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ABSTRACT 
Based on the ‘triple-code’ theory, the present study provided a comprehensive 
examination of the development of number processing and calculation abilities of 
Chinese primary school students. 310 children from grade 1 to grade 4 were assessed 
using the battery of number processing and calculation tests (NUCALC-R (Protocol)), 
covering tests of the Verbal, Visual Arabic and Analogue Magnitude Modules of the 
numerical abilities. The results showed that the three modules had different 
developmental trajectories from grade 1 to grade 4: the Verbal Module and Analog 
Module reached a plateau in grade 3, but the Visual Arabic Module improved gradually 
across the four grades. In addition, the subtests within each module also showed 
different developmental trajectories, demonstrating a rich profile of how the specific 
ways of representing and manipulating the numerals in a given module develop in the 
early school years. 

Keywords: number processing and calculation, the triple-code model, development, 
NUCALC-R 

 

INTRODUCTION 
The importance of number processing and calculation abilities for an individual’s success in the modern society 
makes it critical to understand how these abilities develop. The well-received triple-code model provides a 
comprehensive conceptual framework to examine the development of these numerical abilities, as it captures both 
the heterogeneity and the common structures among them. According to this model, the numerical abilities could 
be classified into three modules (i.e., the Analog Magnitude Module, the Verbal Module and the Visual Arabic 
Module), with each manipulating different forms of internal representations of numbers and being used for 
different numerical processing tasks (Dehaene, 1992). However, so far, little has been known about how these 
separate modules develop, as the existing studies have mainly focused on the development of one or just a few 
isolated abilities within a given module. The present investigation aims to delineate the developmental trajectories 
of these three modules of numerical cognition from grade 1 to grade 4 in the primary school. To serve this purpose, 
Neuropsychological Test Battery for Number Processing and Calculation in Children (NUCALC) was used (von 
Aster, 2000), which include different subtests tapping each of the three modules of the triple code model. Compared 
to the previous studies, this presents a more comprehensive picture of how the number processing and calculation 
abilities develop in the early years of schooling, both at the macro-level of modules and the micro-level of each 
single ability. 
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The Triple-Code Theory 
The overwhelming evidence of the heterogeneity of developmental dyscalculia indicates that the development 

of mathematical abilities is not a unidimensional process (e.g., Dehaene & Cohen, 1997; Peake, Jimenez, & 
Rodrigues, 2017). Therefore, we need a comprehensive conceptual framework to describe and explain the 
development of such multidimensional abilities. 

The first such attempt was made by McCloskey and his colleagues (McCloskey, 1992; McCloskey, Caramazza, 
& Basili, 1985). According to McClockey’s model, numerical processing involved three separate systems that each 
corresponded to a specific cognitive function: the number comprehension system, calculation system, and number 
production system. According to this model, the comprehension system transforms numerical input into an 
abstract internal representation, i.e., the semantic code, which serves the input for the calculation system. In 
addition, the semantic codes generated by these two systems also provide input to the number production system 
that transforms the abstract codes into verbal (e.g., “seven”) or Arabic number forms (e.g., “7”). Calculation 
involves operational words (more, less, times, divide) and operation symbols (+, –, × or ÷), retrieval of them and 
arithmetic facts, and calculation procedures. Although the distinctions between these systems have been clearly 
supported by the neuropsychological evidences (e.g., McCloskey, 1992; McCloskey et al., 1985), the notion of 
exclusively abstract number representations was not supported by further analysis on the errors made by the brain-
damaged subjects (e.g., Campbell & Clark, 1988), and also was inconsistent with the meta-analyses on 19 fMRI 
studies on numerical cognition (Kaufmann, Wood, Rubinsten, & Henik, 2011). Format-specific representations were 
thus incorporated in several alternative models (Campbell & Clark, 1988; Dehaene, 1992; Dehaene, Piazza, Pinel, & 
Cohen, 2003; Kaufmann et al., 2011; Noel & Seron, 1993). However, the most influential one, the encoding-complex 
hypothesis goes to the other extreme by postulating a network of specific-format codes that were differentially 
recruited in different mathematical tasks for a given individual, depending upon an individual’s idiosyncratic 
learning history, culture-specific strategies and other factors (Campbell & Clark, 1988; Campbell & Epp, 2004). 

