by Vitor when 
referring to one student’s response to the task that 
sought to establish the relationship between the total 
number of edges of a pyramid and the number of sides 
of a polygon base (Figure 6). The teacher mentioned the 
generalization represented in the diagram, but 
highlighted the generalization that took the x variable. 

The student here: base edges 3 and in total 6, 4 is 
8, if it’s a it’s 2a, and so he’s already making a 
generalization. (…) the student gives some 
examples here, but manages to generalize in the 
next stage: at the base it has x or x edges, on the 
side also, therefore in total it has 2x, I found this 
very interesting. (Vitor, grade 8 group, S4) 

Also, in the grade 9 group, Vera seems to consider the 
students’ conclusion as a generalization only if they 
considered variables as measurements of the rectangle. 
This teacher seemed not to consider a generalization a 
statement that is based on a limited number of specific 
cases: 

I had a group that only worked with concrete 
measurements and reached the conclusion 
through several examples that the measurement 
of the area of the final rectangle decreased by 1% 
and the other groups managed to come to a 
generalization [using algebraic language]. (Vera, 
grade 9 group, S4) 

In these teachers’ presentations, representation in 
algebraic language took on a central role, demonstrating 
the importance given by teachers to formally presented 
generalizations. 

The formality of generalization was also highlighted 
in the presentation of Into Practice II, for example when 
teachers referred to a generalization that was 
operationalized through an algebraic expression (rule or 
law) modelling the proposed situation. An example of 
this situation is the intervention of Pedro on the 
students’ solutions to the afore-mentioned task on the 
number of strokes of the ball on a table identical to a 
snooker table: 

I suddenly had several groups starting to work on 
the ratios between the tables, they ignored the fact 
that they were slightly different, because they 
understood that the pattern repeated itself, so they 
just worked with those elements and in that way 
discovered some laws. They didn’t all manage to 
properly come up with a generalization. Only one 
group, in fact. (Pedro, grades 10-12 group, S7) 

Additionally, informal generalizations were also 
valued by the teachers in this final phase of the course.  

The use of other representations in the process of 
generalizing was highlighted, where modelling of the 
situation through more suggestive representations was 
considered crucial to obtain the desired generalization: 

They then used their pencil cases to make 6 people 
and did the whole strategy and understood the 
expression easily. (…) In fact, it was this form of 
active representation they were working on that 
helped them to get there easily. (…) The ones who 
managed it out of my groups were the ones who 
didn’t write it down straight away [the algebraic 
expression]. I mean, some of them wrote it (…) but 
others didn’t, and it was a good thing that they 
didn’t because they managed not to lose the 
context. (Rita, grade 9 group, S8) 

In another situation, based on a task seeking to obtain 
the general term of a sequence, Luisa also considered 
representation in a table as being fundamental to 
students’ generalizing: “Suggesting a table was very 
effective in terms of the kids managing to generalize.” 
(Luisa, grade 8 group, S7) 

In summary, from the very beginning of the course, 
the teachers valued generalizations in algebraic 

 
Figure 6. Other student’s solution, commented by Vitor 
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language and formally presented. Nevertheless, in the 
second part of the course, less formal generalizations 
were also considered as relevant, particularly when 
teachers analysed students’ solving processes. The 
progressive acceptation by teachers of informal ways of 
generalizing (the same occurred with justifying) was the 
reflection that teachers made regarding students’ 
productions and classroom episodes that consider 
informal ways of justification. Such examples arise in the 
first two texts and in the tasks carried out. 

TEACHERS’ UNDERSTANDING OF 
JUSTIFYING 

The Ways of Justifying 

In the teachers’ answer to the second part of PDT 1 
emerged the idea that the justification process is related 

to validating conjectures and justifications (Figure 7 and 
Figure 8). 

In this session, teachers almost did not refer how the 
process of justifying may be enacted. However, since the 
beginning of the course, it is clear that for the teachers a 
general rule cannot be justified simply by verifying some 
particular cases, as it was referred by Rita when analysing  

an episode presented in PDT 1. According to her, to 
study some cases may be useful to conjecturing, but to 
justify it is necessary to use an algebraic representation, 
in other words, to consider a general case:  

To discover the properties, they will experiment 
some examples and formulate conjectures. An 
algebraic representation will be made a-posteriori 
to prove that any number satisfies the 
correspondent conditions. (Rita, grade 9 group, 
S1) 

