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Abstract 
This study aims to investigate the effects of the use of multiple geometry proof formats on 
Indonesian students’ reading comprehension of geometry proof (RCGP). Four classes of 
prospective secondary mathematics teachers (N=125), aged 18 to 19 years, participated in this 
quasi-experimental study. While the experimental group was instructed in three proof formats 
(paragraph, two-column and flow-chart proof), the control group was instructed in only the two-
column proof format. Similar pre- and post-tests, based on Yang and Lin’s (2008) RCGP test, were 
administered to both groups. N-Gain scores were used to determine the improvement of both 
groups. The N-Gain scores showed significantly more improvement of students’ RCGP in the 
experimental group. More detailed analysis indicated that the use of multiple proof formats 
supports the students’ understanding of the facets of logical status of statements and the critical 
ideas in the proof. This study shows the benefits of offering multiple proof formats to support 
prospective mathematics teachers’ RCGP. 

Keywords: geometry proof, reading comprehension, proof formats, flow-chart proof, pre-service 
teachers 

 

INTRODUCTION 
Most of the geometry teaching in Indonesian 

secondary schools focuses on introducing properties of 
geometric figures such as similarity and congruence of 
polygons (e.g., triangle, rectangle, etc.) and their 
application in measurement problems (Ministry of 
Education and Culture, 2013, 2016; National Education 
Standard Board, 2020). In Indonesia, geometry proof is 
formally introduced in the first year at the university 
level, specifically in the study programs of mathematics 
and mathematics education. One of the objectives in 
learning geometry proof is that students are able to 
understand and construct proofs and apply them in 
other contexts. 

The first author is a lecturer in Euclidean Geometry 
for Indonesian prospective mathematics teachers (PMT) 
(aged 18-19 years) at a teacher education university in 
Indonesia. At this university, students observe in class 

how teachers present a proof, read proofs in their 
mathematics textbooks and construct their own proof of 
theorems and geometric propositions. Through these 
activities, students are expected to comprehend proofs. 
Like in most countries, proof comprehension along with 
proof construction, proof validation and proof 
evaluation are expected learning outcomes at the 
university level (Selden, 2012).  

However, based on the first author’s small-scale 
observational study in geometry classrooms, most of the 
PMT faced difficulties with the understanding of the 
written proofs in the textbook or the lecture notes. These 
difficulties were more frequent when the proofs were 
written in the two-column format, which is the usual 
format in the country. For instance, students had 
problems with identifying propositions which support 
or justify intermediate or final conclusions. Through this 
study we aim at finding ways to improve teaching 
geometry proof to these prospective mathematics 
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teachers in the Indonesian context by comparing the 
effects of research-informed teaching design and regular 
teaching. 

A number of studies investigated the role of proof 
format in the presentation of proofs in geometry, such as 
flow-chart and two-column proof (e.g., Cirillo & Herbst, 
2011; Miyazaki et al., 2014, 2017). The literature study by 
Cirillo and Herbst (2011) suggested that the use of 
multiple formats, namely paragraph, two-column, tree 
and flow-chart proof, could support students’ 
comprehension of geometry proof. Research findings 
from Miyazaki et al. (2014, 2015, 2017) showed that using 
the flow-chart proof format to construct a geometry 
proof could help grade 8 students (aged 13-14 years) 
understand the elements of proof and their logical 
relationship. 

Therefore, we conjectured that the use of multiple 
proof formats might improve the reading 
comprehension of geometry proof of the PMT. In this 
paper, we report on a quasi-experimental study in order 
to investigate the role of multiple formats in supporting 
PMT reading comprehension of geometry proof, aiming 
at helping Indonesian PMT overcome their difficulties 
with comprehension of geometry proof. We start this 
paper with presenting the existing literature in reading 
comprehension, then we present information about the 
context of the study, our methods, the findings, and we 
conclude with recommendations for teaching geometry 
proof and future research. 

THEORETICAL BACKGROUND 

Aspects of Proof 

Based on the research literature, Selden and Selden 
(2017) distinguished four interrelated aspects of proving, 
namely proof comprehension, proof construction, proof 
validation and proof evaluation. Proof comprehension 
concerns reading comprehension of proof written in 
textbooks or lecture notes, or demonstrated during 
lecture (Mejia-Ramos et al., 2012). Proof construction is 
the reasoning from proven facts (premises) using 
appropriate properties (e.g., definition, axioms, proven 
theorems) and logically valid steps to arrive at a 
conclusion (Knuth, 2002). Proof validation refers to “the 

reading of, and reflection on, a proof attempt to 
determine its correctness” (Selden & Selden, 2017, p. 
341), and proof evaluation is “making value judgments 
about a finished proof text” (Ibid, p. 341). Proof 
validation and proof evaluation relate to determining 
the correctness of proofs. However, proof evaluation 
concentrates on features of proofs including clarity, 
context, convincingness, beauty, elegance, and depth 
(Inglis & Aberdein, 2015). For instance, the beauty of 
proof relates to simplicity, that is the number of accepted 
statements logically connecting premises and 
conclusion. And the elegance of proof relates to how the 
proof is presented (Rota, 1997). Selden and Selden (2017) 
suggested that students should have a good grasp of 
proof comprehension, proof construction and proof 
validation before attempting to evaluate proofs as 
beautiful, elegant, etc. Additionally, Selden and Selden 
(2017) recommended that the first two concepts: proof 
comprehension and proof construction should be taught 
together. So, as a starting point to learn or introduce 
proof, we consider that students’ proof comprehension 
could benefit from attempts in proof construction. 

Models of Reading Comprehension of Geometry 
Proof 

In the context of teaching proof, proof 
comprehension refers to students’ understanding of 
proof written in the textbook, in lecture notes, or 
demonstrated during a lecture. Development and 
refinement of research models of proof comprehension 
are essential for the development of research surveys 
and interview schemes, and for the design and 
evaluation of teaching interventions. In this section, we 
discuss some studies that developed such models of 
reading comprehension in the context of plane geometry 
with the aim to present the model used in our study. 

Yang and Lin (2008) conceptualized a model of 
reading comprehension of geometry proof (RCGP), 
which is widely used in literature. They distinguished 
four levels of RCGP, as shown in Figure 1. The first level 
(Surface) relates to the understanding of particular 
statements, terms, symbols or figures in the proof. The 
second level (Recognizing Elements) refers to the logical 
status of statements in the proof. The third level 

Contribution to the literature 
• This study investigates and then justifies experimentally the recommendation of previous theoretical 

studies that the use of multiple proof formats supports students' reading comprehension of geometry 
proof. 