The ‘triple-code’ model proposed by Dehaene (1992) reconciled the two opposing perspectives on the number 
representations. This model proposes three distinct modules for number representation: the Analog Magnitude 
Module that is format-independent, and the Verbal Module and Visual Arabic Module that are format-dependent. 
The Analogical Magnitude Module represents numerical quantities analogically over a left-to-right oriented mental 
number line, and it is independent of language and available in preverbal infants and animals. According to this 
model, this module underlies automatic access to approximate quantities in the tasks of quantity comparison (e.g., 
“is five smaller than nine?”) and approximation (e.g., estimate the number of apples in the box without counting). 
The Verbal Module represents numerical information in a verbal-presentation code (e.g., /thirteen/), which is 
created and manipulated by the language systems. This module is required for counting (e.g., count from 1 to 10), 
and tasks such as single-digit multiplication (e.g., “5×3=?”) and addition (e.g., “5+3=?”) that involves direct 
retrieval of arithmetic facts from the long-term memory (e.g., addition and multiplication tables). The Visual Arabic 
Module, where strings of Arabic digits are encoded as Arabic codes (e.g., “13”), subserves parity judgments (e.g., 
“is 5 an odd number?”) and multi-digit operations (e.g., “56+120 =?”). It has been found that semantic knowledge 
of parity is accessed via a base-ten representation (i.e., the ten possible values of a number’s rightmost digit) in 
Arabic form (Dehaene, Bossini, & Giraux, 1993). The multi-digit operations involve the sequential combination of 
elementary arithmetical operations and thus are more complex. It has been documented that the understanding of 
the base-ten place-value structure in Arabic form is also critical (e.g., Nuerk, Weger, & Willmes, 2001; for a review, 
see Klein, Bahnmueller et al., 2013). In addition, multi-digit calculations involve frequent translation between 
Arabic and verbal codes because direct retrieval of arithmetic facts is often needed, and also involve orienting of 
visual-spatial attention so as to mentally manipulate the spatial image of the operation in Arabic notation (Hubbard, 
Piazza, Pinel, & Dehaene, 2005). 

The triple-code model has been well supported by abundant of neural evidence (for a meta-analysis, see 
Kaufmann et al., 2011; for a review, see Siemann & Petermann, 2017). The neuropsychological studies have revealed 
dissociations and double dissociations among these three systems. For example, patients with the left perisylvian 
damages were impaired in tasks requiring verbal representations of numbers, but could accomplish tasks involving 

Contribution of this paper to the literature 

• In a single study we provide a comprehensive test of how three modules of number processing and 
calculation abilities develop in early years of schooling. 

• This study also reveals how the constituent abilities within each module develop differently in a single 
study. 

• It delineates a rich profile of the development of numerical processing abilities of Chinese primary school 
students. 
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quantity or Arabic representations (e.g., Dehaene & Cohen, 1997; Lemer, Dehaene, & Cohen, 2003). In contrast, the 
patients with parietal lesions were impaired in tasks involving quantity representations (e.g., Dehaene & Cohen, 
1997; Delazer & Benke, 1997; Kaufmann et al., 2011). In addition, patients with pure alexic resulted from lesions in 
the inferior temporal gyrus failed to read aloud the visually presented digits and the operands, but could perform 
number comparison or old-even judgment, even with 2-digit numerals (Cohen & Dehaene, 2000).  