During the PD sessions, in analyzing students’ 
productions, Pedro and Marta restated this assumption. 
As they analyzed the productions of their students, they 
verified with surprise that some of them just verified one 
or two cases, considering that such procedure was 
enough to justify the response: 

Two examples do not prove that it is always 
different. (Pedro, grades 10-12 group, S4) 

I didn’t think this would crop up very much, but 
in fact in most of the groups whose work I was 
checking, they had this: they would verify for a 
term, or for two, and that was enough. (Marta, 
grade 7 group, S8) 

The teachers considered the use of generic examples as 
a valid way of justifying. This may be observed in the 
discussion of grade 8 students’ answers to two questions 
in Into Practice I. Isabel made the following comment on 
the solution provided by a group of students (Figure 9), 
and indicated that they may had chosen generic 
examples, since they chose a case of an even and an odd 
number to draw conclusions to both situations: 

 
Figure 8. Characteristics of tasks that promote mathematical 
reasoning, indicated by Alda 

 
Figure 7. Characteristics of tasks that promote mathematical 
reasoning, indicated by Vera 

 
Figure 9. Solution of a group of grade 8 Students, commented by Isabel 
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I thought that it might have been somewhat 
intentional because they gave another example 
with an even number of base sides and then an 
odd number, and then they did a bit more here, in 
other words “it could be odd or even because…” 
and the “because” is more in line with a 
justification, and they claimed to have found a 
relationship between when it was even and when 
it was odd. (Isabel, grade 8 group, S4)  

The use of properties of mathematical objects was 
noticed by teachers in other justifications. This was the 
case with the teachers of grade 8 students, in the second 
task, when justifying the truth of the claim “The fraction 
(1/2n) is never zero, for n € N”, using a property of zero, 
as explained by Alda:  

“They justified that the claim was true by using [a] 
property . . . They thought ‘So, to multiply and 
obtain a zero, there has to be a zero there’.” (Alda, 
grade 8 group, S7) 

It was also the case of Paula who pointed out a 
justification using the property of mathematical objects, 
presented by her students in grade 12. The students 
needed to characterize the family of straight lines 𝑦 =
𝑎𝑥 + 𝑎, 𝑎 ∈ ℝ. Paula indicated that the students used the 
meaning of slope to justify their answer (Figure 10). 

Then, these here are the strongest aspects. A 
solution that I was not expecting. The students 
used the slope, that is, they started out by saying 
that if the slope is each one moves up a, so if we 
go -1 backwards a moves down and we are left 
with the point (-1, 0), and so it is justified, and I 
watched them solve it and agreed. Therefore, it is 
perfect. (Paula, grades 10-12 group, S4) 

In the grade 8 group, Luisa referred to a justification 
that used logical coherence, as the students had 

accomplished a chain of mathematical propositions, as 
she explained: 

I think that the first one is more similar to a 
justification by logical coherence . . . They had to 
prove that 1/2n was never zero. Then they said 
“It’s true, because natural numbers can’t have 
negatives or zero, therefore all natural numbers 
raised to a natural number, have to be a natural 
number” . . . “And this fraction can’t be zero 
because the numerator is always 1”. So, here we 
can see a chain of properties. (Luisa, grade 8 
group, S7) 

As Luisa also explained, another group used a 
justification that is akin to a proof by contradiction to 
justify that it can never yield zero (Figure 11): 

Then, there’s another justification that I think falls 
more [in] proof by contradiction, although it is not 
an “absurdity” that is totally “absurd”. (Luisa, 
grade 8 group, S7) 

Being able to identify different ways of justifying, 
evidenced previously, was a learning that occurred 
during the course as several teachers referred in their 
final written reflections. According to them, it was 
important to reflect about these processes, allowing 
them to clarify and distinguish different concepts, as 
well as improving their practices: 

I consider that it was very important for me, as 
teacher, to reflect about the notion of 
mathematical reasoning and to distinguish the 
processes of mathematical reasoning evidenced 
by students in their written solution of the tasks 
and in discussion. For example, justifying and 
explaining became actions with two different 
meanings. (Alda final reflection) 

It has been also important the reflection . . . in 
particular about the processes of reasoning and its 
implication for practice . . . the justification 
associated to deductive reasoning that uses 
definitions, axioms, properties, principles and 
representations, relating them while maintaining 
logical coherence, using generic examples or 
counter examples, by exhaustion or absurdity, in 
order to validate knowledge. (Isabel, final 
reflection) 

 
Figure 10. Solution of a group of grade 12 students, 
commented by Paula 

 
Figure 11. Solution of a group of students from grade 8, 
commented by Luisa 
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Nevertheless, some teachers pointed out that it is not 
always easy for them to recognize the ways of justifying 
used by their students, as Maria assumes in her final 
written reflection:  

“I recognize better the difficulty and complexity… 
to identify the processes of reasoning used by 
students in solving the tasks.” 