• This study suggests the use of the flow-chart proof format together with other formal proof formats (i.e., 
paragraph and two-column proof) for the comprehension of geometry proof; the flow-chart can 
visualize the logical connection of the components of the proof which cannot be provided by other 
formats. 

• This study also suggests combining reading-oriented tasks and writing-oriented tasks to support 
students' reading comprehension. 
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(Chaining Elements) is about comprehending and 
combining logical arguments or connections between 
statements. The last level (Encapsulation) concerns 
reflection on the proof as a whole in terms of main ideas 
and methods and the application of the proof in other 
contexts.  

Yang and Lin (2008) also distinguished facets to 
describe steps of switching between the four levels of 
reading comprehension. The facets occur as passages 
between two adjacent levels as shown in Figure 1; thus, 
one who understands the related facet can move to the 
next level. For example, the facet of basic knowledge 
refers to an understanding of mathematical terms, 
figures and symbols stated in a proposition and its proof. 
This facet (basic knowledge) is needed to move from 
Surface level to Recognizing Elements level. The facet of 
logical status relates to the ability to correctly recognize 
the status of statements including premises, conclusions 
or applied properties in a proof. The facet of 
summarization is about identifying the core of proof or 
the critical ideas of proof. The two facets (logical status 
and summarization) are needed to step from 
Recognizing Elements level to Chaining Elements level. 
The facet of generality regards recognizing accuracy of a 
proposition and identifying what is validated by the 
proof. The facet of application is concerned with 
applying the proposition in another context. These two 
facets (generality and application) are needed to switch 
from the Chaining Elements level to the Encapsulation 
level. 

Yang and Lin (2008) formulated operational 
definitions of the five facets of reading comprehension 
from existing literature and from interviews with five 
mathematicians and four mathematics teachers. They 
structured these facets using a hypothetical model. Then, 
they justified their hypothetical structure of the facets of 

reading comprehension by investigating students’ 
performance on the facets of RCGP. The students were 
junior high school students in grade 9 (n=223) and senior 
high school students in grade 10 (n=378). Yang and Lin 
(2008) validated the hierarchical nature of their model 
through multi-dimensional scaling (MDS) of the data 
collected from these students’ performances. They used 
the MDS analysis to construct a spatial structure 
representing the cognitive relations between the facets of 
the RCGP. They used two dimensions in their analysis 
because they assumed that the facets of RCGP contained 
two main components: relevant knowledge and logical 
reasoning. Based on their MDS analysis, they found that 
the structural relationship of the five facets of RCGP was 
sustained. Yang and Lin (2008) argued that in theory 
students’ trajectory of reading comprehension would 
follow their hierarchical model. 

However, Lin and Yang (2007) found an alternative 
way of students’ development of RCGP. They found 
students starting from Surface and then to Encapsulation 
while skipping the Recognizing Elements and Chaining 
Elements levels. This indicates that students understand 
the terms and symbols in the proof, which proposition is 
validated by the proof and how to apply the proposition 
in other contexts, but they lack the recognition of logical 
status of the statements in the proof and the critical ideas 
of the proof. They also found that geometric knowledge 
of description and translation play an important role in 
RCGP. Description refers to verbal descriptions of 
geometrical concepts and properties, for instance how to 
read geometric symbols, like 𝐴𝐴𝐴𝐴���� ≅ 𝐵𝐵𝐵𝐵,����� and how to 
explain this symbolic expression. Translation is 
associated with translating verbal descriptions into 
aspects of figures, for instance drawing a geometric 
figure that represents a proposition. This finding 
suggests that students need to have enough geometric 
knowledge, especially in terms of description and 
translation, before they can learn geometry proofs, and 
more specifically before they read a geometry proof.  

Mejia-Ramos et al. (2012) created a model of proof 
comprehension, which refined and extended Yang and 
Lin’s (2008) model focusing on undergraduate 
mathematical proof. They distinguished two levels of 
comprehension, namely a local and a holistic 
comprehension level. The local comprehension 
addresses the understanding of one or a small number 
of statements within the proof, while the holistic 
comprehension addresses understanding of the proof as 
a whole. 

Even though the model by Mejia-Ramos et al. was 
developed for undergraduate proof, which fits to our 
participants, we used and adapted Yang and Lin’s model 
in this current study to assess the prospective 
mathematics teachers’ performance of RCGP. Firstly, we 
consider that the components of Yang and Lin’s model 
are relevant to the learning goals of the geometry proof 
course for the Indonesian PMT, which are concerned 

 
Figure 1. The five facets of RCGP (Yang & Lin, 2008) 
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with the meaning of the statements within the proof such 
as premises, intermediate conclusion and conclusion, 
and logical structure of proof. Secondly, the background 
of our participants’ experience in proving was similar 
with Yang and Lin’s participants who started to learn 
mathematical proof for the first time. 

Teaching Reading Comprehension of Geometry Proof 

In this section we review literature on students’ 
reading strategies and reading comprehension of proof, 
both at the university level and, if relevant, the 
secondary level. Studies on the identification of reading 
strategies are from different areas, like calculus and 
number theory (Weber, 2015) and geometry (e.g., Yang, 
2012). Other studies investigate students’ reading 
behaviour in comprehending and validating proofs 
(Panse et al., 2018). The previous literature also 
investigates methods to teach mathematical proof at 
university level (e.g., Roy et al., 2010). In this section, we 
detail some of these studies in order to situate the RGCP 
model and our study in the existing research literature. 

Roy, Alcock, and Inglis (2010) compared students’ 
reading comprehension of proofs in three conditions: (1) 
written textbook proof, (2) live lecture: proof presented 
by a lecturer in a standard undergraduate class, (3) a 
computer-based e-proof. They examined the 
undergraduate students’ reading comprehension using 
Yang and Lin’s (2008) proof comprehension model. The 
findings showed that the live lecture was most effective 
in improving undergraduate students’ proof 
comprehension and the e-proof was least effective. 

Yang (2012) investigated the use of cognitive and 
metacognitive strategies by grade 9 students (aged 14 to 
15 years) to improve their proof reading. These two 
strategies referred to an explanation by Pereira-Laird 
and Deane (1997) that  

metacognitive strategies involve planning, 
monitoring, and regulation activities that take 
place before, during and after any thinking 
activities such as reading. In contrast, cognitive 
strategies, refer to integrating new material with 
prior knowledge. Cognitive strategies that 
students use to acquire, learn, remember, retrieve 
and understand the material while reading 
include rehearsal, elaboration, and organizational 
strategies (p. 190).  