In line with the above neuropsychological evidence, the neuroimaging studies have also found that the Analog 
Magnitude, Verbal, and Visual Arabic modules are subserved by the bilateral inferior parietal, left perisylvian (e.g., 
angular gyrus and inferior frontal gyrus) and ventral occipitotemporal areas respectively (for a meta-analysis, see 
Kaufmann et al., 2011; for reviews, see Abboud, Maidenbaum, Dehaene & Amedi, 2015; Siemann & Petermann, 
2017). For example, it has been revealed that Arabic digits and verbal numerals elicited similar activations in the 
inferior parietal lobe, suggesting a format-independent magnitude representation in this region (Holloway & 
Anaari, 2008; Libertus, Woldorff, & Brannon, 2007), but the Arabic digits elicited more activation in the inferior 
temporal gyrus than the verbal numerals (e.g., Shum et al., 2013). Further, a visual number form area (VNFA) that 
showed selectivity to Arabic digits was identified in the middle of the inferior temporal gyrus, which was close to 
the visual word form area (VWFA), but was connected to the intraparietal cortex that represented the quantities 
instead of the language areas (Abboud et al., 2015). In addition, tasks of approximate calculation and exact 
calculation led to greater activation in the parietal lobes and the inferior frontal lobe respectively (e.g., Dehaene et 
al., 1999, 2003). Using the exploratory group independent component analysis (ICA), another study processed the 
fMRI data from participants performing complex mental addition and subtraction of fractions and revealed 
separate task-related components in bilateral inferior parietal, left perisylvian and ventral occipitotemporal areas, 
also lending support to the triple-code model (Schmithorst & Brown, 2004). Recently, the transcranial direct current 
stimulation (tDCS) was adopted and provided causal evidence for the links between these brain regions and these 
three codes (e.g., Artemenko, Moeller, Huber, & Klein, 2015; Klein, Mann et al., 2013).  

In sum, the dissociations of the three modules proposed by the triple-code model have been extensively 
reported by the neuroimaging and neuropsychological studies, making this theory be recognized as the most 
popular neuro-functional model for number processing and calculation (see Kaufmann et al., 2011). However, far 
more less has been known about how these separate modules develop, especially during the first few school years. 
In fact, in contrast to the above findings from the adult participants, studies on children failed to found dissociable 
neural circuits for the approximate and exact calculations (e.g., Kucian, von Aster, Loenneker, Dietrich, & Martin, 
2008; Molko et al., 2003), which suggests that these modules might undergo developmental changes over time. 

The Development of the Three Modules 
The previous studies on the development of the mathematical abilities have mainly been focusing on the 

developmental changes of a single or a few abilities in a single module, and thus could not inform how the 
modularized systems develop. For example, the studies on the development of the number comparison and 
estimation abilities have shown that the analog representation was in shape even with the newborn babies (Izard, 
Sann, Spelke, & Streri, 2009; McCrink & Wynn, 2004; Xu & Spelke, 2000), and underwent a logarithmic-to-linear 
shift with age in representing numbers via a mental number line, indicating the refinement of education on this 
innate core system (Booth & Siegler, 2006, 2008; Pinel & Dehaene, 2013; Siegler & Booth, 2004; von Aster & Shalev, 
2007). For another example, studies on how the mathematical abilities supported by the Verbal Module develop 
showed that counting was a preverbal ability and it matured before the school age (Wynn, 1992), and that 
calculation started with a strategy of finger counting at around four years old, moved up to adding without fingers 
with the minimum strategy at around 5 years old (Dehaene, 2011), and then to arithmetic facts retrieval, which 
became more automatized and in more complex forms during the preschool to the primary school years (Miller & 
Paredes, 1990). For the third example, the development of multi-digit manipulation supported by the Visual Arabic 
Module received more attention in the recent years. It has been found that early understanding of place-value 
structure at grade 1 could predict the arithmetic performance at grade 3 (Moeller, Pixner, Zuber, Kaufmann, & 
Nuerk, 2011). In another longitudinal study from grade 2 to grade 4, the hundred-distance effect and the unit-
hundred compatibility effect showed an increasing trend with grade level, suggesting more and more parallel 
processing of different positions (Mann, Moeller, Pixner, Kaufmann, & Nuerk, 2012).  

One might argue that these studies that focused on one or only a few abilities of numerical processing, when 
viewed collectively, could inform how the different modules and the constituent sub-abilities might differ in terms 
of the developmental trajectories. However, because these studies differed in numeral methodological aspects, it is 
simply impossible to make a fair comparison between them. As a result, these previous studies were not only 
unable to reveal the overall developmental patterns of the modules, but also were ineffective in revealing the 
variations of the sub-abilities within each module.   