In summary, the teachers recognized the importance 
of reflecting about the ways of justifying and their 
understanding of these ways evolved along the course. 
In the first session, they did not mention it. It came up 
only the idea, expressed by teachers, that the truth of a 
general rule cannot be justified by simply verifying some 
particular cases. This situation emerged from the 
students’ productions presented and the classroom 
episodes analysed in the PDT 1. It was while analysing 
the students’ productions of different mathematical 
tasks, during the two moments of Into Practice that the 
teachers referred several ways of justifying. These 
moments were fruitful on the identification of these 
ways of justification because the teachers could confront 
different strategies (they had the students’ productions 
from three or more classes). Also, a text that explicitly 
enunciates different ways of justifying was previously 
discussed, calling the teachers’ attention to it.  

The Formality of Justifying 

In the first session, that was based in the PDT 1, and 
since justification was not object of great attention from 
teachers, there was no reference to the levels of formality 
that this process may assume. It is from the presentations 
of Into Practice I and II that the teachers indicated the 
ideas that they have about the levels of formality in 
justification. 

In the teachers’ discourse, justification emerged in 
relation to deductive reasoning: 

“Deductive reasoning was present. They used 
claims sequenced in a logical manner to answer 
the question . . . , they used logical reasoning to 
justify the answer.” (Alda, grade 8 group, S7)  

Thus, the teachers expected that the students 
produced a formal justification. This was the case 
indicated by the arrow and balloon added by Marta, a 
grade7 teacher, during her group oral presentation of 
Into Practice II. The group of students were justifying 
whether a given value is a term of a sequence, using the 
general term already obtained and verifying if they 
obtained a natural number (Figure 12). 

An incomplete formal process when justifying was also 
recognized by teachers analysing their students’ work. 
For example, Margarida, for the same mathematical 
question (Figure 11), highlighted a solution where 
students explored some cases and provided a 
justification based on this empirical evidence (Figure 13). 

In her opinion, the students used an incomplete formal 
process, since they did not explicitly clarify how they 
were able to guarantee that 810 was not a term of the 
given sequence: 

I quite liked this reasoning here too. To say there 
is no term for 810, they find tile 161 and say it’s 
equal to 808 squares (...). And then 162 and say it’s 
813. So, as that one was 810, they managed to 
conclude that there is not one and put a cross 
there. This is how they answered: “There is no 
natural number that by adding 3 results in 810”. 
They tried, but then they did not... in their 
conclusion, they ended up not being very explicit. 
(Margarida, grade 7 group, S8) 

Logical coherence of a non-formal nature was also 
accepted by the teachers as valid to produce 
justifications, given the students’ age level and their 
expected mathematical knowledge. This was the case 
pointed out by Luisa for a group of grade 8 students who 
justified the truth of the claim given to them in the Into 
Practice II task using current, informal language (Figure 14). 

Luisa interpreted the way of justifying that students 
used with no comment on their representation: 

 
Figure 12. Solution of a group of grade 7 students, 
commented by Marta 

 
Figure 13. Solution of a group of grade 7 students, 
commented by Margarida 

 
Figure 14. Solution of a group of grade 8 students, 
commented by Luisa 
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“I consider more a justification by logical 
coherence.” (Luisa, grade 8 group, S7) 

Another no formal justification, recurring to a pictorial 
representation (Figure 15), was also well received by 
Luisa: 

The two examples I have here, a justification at the 
level of calculation, another more pictorial 
justification, but they are concerned about 
arriving at a valid conclusion. (Luisa, grade 8 
group, S7) 

In summary, the teachers accepted several levels of 
formality expressed in different representations. These 
results emerged from the analysis of the students’ 
solutions of the tasks used in the Into Practice moments 
that were in a great amount number since the teachers 
that were involved in the present course have their own 
classes. Therefore, they were taking into account the 
students’ grade level and their correspondent 
mathematical knowledge. Moreover, the learning 
objectives of the tasks proposed in the lessons discussed 
in the course, were clearly related by the teachers to the 
students’ mathematical reasoning and not to their 
capacity to use symbolic representation.  