Their findings showed that the use of metacognitive 
reading strategies directly influenced students’ RCGP. 
Specifically, this study suggested that metacognitive 
reading strategies can be used for planning and 
monitoring comprehension of logical coherence and 
cognitive reading strategies for elaborating proof. In the 
current study, we introduced both strategies: cognitive 
and metacognitive strategies when students read a proof 
during the teaching intervention. The cognitive 

strategies focused on elaborating (i.e., reading 
proposition, hypothesizing and drawing inferences from 
a figure, reading to see the proof steps), and the 
metacognitive strategies focused on planning (i.e., 
skimming through or reading step-by-step) and 
monitoring (i.e., reflecting on how proof begins and 
comes to the conclusion, considering the relation 
between steps). 

A study conducted by Yang and Lin (2012) compared 
the effects of reading-oriented tasks (proof 
comprehension) and writing-oriented tasks (proof 
construction) on 14-to-15-year-old students’ RCGP. The 
experimental group was instructed to read and discuss 
reading tasks (reading-oriented tasks). In contrast, the 
control group was instructed to prove and apply the 
same propositions (writing-oriented tasks). They 
compared the scores of the post-test and the delayed 
post-test with the pre-test scores as covariates. Their 
research findings showed that students from the 
experimental group had better reading comprehension 
at a delayed post-test than those from the control group. 
And the experimental group’s scores on all facets of 
reading comprehension except for the facet of 
application were significantly higher than those of the 
control group for both post-test and delayed post-test. 
However, the RCGP score of both groups at a delayed 
post-test were slightly lower than at the post-test. Thus, 
the reading-oriented tasks and writing-oriented tasks 
did not improve students’ RCGP in the long run. Yang 
and Lin suggested that alternative approaches are 
needed to support students’ reading comprehension, for 
instance, combination of both reading-oriented and 
writing-oriented tasks.  

Weber (2015) observed four successful mathematics 
students in reading proofs of six theorems in 
introductory calculus and basic number theory. The 
study showed that there are five effective strategies used 
by successful mathematics students: (1) trying to prove a 
theorem before reading its proof, (2) identifying the 
proof framework being used in the proof, (3) breaking 
the proof into parts or sub-proofs, (4) illustrating 
difficult assertions in the proof with examples, and (5) 
comparing the methods used in the proof with student’s 
own approaches. This study also surveyed 83 
mathematics lecturers questioning them whether they 
desired their students to use these strategies. The data 
analysis showed that lecturers desired their students to 
use these strategies in an attempt to help them 
comprehend proofs. The author thought that the first 
strategy, namely trying to prove before reading its proof, 
is suitable for students who are able to construct a proof, 
but for the beginning prover this strategy is difficult.  

Panse, Alcock, and Inglis (2018) investigated whether 
reading a mathematical proof on analysis and number 
theory for validation or comprehension engenders 
different processes. They analyzed the behavior of 16 
mathematicians and 16 undergraduate students, using 
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eye movement. They found nonsignificant differences 
between reading for comprehension versus reading for 
validation. These findings suggested that lecturers could 
choose between validation and reading comprehension 
tasks because these would not lead to a different reading 
behavior. In addition, a study on proof validation by 
Weber (2009) revealed that students sometimes 
successfully judged the validation of proofs even when 
they realized that they did not understand the proofs. 
Therefore, in the beginning of our teaching intervention, 
we focus on reading comprehension tasks. 

Based on findings of empirical studies described in 
this section, we identified some factors that could foster 
students’ reading comprehension of proof such as 
students’ reading strategies and teaching method (e.g., 
live lecture). Effective reading strategies include 
metacognitive (e.g., planning, monitoring, and 
regulation), cognitive strategies (e.g., rehearsal, 
elaboration, and organizational strategies) and other five 
reading strategies (i.e., trying to prove before reading, 
identifying proof framework, breaking the proof in 
parts, using examples, comparing proof methods). We 
integrated these factors in the teaching design we used 
in our study to explore the role of different proof 
formats. These proof formats will be discussed in the 
following section. 

Different Formats of Presenting a Geometry Proof 

Mathematical proof, including geometry proof, is a 
special text genre in written discourse and students’ 
ability to read a mathematical proof is required for 
understanding proof written by lecturers or from 
textbooks. A mathematical proof may be presented as a 
direct proof; that is a proof shown to be true directly as 
a result of other statements and situations that are true. 
Direct proofs apply deductive reasoning, which is the 
reasoning from proven facts (premises) using logically 
valid steps to arrive at a conclusion. There are four 
formats for presenting a geometry proof: paragraph 
proof, two-column proof, tree proof and flow-chart 
proof, as shown in Figure 2.  

The paragraph proof consists of a detailed narrative, 
explaining the proof process including steps and reasons 
that lead to the final conclusion. The paragraph format 
helps students describe the logical chain of reasoning in 
a narrative style. A paragraph proof could support 
students to communicate effectively on a technical level, 
both verbally and in writing (Brandell, 1994).  

The two-column proof consists of two columns 
where the first column contains a chronological list of 
statements leading to the desired conclusion. The second 
column contains a list of reasons supporting each step in 
the proof. These reasons could be, for example, axioms, 
definitions, and theorems. The two-column proof format 
helps students learn how to prove and what to use in 
their proof (Herbst, 2002).  

A tree proof is a hierarchy of nodes connecting 
premises to a desired conclusion (Wong, Yin, Yang, & 
Cheng, 2011). The tree proof consists of leaf nodes and 
derived nodes. Each node represents a step in the proof 
and each leaf node is a given statement or intermediate 
statement/conclusion. The tree proof explicitly 
visualizes graphically the logical relation between 
premises, intermediate propositions and conclusions, 
thereby facilitating students to determine what the given 
premises are or what conclusion is proven (Cirillo & 
Herbst, 2011). However, the tree proof does not visualize 
the reasons supporting or justifying each statement.  