To serve the purpose of testing the three modules effectively in a single study, Neuropsychological Test Battery 
for Number Processing and Calculation in Children (NUCALC) was developed (von Aster, 2000). Functional 



 
 
Zhang et al. / Development of Number Processing and Calculation Abilities 

 

2748 
 

analysis confirmed that sub-tests NUCALC could be organized into three clusters, fitting well with the three 
modules of Dehaene’s triple code model (Santos et al., 2013; von Aster, 2000). There have been behavioral studies 
that used NUCALC to examine the age or grade effect on children across countries (Dellatolas, von Aster, 
Willadino-Braga, Meier, & Deloche, 2000; Koumoula et al., 2004; Santos et al., 2013). These studies revealed an age-
related improvement in Score A, which consisted of six subtests that were associated with schooling achievement 
(dictation and reading of numbers, mental calculation addition part, problem solving, and oral and written 
comparison). However, by narrowing down the focus to these subtests, these studies did not inform how the three 
big modularized systems develop. In addition, by collapsing the subtest scores, these studies also did not reveal 
how the subtests that tapped different aspects within each module might differ in terms of the developmental 
patterns. 

The Present Study 
Therefore, based on the ‘triple-code’ theory, the present study aimed to adopt NUCALC-R (Protocol) to examine 

the developmental changes of three modules of numerical abilities in Chinese children from the grade 1 to grade 4. 
In addition to comparing the overall developmental trajectories of the three modules across the grades, the present 
study also delineated the developmental variations among the subtests within each module. This will provide not 
only a better view of the modularized organization of the number processing and calculation in Chinese children, 
but also the variations of different aspects of representing and manipulating numerals in a particular code. Findings 
from this study will potentially fertilize more effective teaching practices in classrooms, which in turn will also help 
inform and refine the current models of the numerical cognition.  

Based on the previous studies, we hypothesize that in general, children from the higher grades will perform 
better than those from the lower grades for all three modules. However, the grade effect might be lower for the 
Analogue Magnitude Module than the Verbal and Visual Arabic modules, as the former has been in position in the 
early infancy and thought of as innate abilities. In addition, the subtests within each module will demonstrate 
different developmental trajectories, determined by the difficulties of the specific ways of representing and 
manipulating the numerals in that code. 

METHOD 

Participants 
310 primary school students from grade 1 to grade 4 were recruited from three schools in Beijing. The numbers 

in each grade was 40 (23 boys), 60 (37 boys), 81 (51 boys) and 129 (86 boys). None of these students had any physical 
deficits (e.g., hearing impairment) or mental retardation. The schools were evaluated to be good, average and 
below-average respectively based on the education level of school faculty, school facilities and the performance 
level of students. One class was randomly selected in each grade from grade 1 to grade 4 in all the selected schools 
except that for Grade 4 two classes were selected in the first school. 

Measurements 
The measurements were the Neuropsychological Test Battery for number Processing and Calculation in 

Children-revised (Protocol) (NUCALC-R (Protocol)) (von Aster & Weinhold, 2002) that was translated and revised 
for use in China (Zhang & Dong, 2006). Our previous study administered the NUCALC-R (Protocol) on Chinese 
primary school students and the confirmatory factor analysis revealed an acceptable fit with the ‘triple-code’ model 
(Zhang & Dong, 2006). Specifically, the confirmatory factor analysis indicated that the Verbal Module includes dot 
enumeration (DE), verbal countdown (VC), mental calculation (MC), digit span (DS) and solving arithmetical 
problems (SAP); the Visual Arabic module includes transcription of dictated numbers (TDN), reading numbers 
(RN) and comparison of numbers as digit (transcribed) (CND); the Analog Magnitude Module comprises matching 
visual presentations of numerals to their corresponding positions on a vertical scale (MVPTCPVS), comparison of 
two numbers (verbally) (CTN), perceptual estimation of quantities (PEQ) and estimation of quantities in context 
(EQC). Below the subtests in each module are introduced. 

The verbal module 
Dot enumeration (DE). The child was asked to count aloud the dots displayed on two cards while pointing at 

each dot, and then write down the result.  
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Verbal countdown (VC). The child was asked to count backwards from 23 to 1. It requires producing the verbal 
sequence under the control of working memory and is a prerequisite for children to learn subtraction (Fuson, 
Richards, & Briards, 1982). 

Mental calculation (MC). Addition (e.g., 5+8 = 13) and subtraction (e.g., 32-17=15) were tested. Multiplication 
in the original version was excluded for lack of discriminative power on Chinese children. Probably due to 
extensive drilling of multiplication rules, Chinese children who have learned multiplication at school solved all the 
multiplication items correctly, whereas those haven’t learnt solved none.  