DISCUSSION 

By working on the tasks proposed in the course, the 
teachers began to focus more on the processes of 
generalizing and justifying. This was quite apparent in 
the diversity of ways the teachers referred these 
reasoning processes when analysing students’ 
productions.  

Throughout the course, the teachers associated 
generalization with the identification of a pattern or 
regularity, in line with the teachers in the study of 
Stylianides (2008). They also associated generalization to 
a property that was common to several objects. The 
initial ideas presented by the teachers on generalization 
focused on algebraic generalization. However, as the 
course progressed, other representations were valued 
for expressing generalizations. This indicates that the 

teachers focus appears to have moved from a stricter 
notion on the use of algebraic language to generalize to 
a broader notion that considers that generalizations may 
be expressed in a variety of representations. 

The justifications made by the students were object of 
analysis by the teachers, a recurrent element in the 
presentations of Into Practice I and II. In their analysis, 
the teachers referred ways of justification, such as the use 
of generic examples, the properties of mathematical 
objects, and logical coherence, including proof by 
contradiction. More than giving particular importance to 
symbolic representation, the teachers emphasized the 
students’ capacity to justify using several 
representations. 

The teachers made a clear distinction between 
generalizing and justifying. They agreed that, while 
justification through the verification of specific cases is 
not acceptable in mathematics, it may be used to make 
generalizations. 

As a result of the sharing of Into Practice moments, the 
teachers assigned a moderate importance to formality, 
both in generalizing and in justifying. They accepted the 
use of natural language and various representations as 
valid forms for the students to present these 
mathematical reasoning processes. They regarded these 
representations as an asset. They considered that helping 
the students not to lose the meaning of the situation, 
these representations contribute to students’ 
mathematical learning with understanding (as indicated 
in Lannin et al. (2011)). In addition, they assumed that 
these representations are better suited to the age of the 
students and to the level of development of their 
mathematical learning (as in Stylianides (2008)).  

The development observed in the teachers 
concerning how they recognize and speak about 
generalization and justification seems to be strongly 
related to the way the course was designed. Offering 
opportunities to reflect about classroom episodes and 
analysing them with the support of theoretical ideas 
taken from the texts that they read and that were 
discussed in the sessions, may have allowed teachers to 
give a new meaning and a more focused attention to the 
reasoning processes. Also, to plan collaboratively, to put 
into practice and to reflect with others, may have 
contributed to the professional development of 
participants. This is in line with important features 
identified in professional development processes (e.g., 
Borko et al. (2010) and Smith (2001)). Acknowledging the 
importance of developing these mathematical reasoning 
processes in students, the teachers aimed to design tasks 
that would be more suitable to their particular students, 
and did not use the tasks that the course offered blindly. 
Putting Into Practice allowed also the teachers to analyse 
a large set of students’ productions increasing the 
possibility of finding a larger diversity of ways and 
levels of complexity of the reasoning processes. 

 
Figure 15. Solution of another group of grade 8 students, 
commented by Luisa 
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CONCLUSIONS 

Prior research on the subject of this study, regarding 
primary teachers, focused mainly on their 
understanding of reasoning processes (e.g., Herbert and 
Bragg (2020)). For middle and secondary school teachers, 
the focus has been mainly on the processes of 
mathematical reasoning, namely generalization (e.g., El 
Mouhayar (2020)) or justification (e.g., Sowder & Harel, 
1998) separately. Thus, the contribution of this study is 
to present not only the understanding of reasoning 
processes, but also the evolution of middle and 
secondary school teachers who participated in a course 
in relation to both generalization and justification. Also, 
this study contributes with a unified analytical 
framework regarding these two central mathematical 
reasoning processes that provides a more cohesive 
perspective about teachers’ understanding of 
mathematical reasoning.  

In this course, the teachers identified and 
characterized the generalizing and justifying processes 
through the analysis, sharing and discussion of ideas 
and through the analysis of students’ solutions of tasks, 
intentionally designed to promote mathematical 
reasoning (Smith, 2001; Weiss & Pasley, 2006). As 
teachers worked collaboratively throughout the course, 
the option taken in this study was to consider all 
participating teachers in order to have a global idea of 
their evolution. However, this study may be developed 
with the study of individual teachers, as case studies. 
The present study provides insights about the 
development of teachers’ understanding of generalizing 
and justifying processes and highlights their ability to 
foster and identify these processes in the work with their 
students. 
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