The flow-chart proof displays the delineated 
structure of a proof using boxes (rectangles and rounded 
rectangles) and connecting arrows. The rectangular 
boxes contain premises, intermediate 
statements/conclusions and the conclusion, and the 
rounded rectangles contain axioms, theorems and 
definitions. A flow-chart proof represents deductive 
connections of premises and desired conclusions by 
identifying singular propositions (premises/prior 
statements and intermediate conclusion/conclusion) 
and universal propositions or supporting reasons 
(axioms, theorems and definitions). The flow-chart proof 
shows a storyline of proof: it starts with premises from 
which a conclusion is deduced, includes the theorems, 
axioms or definitions being used, and shows how the 
premises and a conclusion are connected (Miyazaki et 
al., 2015). This proof format is a good starting point for 
students to learn other formats of proof such as the 
paragraph and two-column proofs. 

A theoretical study by Cirillo and Herbst (2011) 
offered proof tasks and discussed how multiple 
geometry proof representations move students toward 
more authentic proof practices. They proposed that the 
four proof formats (two-column, paragraph, tree and 
flow-chart proof) could support students’ 
understanding and writing of geometry proof. They 
suggested that teachers introduce and give 
opportunities to students to use different types of 
reasoning and formats of proofs because using a single 
type of reasoning or format may obstruct students’ 
creativity of reasoning and their understanding of the 
proof. However, a practice-oriented study is needed to 
verify this conjecture. Also, each proof format has 
advantages and disadvantages. In the context of reading 
comprehension, students might identify the elements of 
proof, connections between propositions, and reasons 
justifying the propositions when they read a proof in the 
two-column format. However, this may lead students to 
believe that the deductive process is more linear than it 
actually is. In contrast, the flow-chart proof uses the 
same statements and reasons as a two-column proof, but 
the logical flow connecting the statements is indicated by 
arrows (Miyazaki et al., 2015). A paragraph proof 
describes the logical argument using sentences and it 
looks more as “an explanation than a structured 
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mathematical devise” (Ibid., p. 25). This format could 
help students develop mathematical literacy and write a 
proof by contradiction. However, the lack of structure 
could be a problem in reading and writing a paragraph 
proof. The tree proof is a hierarchy of nodes leading from 
premises to conclusion (Wong et al., 2011), explicitly 
visualizing the logical relation between the elements of a 
proof. So, the tree proof could support students in 
determining what the given premises are or what 
conclusion is proved. However, the tree proof does not 
visualize the reasons justifying the validity of each 
statement. 

The current study, in response to the theoretical 
study by Cirillo and Herbst (2011), will investigate the 
conjecture that multiple proof formats could foster 
students’ proof comprehension. In this study, we 
introduced three formats of geometry proofs: paragraph, 
two-column and flow-chart proofs in the experimental 
group. This choice was made for several reasons. First, 
the paragraph and two-column proof formats are used 
in the textbook and lecture notes. Second, the flow-chart 
proof format has a feature that is not provided by the 
other proof formats, because it visualizes the connection 
between premises, intermediate conclusions, conclusion 
and reason/applied properties such as theorems, 
definitions, and axioms (Miyazaki et al., 2015, 2017). 
Third, we do not use the tree proof because this format 
is similar with the flow-chart proof (Cirillo & Herbst, 
2011). 

Aims of This Study 

The purpose of the current study was to investigate 
the effects of a teaching design that presents geometry 
proofs using multiple proof formats (two-column, 
paragraph and flow-chart proof) to support prospective 
mathematics teachers’ RCGP. We implemented the 
design in an experimental group and compared their 
RCGP with a control group. In the experimental group, 
the students were asked to write a two-column proof or 
paragraph proof based on the flow-chart proof, and vice 
versa. In contrast, in the control group, proofs were 
presented in one format, the two-column proof when the 
students read and constructed geometry proofs during 
the lessons. 

The corresponding research questions for this current 
study are: 

1. Do students in the experimental group perform 
better at the post-test on RCGP than students in 
the control group? 

2. Do students in the experimental group reach 
higher RCGP levels at the post-test than students 
in the control group? 

3. Do students in the experimental group perform 
better at the post-test on each facet of RCGP than 
students in the control group? 

METHOD 
This current study investigates the impact of using 

multiple proof formats to foster RCGP of prospective 
mathematics teachers (PMT) by comparing their RCGP 

Figure 2. Four different formats of geometry proof 
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performance in a quasi-experimental pre-test/post-test 
design. The experimental group and the control group 
had six meetings of a geometry proof course with the 
control group using the two-column proof and the 
experimental group using three different proof forms 
(paragraph, two column and flow-chart proof). In the 
next sections we provide information about the context 
and the participants of the study, the instruction, the pre- 
and post- tests and the method used for data analysis. 

Context and Participants 

The participants of this study were PMT during the 
first semester of a four-year degree program. These PMT 
were students in a bachelor’s degree program in a public 
teacher education institute (TEI) in Indonesia. The 
program required four years of coursework in both 
subject matter and pedagogical content, and an 
internship. After completion of this program, graduates 
could be mathematics school teachers. They were 
selected by schools as school-hired teachers or by district 
authorities as contract teachers or after a national test as 
civil servant teachers.  

Four classes of in total 125 PMT (18-19 years old) who 
took an “Introduction to Geometry” course participated 
in this study. In this course, the PMT started learning 
formal geometry proofs. At their secondary school, they 
were introduced to the basic concepts of plane geometry 
such as properties of polygons (triangles, rectangle, 
square, etc.), similarity and congruence applied in 
measuring and calculation problems, but they were not 
introduced to proving. Two classes were randomly 
assigned to either the experimental group or the control 
group. In order to construct and read geometry proofs, 
two classes (n=60) in the experimental group were 
instructed to work with three different proof formats, 
while the other two classes (n=65) were instructed with 
the regular proof instruction of the two-column proof 
format.  

Three lecturers participated in this study. The first 
author (ten years of teaching experience) taught the two 
classes in the experimental group, while two other 
lecturers (two years and twenty years of teaching 
experience) each taught one class in the control group. 
The first author is male and had seven years of 
experience in teaching geometry at university level. The 
two lecturers were female and had, respectively, one 
year and fifteen years of teaching experience in 
geometry. 

Instruction 

In the experimental group, the PMT took part in a six-
meeting teaching experiment that addressed geometry 
proof constructions and proof comprehension, with each 
meeting lasting for 150 minutes. In the first three 
meetings, the teaching focused on an understanding of 
definitions of geometric concepts (e.g., midpoint, 

bisector of a segment, bisector of an angle, vertical 
angles, etc.), axioms and postulates, and conjectures of 
geometric statements based on a step-by-step 
construction using dragging modalities of the GeoGebra 
Geometry application.  