Digit span (DS). It included two parts, digit span forwards and digit span backwards. It was to measure the 
short-term storage and manipulation capacity of numbers. 

Solving arithmetic problems (SAP). The child was asked to solve arithmetical problems of increasing difficulty. 
For example, “Peter has 12 marbles. He gives five to his friend Ann. How many marbles has he got left?” 

The visual Arabic module 
Reading numbers (RN). The child was asked to read aloud numbers written in Arabic numerals (e.g., 72). It 

required the child to transcode the numbers from the Arabic to the verbal form. 
Transcription of dictated numbers (TDN). The child was asked to write down eight numbers (e.g., 14) in Arabic 

numerals that were presented orally by the experimenter. 
Comparison of two numbers as digits (transcribed) (CTND). The numbers were presented in pair as Arabic 

numerals (e.g., 79 vs. 81). The child was asked to point out the larger one. 

The analog magnitude module 
Matching visual presentations of numerals to their corresponding positions on a vertical scale (MVPTCPVS). 

The child was asked to point to the small horizontal line that corresponds to a number presented as an Arabic 
numeral. The aim of this subtest was to examine the comprehension of the number as a quantity.  

Comparison of two numbers (verbally) (CTNV). Pairs of numbers were presented orally. The child had to say 
which of the two numbers was larger.  

Perceptual estimation of quantities (PEQ). The child was asked to orally estimate the quantity of objects in a 
picture that was presented for 5s only. This subtest examined how numbers were associated with quantities in the 
child’s internal representations. 

Estimation of quantities in context (EQC). The child was asked to estimate quantities in specific sentential 
contexts (e.g., Two clouds in the sky) on a scale of three (a little, average, or a lot). This subtest examined the 
understanding of the semantic values of numbers in the specific contexts. 

Procedure 
A psychologist and trained schoolteachers administered the test battery. All of the 12 subtests were individually 

administered in quiet rooms. It took about 30 minutes for each child. 

Statistical Analysis 
The data were analyzed with SPSS 19. One-Way ANOVA was used to test the grade effects in the modules and 

subtests scores. Further, the post-hoc tests were used to reveal the grade differences in more details. 

RESULTS 
Each item in all the subtests scored between 0-2, and thus the average score for each subtest and each module 

was in the same range. All the following analysis was based on the averaged scores. 

The Development of the Verbal Module 
The Verbal Module includes the subtests of dot enumeration (DE), verbal countdown (VC), mental calculation 

(MC), digit span (DS) and solving arithmetical problems (SAP). The means and standard derivations of each of 
these subtests and the grand mean of the module for each grade are reported in Table 1. The growth trajectories of 
the module mean scores were also displayed in Figure 1.  
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As the students from the four grades were independent groups, One-Way ANOVA was used to test the grade 
effects in the average module score and the subtest scores. The assumptions of One-Way ANOVA were also met 
(here and later for the rest modules). As Table 2 displays, this analysis revealed a significant grade effect in the 
average module score of the Verbal Module, F (3,306) =67.22, p < .001. The grade effect for each subtest of this 
module was also significant (all ps< .001). The post-hoc tests further showed that grade 1 had significantly lower 
scores on all the subtests and module scores than the other grades (all ps < .001); grade 2 had significantly lower 
scores on all the subtest and module scores than grade 3 and grade 4 (all ps < .001), except that the scores of dot 
enumeration and verbal countdown were not significantly different from those of grade 3 (all ps>.05); grade 3 and 
grade 4 were equivalent across all the subtests and the module score (all ps>.05). 

The Development of the Visual Arabic module 
The Visual Arabic module includes the subtests of Transcription of dictated numbers (TDN), Reading numbers 

(RN), and Comparison of two numbers as digits (transcribed) (CTND). The means and standard deviations of the 
module score and the subtest scores for each grade were shown in Table 3 and Figure 1. 