The last three meetings focused on reading and 
constructing geometry proofs. In the fourth meeting, the 
PMT constructed flow-chart proofs in open problems, 
such as determining possible conclusions when 
premises are given and determining other appropriate 
premises when a conclusion and one of the premises are 
given. The term ‘open’ refers to a situation where PMT 
could construct more than one suitable proofs. For 
instance, in the open problem as shown in Figure 3, PMT 
were given a conclusion of proof in a flow-chart proof 
format, and they were asked to determine the suitable 
statements to fill in the blank boxes of the flow-chart so 
that the proof is complete. In the fifth meeting, PMT read 
given flow-chart proofs, then converted these into a 
paragraph proof and a two-column proof. Finally, in the 
sixth meeting, PMT constructed a flow-chart proof of a 
geometric proposition, then converted the flow-chart 
proof into a paragraph and a two-column proof. 

In the control group, during the six meetings, the 
lectures focused on introducing definitions of geometric 
concepts (e.g., midpoint, bisector of a segment, bisector 
of an angle, vertical angles, etc.), axioms/postulates and 
theorems through a teacher-centered pedagogy (talk and 
chalk) that used power-point presentations and the 
blackboard to construct geometric figures and to talk 
about the meaning of geometric concepts. The lecturers 
also introduced and demonstrated two-column proofs of 
theorems or propositions and asked PMT to read two-
column proofs, and construct proofs in the two-column 
format. So, all proofs introduced by the lecturers and 
proof problems solved by PMT were written in the two-
column format. 

 
In the diagram above, we know 𝐴𝐴𝐴𝐴���� ≅ 𝐵𝐵𝐵𝐵����. We want to 

make Δ𝐴𝐴𝐴𝐴𝐴𝐴 and Δ𝐵𝐵𝐵𝐵𝐵𝐵 congruent. Which angles and sides 
should be congruent and what condition 

(Axiom/Theorem) of congruent triangles should be used? 
Complete the flow-chart! 

Figure 3. Open proof problem 
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In both experimental and control groups, the 
instruction was conducted in the form of live lectures. 
The lecturers introduced implicitly some reading 
strategies (e.g., trying to prove before reading, 
identifying proof framework, breaking the proof in 
parts, using examples, comparing proofs) when reading 
proofs. 

Instrument for Measuring RCGP 

This study used as pre-test and post-test an identical 
RCGP test which was adapted from Yang and Lin’s 
(2008) RCGP test items. The adaptation was based on the 
level of participants and the content of the course, and 
included the following: (1) some closed questions were 
changed into open questions, (2) the proposition 
presented in the test and its proof was adapted to the 
course content: congruent triangles, (3) proofs were 
presented in two-column and flow-chart formats, and (4) 
more formal terms were used, such as axiom and 
definition. The adapted version of RCGP is included in 
Appendix 1. The test took 30 minutes for PMT to 
complete. Quantitative measures regarding the five 
facets of RCGP were derived from all corresponding 
items, as shown in Table 2. The Cronbach’s alpha 
reliability coefficient of the instrument for the total 
number of PMT was 0.703. 

The structure of the test including the operational 
definition of each facet is shown in Table 1. Except for 
items 1, 3, 4, 6, 7 and 10, all questions are answered by 
yes or no, or agree or disagree. Questions 3 and 5 ask for 
additional explanations, and partial scores of 1 and 2 
points were given. For instance, questions 2 and 12 ask 
for PMT explanations for agreement or disagreement. If 
PMT answers were correct and their explanations were 
valid or relevant, students would get score 2. If PMT 

answers were correct, but the explanations were not 
correct, then they got score 1. 

Scoring and Analysis 

The first author scored the PMT answers, discussing 
boundary cases with the other two authors to agree on 
uncertain scores. A new scorer/assessor (properly 
trained) who had not participated in the prior scoring 
activities independently coded 25% of the data using a 
coding guide. We calculated Cohen’s kappa to 
determine the inter-rater agreement between assessors 
(κ = .906).  

We calculated normalized gains (N-gain) to 
determine the improvement of PMT performance for the 
whole RCGP and each facet of RCGP before intervention 
(pre-test) and after intervention (post-test) for both the 
experimental and the control group. We used Hake’s 
formula (2002) to determine the N-gain score 〈𝑔𝑔〉 for the 
difference between pre- and post-test scores. We used 
Mann-Whitney U test as a nonparametric test to examine 
the significance of differences between N-gains of the 
experimental and control group.  

The criteria for the improvement of PMT RCGP based 
on N-gain scores are shown in Table 2. 

We used the procedure by Lin and Yang (2007) to 
determine PMT RCGP levels by assigning PMT RCGP 
scores with a vector triple (𝑎𝑎, 𝑏𝑏, 𝑐𝑐). The values of 𝑎𝑎, 𝑏𝑏, and 
𝑐𝑐 refer to, respectively, the scores of facets of basic 
knowledge, logical status and summarization, and 
generality and application (Figure 1). Table 1 indicates 
that the total scores of the three values of 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 could 
be 4, 5 and 7, respectively. If a student scored above 70% 
in the basic knowledge items or 3, the value of 𝑎𝑎 was 1. 
In the same way, values of 𝑏𝑏 and 𝑐𝑐 for logical status and 
summarization, and generality and application, are 
determined. This means that the scores of a, b, and c are 
either 0 or 1. The PMT RCGP scores were classified into 
five categories: Beyond Chaining Elements (1,1,1), 
Beyond Recognizing Elements (1,1,0), Beyond Surface 
(1,0,0), Surface (0,0,0), and Skipping Recognizing-

Table 1. Structure of Reading Comprehension of Geometry Proof (RCGP) test (adapted from Yang & Lin, 2008) 
Facets Object of comprehension Operational definition Items Score Max score 
Basic 
knowledge (B) 

Content of premises or conclusion Recognizing the meaning of a symbol in 
the figure 

1 0,1 4 

Explaining the meaning of a property 2 0,1,2 
Recognizing the meaning of a property 3 0,1 

Logical status 
(L) 

Status of premise Recognizing a condition applied directly 4 0,1 3 
Logical relation between premise and 
conclusion 

Judging the logical order of statement 5 0,1 

Property applied to derive a conclusion 
from premise 

Recognizing which properties are applied 6 0,1 

Summary (S) Multiple arguments and critical ideas Identifying critical ideas of a proof 7-a, 7-b 0,1; 0,1 2 
Generality (G) Proposition or proof Judging the correctness 8 0,1 3 

All arguments and attached figure Identifying what is validated by the proof 9-a, 9-b 0,1; 0,1 
Application 
(A) 

Application in other situations Applying the same premises 10, 11 0,1; 0,1 4 
Identifying the different premises 12 0,1,2 

 

Table 2. Interpretation of N-gain scores (Hake, 1998) 
〈𝑔𝑔〉 score Criteria of improvement of RCGP 
〈𝑔𝑔〉 ≥ .7  High 
. 3 ≤ 〈𝑔𝑔〉 < .7  Medium 
〈𝑔𝑔〉 < .3  Low 
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Chaining (1,0,1). The other possible responses: (0,1,1), 
(0,0,1), and (0,1,0) were labelled as unsupported as we 
assume that one needs to comprehend the first facet 
(basic knowledge) before moving from the surface level 
to the next level. 