Table 1. The Descriptive Analysis of the Verbal Module Subtests 

Subtests Grade 1  
M (SD) 

Grade 2 
M (SD) 

Grade 3 
M (SD) 

Grade 4 
M (SD) 

DE 1.54(.43) 1.73(.40) 1.79(.36) 1.81(.34) 
VC 1.09(.78) 1.56(.55) 1.65(.53) 1.76(.42) 
MC 0.87(.38) 1.44(.35) 1.62(.26) 1.67(.25) 
DS 1.38(.21) 1.47(.23) 1.59(.20) 1.57(.21) 
SAP 0.83(.57) 1.20(.49) 1.51(.44) 1.60(.35) 

Verbal Total 1.14(.32) 1.48(.23) 1.63(.21) 1.68(.18) 
Note. DE= dot enumeration; VC= verbal countdown; MC= mental calculation; DS=digit span; SAP=solving arithmetical problems. 

 
Figure 1. The growth curves of the three modules from grade 1 to grade 4 

Table 2. One-Way ANOVA on the Grade Effect and Post-hoc Analysis for the Module and Subtest Scores of the Verbal Module 
Subtests df Grade Grade Comparisons 

DE 3, 306 6.00*** Grade4, Grade3 & Grade2 > Grade1 
VC 3, 306 16.55*** Grade4, Grade3 & Grade2 > Grade1 
MC 3, 306 81.29*** Grade4 & Grade3 > Grade2 > Grade1 
DS 3, 306 12.55*** Grade4 & Grade3 > Grade2 > Grade1 
SAP 3, 306 37.13*** Grade4 & Grade3 > Grade2 > Grade1 

Verbal Total 3, 306 67.22*** Grade4 & Grade3 > Grade2 > Grade1 
Note. DE= dot enumeration; VC= verbal countdown; MC= mental calculation; DS=digit span; SAP=solving arithmetical problems. *p < .05. ** p < 
.01. *** p < .001. 
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As Table 4 displays, one-way ANOVA revealed a significant grade effect in the average module score of the 
Visual Arabic module, F (3,306) =214.48, p < .001. The grade effect for each subtest of this module was also 
significant (all ps < .001). The post-hoc test showed that the module score increased significantly as the grade 
increased (all ps <.05). The same was true for the comparison of two numbers as digits (transcribed) (CTND), but 
for transcription of dictated numbers and reading numbers (TDN), there was a significant increase except from 
grade 3 to grade 4. 

The Development of the Analog Magnitude Module 
The Analog Magnitude Module includes the subtests of matching visual presentations of numerals to their 

corresponding positions on a vertical scale (MVPNTCPVS), comparison of two numbers verbally (CTN), perceptual 
estimation of quantities and estimation of quantities in context (EQC). The means and standard deviations of the 
module score and the subtest scores for each grade were shown in Table 5 and Figure 1. 

As Table 6 shows, One-Way ANOVA revealed a significant grade effect for the overall score of the Analog 
Magnitude Module, F (3,306) =44.5, p < .001, and for all of its subtests (all ps<.001). The post-hoc tests showed that 
the module score reached asymptote at grade 3. The same was true for Comparison of two numbers as digits 
(transcribed). The subtest of perceptual estimation of quantities seems to be the easiest, as it stopped growing at 
grade 2, and Estimation of quantities in contest seems to be the hardest, as it had a significant increase from every 
grade to its next (p < .001). The subtest of matching visual presentations of numerals to their corresponding 
positions on a vertical scale increased from grade 1 to grade 2, ceased to grow from grade 2 to grade 3, but continued 
to increase from grade 3 to grade 4. 

Table 3. The Descriptive Analysis of the Visual Arabic Module Subtests 

Subtests Grade 1 
M (SD) 

Grade 2 
M (SD) 

Grade 3 
M (SD) 

Grade 4 
M (SD) 

TDN 0.9(.64) 1.71(.37) 1.96(.1) 1.97(.08) 
RN 1.11(.58) 1.76(.25) 1.96(.09) 1.99(.05) 

CTND 1.59(.35) 1.9 (.17) 1.92(.14) 1.98(.08) 
Visual Total 1.2(.42) 1.79(.19) 1.95(.06) 1.98(.04) 

Note. TDN=transcription of dictated numbers; RN=reading numbers; CTND= comparison of two numbers as digits (transcribed). 