FINDINGS 
At the beginning of this section, we present 

descriptive statistics (i.e., mean and standard deviations) 
of RCGP scores of pre-test, post-test, as shown in Table 
3. The pre- and post-test scores represent respectively 
PMT performance of RCGP before and after the 
intervention. The N-gain scores represent the 
improvement of PMT RCGP performance after 
intervention. We compared PMT RCGP performance as 
an effect of the intervention setting in experimental and 
control groups by observing the significant difference of 
PMT performance between both experimental and 
control groups at the following two stages: before (pre) 
and after (post) intervention, and at the level of their 
improvement (N-gain). 

Figure 4 presents plots of the means of RCGP scores 
of pre- and post-test in both experimental and control 
groups. 

We found that the normalized gain of RCGP in the 
experimental group was 0.733 (𝑀𝑀 = 13.75), categorized 
as high, the normalized gain of the control group was 
0.33 (𝑀𝑀 = 10.80), which was categorized as medium. 

The Mann-Whitney U test indicated that the pre-test 
mean scores for the experimental and control group did 
not differ significantly, 𝑈𝑈(60,65) = 1647, two-tailed 𝑝𝑝 =
0.131. The Mann-Whitney U test indicated that the N-
gain scores for experimental and control group differed 
significantly, 𝑈𝑈(60,65) = 547.5, two-tailed 𝑝𝑝 < 0.001. 
Based on N-gains and the Mann-Whitney U tests, we 
drew the conclusion that the instruction with the use of 
flow-chart format together with other formats (e.g., 
paragraph and two-column proof formats) highly 
improves PMT RCGP. 

Next, we also categorized the level of RCGP of PMT 
in both experimental and control groups. We used the 
comprehension categories proposed by Lin and Yang 
(2007). The aim of this analysis was to investigate the 
PMT level of RCGP based on the post-test scores 
representing PMT performance of RCGP after the 
intervention. We present the percentages of PMT who 
answered at least 70% correctly of the items of the RCGP 
facets at the different levels, as shown in Table 4. The 
comprehension categories in Table 4 indicate the level of 
RCGP reached by the PMT. So, the percentage of PMT 
who were in the “Beyond Chaining Elements” category 
indicated the percentage of PMT who reached the third 
or higher level of RCGP. 

PMT performance on the post-test indicated that 
56.7% of PMT in the experimental group reached beyond 
the third level of RCGP (Chaining Elements) while only 

Table 3. Mean RCGP scores, N-gains and standard deviations (SD) of pre-test and post-test 

Groups Pre-test Post-test N-gain Criteria Mean SD Mean SD Mean SD 
Experimental (N=60) 7.25 2.26 13.75 1.781 .733 .219 High 
Control (N=65) 7.80 2.51 10.80 2.425 .330 .309 Medium 

 

 
Figure 4. Plots of means of RCGP scores and standard deviations of pre-test and post-test in experimental and control 
groups. 
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6.2% of PMT in the control group reached this level. 
Beyond the third level of RCGP (Chaining Elements), 
PMT comprehended the five facets of RCGP; they were 
able to recognize proof elements (e.g., premises, 
properties, and a conclusion), understand their logical 
chaining in a proof, identify what is validated by the 
proof and apply the latter in other contexts. In the 
experimental group, 61.7% of prospective mathematics 
teachers reached the second or higher level of RCGP 
(Recognizing Elements), while only 9.3% of the PMT 
from the control group was in that level. Beyond the 
“Recognizing Elements” level, PMT comprehended the 
first three facets of RCGP (e.g., basic knowledge, logical 
status and summarization) and they were able to 
recognize premises, conclusions, or properties that may 
be implicitly applied in a proof. These percentages show 
that the PMT in the experimental group reached higher 
RCGP levels than PMT in the control group. 

The highest percentage of 46.2% of PMT in the control 
group was in the category of “Skipping Recognizing-
Chaining” while 25% of PMT in the experimental group 
was in this category. These PMT could answer correctly 
at least 70% of the items related to the generality and 
application facets but the percentage of correct answers 
of items regarding logical status and summarization was 
less than 70%. This indicated that a large part of the PMT 
was able to apply the proposition of the proof and 
identify what is validated by the proof but lacked the 
ability of recognizing the status of the statements (e.g., 
premises, conclusion and applied properties) in proof 
and the ability of identifying the critical ideas of proof 
(e.g., justification of the conclusion). 

Lastly, we present descriptive statistics (i.e., means 
and standard deviations) of pre- and post-test, and N-

gain scores of the five facets of RCGP (i.e., Basic 
Knowledge, Logical Status, Summarization, Generality 
and Application), as shown in Table 5. Through the 
analysis of these data, we wanted to investigate which 
facet of RCGP is supported by the use of multiple proof 
formats. We compared these scores for each facet and 
observed the significant differences in both experimental 
and control groups. 

N-gains as shown in Table 5 indicated that the 
improvement of PMT RCGP performance of facets of 
basic knowledge, generality and application were high 
in the experimental group. The improvements of RCGP 
of the facets of logical status and summarization in the 
experimental group were medium, but higher than in 
the control group (see “Low” category in Table 5). The 
post-test mean score for basic knowledge for the 
experimental group did not differ significantly, 
𝑈𝑈(60,65) = 1635.5, two-tailed 𝑝𝑝 = .083, from that for the 
control group. It indicated that, after the intervention, 
the understanding of terms, symbols and statements in 
proof for the experimental group was similar with that 
for the control group.  

The Mann-Whitney U test indicated that the N-gain 
scores of the facets of logical status and summarization 
for both groups differed significantly, 𝑈𝑈(60,65) = 536.5, 
two-tailed 𝑝𝑝 < 0.001 and 𝑈𝑈(60,65) = 833.0, two-tailed 
𝑝𝑝 < 0.001, respectively. We concluded that there was a 
significant improvement on PMT performance in both 
logical status and summarization for the experimental 
group after the intervention. In other words, the 
instruction in the experimental group supported PMT to 
gain better RCGP performance in recognizing logical 
status of statements in the proof and critical ideas of the 
proof. We did not find differences in improvement of 

Table 4. Percentages of PMT reaching 70% in RCGP, based on the post-test scores 
Comprehension Category Control (𝑛𝑛=65) Experimental (𝑛𝑛=60) 
Beyond Chaining Elements (1, 1, 1) 6.2 56.7 
Beyond Recognizing Elements and under Chaining Elements (1, 1, 0) 3.1 5 
Skipping Recognizing-Chaining (1, 0, 1) 46.2 25 
Beyond Surface and under Recognizing Elements (1, 0, 0) 18.5 5 
Surface (0, 0, 0) 9.2 1.7 
Unsupported responses (0, 1, 0)/ (0, 0, 1)/ (0, 1, 1) 16.9 6.7 
Total 100.0 100.0 

 

Table 5. Means and standard deviations of pre-test, post-test and N-gain of five facets of RCGP 

Facets Groups Pre-test Post-test N-gain Category Means SD Means SD Means SD 
Basic Knowledge Experimental 2.283 .958 3.533 .596 .744 .343 High 
 Control 2.815 .827 3.246 .884 .347 .722 Medium 
Logical status Experimental .433 .593 2.400* .588 .660* .322 Medium 
 Control .569 .661 1.292 .805 .270 .401 Low 
Summarization Experimental .567 .673 1.400* .827 .660* .527 Medium 
 Control .277 .573 .400 .725 .041 .440 Low 
Generality Experimental 2.000 1.074 2.867 .468 .833 .458 High 
 Control 2.046 1.152 2.708 .631 .923 .230 High 
Application Experimental 1.967 .991 3.550 .649 .753 .454 High 
 Control 2.092 1.100 3.154 1.093 .579 .502 Medium 
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reading comprehension between experimental and 
control group on the other facets. 

DISCUSSION AND CONCLUSIONS 
This current study compared the effects of the use of 

multiple formats of presenting geometry proof on 
prospective mathematics teachers’ reading 
comprehension of geometry proof (RCGP). We 
conducted an experimental design with a control group 
(n=65), which only used the two-column format of 
geometry proof, and an experimental group (n=60), 
which used three different formats (paragraph, two-
column and flow-chart proof). At the beginning of the 
instruction, PMT performance of RCGP for the 
experimental and control groups was not significantly 
different. While the improvement, expressed as N-gain, 
of PMT RCGP in the experimental group was high, the 
control group’s improvement was in the medium 
category. These findings suggest that the instruction 
using multiple proof formats had a stronger effect on 
PMT RCGP than instruction using one type of proof 
format (i.e., two-column proof), even though the 
geometry proof instruction using multiple proof formats 
was given to the PMT in just three 150-minute meetings.  

We found that while 61.7% of PMT in the 
experimental group reached beyond the second level of 
RCGP “Recognizing Elements”, only 9.3% of PMT in the 
control group was beyond this level. In order to reach 
this level or beyond, PMT should be able to understand 
most of the terms and sentences in the proposition and 
its proof, to identify the status of statements such as 
premises, conclusions or applied properties, and also to 
grasp the critical ideas of the proof. The “logical status” 
and “summarization” facets contributed significantly to 
the difference found between the experimental and 
control groups, whereas PMT performance on the “basic 
knowledge” facet did not differ significantly between 
the groups. In particular, the improvement of these two 
facets (i.e., “logical status” and “summarization”) in the 
experimental group justified the conclusion that using 
multiple proof formats better supported PMT in 
reaching a higher level of RCGP than a single proof 
format (two-column proof). This finding agreed with the 
suggestion made by Cirillo and Herbst (2011) that 
lecturers should introduce and give students 
opportunities of using different formats of proofs to 
facilitate their comprehension of a proof.  

Several explanations may be given for the different 
gains in the facets of “logical status” and 
“summarization” between the two groups. First, the 
experimental group performed better in reading 
comprehension on the facet of “logical status”, because 
the flow-chart proof format visualizes the logical status 
of propositions (e.g., premises, conclusion, applied 
properties/axioms/theorems/definitions) in the proof 
(Miyazaki et al., 2015). Second, the flow-chart format 

helped PMT recognize critical ideas of the proof. The 
critical ideas of proof refer to the connections between 
the intermediate or final conclusion and the previous 
statements or premises. The flow-chart visualizes this 
connection by the arrows between premises, 
intermediate conclusion, final conclusion and the 
reasons or applied properties (e.g., axioms, theorems, 
definitions), justifying the conclusion or claim (Cirillo & 
Herbst, 2011; Miyazaki et al., 2015). In contrast, there was 
no significant difference in the post-test scores between 
the two groups related to the facets of “basic 
knowledge”, “generality” and “application”, although 
both groups progressed. The reason for this may be that 
PMT in both groups were instructed to solve writing-
oriented tasks, which provided PMT with application 
questions for practice. The use of multiple proof formats 
in the experimental group did not make a difference in 
“basic knowledge”, “generality” and “application”, 
because these only focused on presenting a certain proof, 
how the elements of the proof (i.e., premises, conclusion, 
and applied properties) were logically connected, and 
they did not connect with other propositions or other 
context.  