Table 4. One-Way ANOVA on the Grade Effect and Post-hoc Analysis for the Module and Subtest Scores of the Visual Arabic 
module 

Subtests df Grade Grade Comparisons 
TDN 3, 306 155.41*** Grade4 & Grade3 >Grade2 > Grade1 
RN 3, 306 147.55*** Grade4 & Grade3 > Grade2 > Grade1 

CTND 3, 306 53.73*** Grade4 > Grade3 & Grade2 > Grade1 
Visual Total 3, 306 214.48*** Grade4 > Grade3 > Grade2 > Grade1 

Note. TDN=transcription of dictated numbers; RN=reading numbers; CTND= comparison of two numbers as digits (transcribed). *p < .05. ** p < .01. 
*** p < .001 

Table 5. The Descriptive Analysis of the Analogue Magnitude Module Subtests 

Subtests Grade 1 
M (SD) 

Grade 2 
M (SD) 

Grade 3 
M (SD) 

Grade 4 
M (SD) 

MVPNTCPVS 1.16(.68) 1.54(.46) 1.65(.42) 1.71(.41) 
CTNV 1.22(.59) 1.70(.25) 1.85(.22) 1.84(.23) 
PEQ 1.22(.62) 1.50(.57) 1.56(.54) 1.72(.45) 
EQC 0.94(.4) 1.13(.43) 1.28(.45) 1.44(.41) 

Analogue Total 1.13(.37) 1.47(.27) 1.59(.24) 1.68(.24) 
Note. MVPNTCPVS=matching visual presentations of numerals to their corresponding positions on a vertical scale; CTN=comparison of two 
numbers (verbally); PEQ= perceptual estimation of quantities; EQC=estimation of quantities in context 
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DISCUSSION 
The present study for the first time examined the developmental changes for the Visual, Verbal and Analog 

Magnitude Module of numerical processing and calculation from grade 1 to grade 4 in the primary school. The 
results showed that the three modules had different patterns of changes across the four years: whereas the 
performance of the Visual Arabic module increased from grade 1 to grade 4, both the verbal and Analog Magnitude 
Module reached a plateau at grade 3. In addition, the subtests within each module also showed different 
developmental trajectories across the four grades, revealing a rich profile of how the specific ways of representing 
and manipulating the numerals in a given code develop in the early school years.  

The Verbal Module score was the lowest in grade 1, improved significantly from grade 1 to grade 2, and then 
reached a plateau at grade 3. The growth from grade 1 to grade 2 might be driven by multiple factors, such as more 
arithmetic facts being acquired during the first year of formal education, accumulation of experiences, and the 
development of processing speed (e.g., Fry & Hale, 1996). The plateau observed at grade 3 was similar to that 
observed in Greek children with the same protocol of NUCALC (Koumoula et al., 2004). A possible explanation for 
this phenomenon was that the tests might be too easy for the higher graders, as they were designated to diagnose 
children with the developmental dyscalculia (von Aster, 2000). Interestingly, here we found that the plateau 
occurred one year earlier than that in Greek children. This fits with the extensive cross-cultural evidence that 
Chinese children enjoy an advantage in mathematics over the Western peers, presumably because the verbal forms 
of digits in Chinese are shorter than those in the alphabetical languages and presents a less load for the verbal short-
term memory (Dehaene, 2011). As for the individual subtests of the Verbal Module, all improved significantly from 
grade 1 to grade 2, but their developmental trajectories bifurcated thereafter. Dot enumeration and verbal 
countdown did not improve further after grade 2, which was consistent with previous evidence that counting was 
a precocious competence and served a foundation for the development of exact calculation (Wynn, 1992). Mental 
calculation, solving arithmetical problems and digit span showed steady improvement from grade 1 to grade 3, 
and emergence of stagnation in grade 3 and grade 4. 

The Visual Arabic Module presented a gradual and continuous improvement from grade to grade. Although 
the amount of growth decreased across the grades and was in fact was small from grade 3 to grade 4, all the changes 
were statistically significant. There might be two main drives underneath this gradual improvement of this module 
across grades. The first drive might be children’s continuous acquisition of the Arabic notation system (e.g., the 
base-ten place-value structure) and written calculation procedures with increased difficulty in the school 
environment (Knops, Thirion, Hubbard, Michel, & Dehaene, 2009). The second drive could be the increasingly 
developed visual and spatial attention (e.g., Shimi, Nobre, & Astle, 2014). It has been revealed that mathematical 
processing, especially multi-digit manipulation requires the orientation of the visual-spatial attention (Hubbard et 
al., 2005; Maruyama et al., 2012) and that for children with Attention-Deficit Hyperactivity Disorder (ADHD), 
decrements in sustained attention could predict mathematical performance (Fosco & Hawk, 2017). Future studies 
should further explore the causal role of visual-spatial attention in the development of the Visual Arabic Module 
by using a longitudinal design or a training paradigm.  

The Analog Magnitude Module overall showed a similar developmental trajectory with that of the Verbal 
Module, presenting a continuous growth till a plateau was reached at grade 3. This pattern suggests that the Analog 
module might have reached a stable state at grade 3, corroborating with one recent imaging finding that the third- 
and sixth-graders had no significant differences in their brain activations when performing approximate calculation 
and magnitude comparison (Kucian, von Aster, Loenneker, Dietrich, & Martin, 2008). The individual subtests of 
the Analog Magnitude Module all improved significantly from grade 1 to grade 2, but their developmental 
trajectories thereafter were different from test to test. Perceptual estimation of quantities and matching visual 
presentations of numerals to their corresponding positions on a vertical scale stopped to grow at grade 2. This 
suggests that although the ability of perceiving quantity has been in shape before schooling or even at birth as the 
previous studies suggested (Cantlon, Brannon, Carter, & Marrero, 2006; Wynn, 1992; Xu & Spelke, 2000), it could 

Table 6. One-Way ANOVA on the Grade Effect and Post-hoc Analysis for the Module and Subtest Scores of the Analogue 
Magnitude Module 

Subtests df Grade Grade Comparisons 
MVPNTCPVS 3, 306 14.87*** Grade4, Grade3 & Grade2 > Grade1 

CTNV 3, 306 47.75*** Grade4 & Grade3 > Grade2 > Grade1 
PEQ 3, 306 9.86*** Grade4 & Grade3 & Grade2 > Grade1 
EQC 3, 306 17.09*** Grade4 > Grade3 > Grade2 > Grade1 

Analogue Total 3, 306 44.5*** Grade4 & Grade3 > Grade2 > Grade1 
Note. MVPNTCPVS=matching visual presentations of numerals to their corresponding positions on a vertical scale; CTN=comparison of two 
numbers (verbally); PEQ= perceptual estimation of quantities; EQC=estimation of quantities in context. *p < .05. ** p < .01. *** p < .001. 
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be refined by education. The comparison of two digits (verbally) did not stop until grade 3, whereas estimation of 
quantities in context showed a continuous growth from grade 1 to grade 4. Such developmental changes can be 
interpreted as a refinement of the quantitative representation after exposures to numerical symbols, presumably in 
the left IPS of the brain (Pinel & Dehaene, 2013). This paralleled with the view of the four-step-developmental model 
of numerical cognition, which suggested the elaboration of the Analog Magnitude Module after symbolization of 
numbers during the school age (von Aster & Shalev, 2007). 

LIMITATIONS 
The present study had at least two limitations. First, it used a cross-sectional method to examine the 

developmental changes and thus the cohort effect might be an issue. Second, although our sample included the at-
risk students, due to the small sample size we didn’t examine whether they followed a different developmental 
pattern from the average ones for these three modules and the subtests. To overcome these limitations, we are 
currently planning a longitudinal study to trace the developmental patterns of number processing and calculation 
of both the typically developed and the at-risk students, and to delineate when, where and how much the latter 
deviates from the former. 

CONCLUSION 
In sum, the results of the present study indicated that the developmental changes of different modules of 

number processing and calculation were not of a uniform pattern. However, two commonalities did emerge. First, 
all three modules improved with grade, which was presumably driven jointly by maturation and experience (e.g., 
Izard, Sann, Spelke, & Streri, 2009). Second, the developmental trajectories of the subtests within each module were 
not uniform: some easier subtests matured early on in grade 2, but the more difficult ones did not reach plateau 
until grade 4 or even later. These developmental changes help draw a better and more comprehensive picture of 
the mathematical abilities of Chinese children in each grade. This will help maths teachers to more accurately 
estimate the developmental levels of different aspects of mathematical abilities and to identify the zone of proximal 
development(ZPD) (Vygotsky, 1986) of each, so as to adjust their paces of strategies of teaching to promote 
students’ learning (Holton & Clarke, 2006). 
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