Yang and Lin’s model supposes that students’ RCGP 
develops from “Surface” to “Recognizing Elements” 
then to “Chaining Elements”, and finally to 
“Encapsulation” (Yang & Lin, 2008). Also, this sequence 
is generally seen in geometry textbooks starting with 
proposition, then proof, and then its application (Lin & 
Yang, 2007). However, the data analysis showed that 
46.2% of the PMT in the control group and 25% of the 
PMT in the experimental group were in the “Skipping 
Recognizing-Chaining” category (1,0,1). This indicates 
that they had good scores for “application” and 
“generality” but they scored low on “logical status” and 
“summarization”. In other words, the PMT understood 
the mathematical terms or concepts in the proof and 
what is validated by the proof, and could apply the 
proposition properly in other, similar situations, but 
they did not understand the logical relations of the 
proofs and some critical ideas of the proofs. This was 
also found by Lin and Yang (2007). There may be several 
possible reasons for this finding. First, the PMT in both 
groups were instructed not only to read a proof (reading-
oriented tasks) but also to write a geomety proof 
(writing-oriented tasks). In writing proof tasks, PMT 
constructed a proof of a certain proposition by applying 
related theorems and propositions. To do so, it seems to 
us that PMT tried to understand which proposition 
should be proven by the theorems and how to apply the 
proposition to other contexts. These activities refer to the 
facets of “generality” and “application”. Consequently, 
their reading may only have focused on what is 
validated by the proof and how to apply it in other 
contexts instead of understanding how each step 
followed from the previous one (Weber & Mejia-Ramos, 
2011). That may have enabled the PMT to comprehend 
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the facets of “generality” and “application”, but 
understanding of the facets of “logical status” and 
“summarization” was not necessary. So, we found that 
students’ proof comprehension within the facets of 
“generality” and “application” could benefit from 
attempts in proof construction. Second, the lack of 
understanding of the PMT in the categories of “logical 
status” and “summarization” is related to a type of 
understanding which is called “instrumental” (Skemp, 
1976). PMT with this type of understanding know how 
to apply propositions but show ignorance when it comes 
to how a proof validates a proposition. So, PMT might 
reach the “Recognizing” and “Chaining” level after they 
know how to read a proof (reaching “beyond chaining 
elements” level). However, such an explanation requires 
further studies on investigating the process of the 
development of RCGP over time (e.g., a learning 
trajectory of reading comprehension). Finally, our 
findings agreed with Lin and Yang (2007) that their 
RCGP model is not hierarchical as the succession of the 
students’ attainment of RCGP levels is not always linear. 

We are aware that our study has some possible 
limitations. The first one is the nature of the test we used. 
The items of RCGP used in this study were adapted from 
Yang and Lin’s items (2008) by changing the type of 
some questions and reducing the number of questions. 
The Cronbach’s alphas of pre-test and post-test (i.e., 
0.624 and 0.705 respectively) indicate that the reliability 
of the pre-test and post-test are questionable and 
acceptable, respectively. However, the adaptation from 
Yang and Lin’s items was minor, so we suppose that this 
did not significantly affect our results. A second 
limitation is that in our experimental design the 
experimental and control groups did not only differ in 
types and number of proof formats, but also in other 
conditions, like: (1) the use of Dynamic Geometry 
System (DGS) used in the experimental group to help 
PMT understand definitions, axioms or theorems, (2) the 
reading strategies that were introduced by the teacher, 
and (3) the role of the teacher (e.g., experience, use of 
teaching strategies). We supposed that the use of the 
DGS might affect PMT basic knowledge in the 
experimental group but our results show that the pre-
test scores of both groups in this facet were similar. For 
the other two factors (reading strategies and the role of 
the teacher) we do not have enough information to say if 
these factors may contribute to PMT RCGP.  

A contribution of this paper to teaching practice is 
our finding that PMT reading comprehension can be 
improved by using a flow-chart proof format combined 
with other proof formats (two-column proof and 
paragraph proof) in proof reading tasks. Particularly, the 
flow-chart proof format could help PMT recognize the 
logical connection of the components in the proof (e.g., 
premises, conclusion, applied properties). This issue is 
relevant to the Indonesian context because most of the 
geometry proofs in geometry textbooks used in 

Indonesia are presented in the two-column format. Also, 
in other contexts, we think that teaching students to read 
geometry proofs using multiple formats such as flow-
chart, paragraph and two-column proof may foster their 
RCGP. This paper also suggests that it may be beneficial 
to combine reading-oriented tasks and writing-oriented 
tasks to support students’ reading comprehension. The 
reading-oriented tasks could help students comprehend 
the local aspects of proof (e.g., understanding 
statements, recognizing the logical status of statements, 
and the critical ideas of the proof) and the writing-
oriented tasks could support students in applying a 
proposition and its proof in other contexts.  

The results of our current study suggest two 
recommendations for future research. First, in the 
context of students’ progression of RCGP, the scores of 
the “Skipping Recognizing-Chaining” category in both 
groups indicated that many PMT understood the 
mathematical terms or concepts in the proof and what 
the proof validated and could apply the statement in 
similar situations but did not fully understand the 
logical relations among the arguments in the proof and 
some critical ideas of the proof. A possible interpretation 
is that the PMT development of understanding follows 
the relational understanding (Skemp, 1976), meaning 
that PMT could come to know the logical status and 
critical ideas of proof after they know how to apply the 
proof (Lin & Yang, 2007). However, this study did not 
investigate the progress of PMT development over time. 
We suggest future studies investigating ways of 
students’ development of RCGP. A model for describing 
the growth of students’ reading comprehension by 
Ahmadpour et al. (2019) can be used to describe the 
transition between different stages of comprehension 
when reading a proof. This hypothetical model offers 
three different pathways of comprehending a formally 
acceptable proof, namely the path of structure, the path 
of the procedure, and the path of form. The end state of 
the first path, path of structure, is a formulated proof, 
meaning that the structure of proof has been understood. 
This path involves three transitions: generalization (i.e., 
process of applying a given argument in a broader 
context), abstraction (i.e., a process occurring when the 
subject focuses on specific properties of a given object 
and then considers this property in isolation from the 
original) and formalization (i.e., a process linking 
directly the text of a proof to the abstract structure). The 
second path, path of procedure, is a part of the first path: 
it branches off the first path by skipping the abstraction 
and by applying the formalization to a general 
procedure (i.e., reading proof as a general procedure). 
The last path, path of form, leads to seeing a formally 
acceptable proof as an argument that is correctly 
manipulated by symbols. In this case, students check the 
correctness of the proof by checking the correctness of 
each operation in an argument. The first two paths, 
structure and procedure, focus on the understanding of 
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proof at the semantic level, and the last path, form, 
focuses on the use of symbolic representations at the 
syntactic level. Secondly, although we confirmed the 
role of formats of presenting geometry proofs in 
fostering students’ RCGP, other factors should be further 
investigated, for instance students’ reading strategies of 
a certain proof format. Pape (2004) states that students’ 
reading strategies for comprehending proofs can be 
classified and explored with different propositions and 
within proof formats. Future research could investigate 
the relationship between RCGP performance and 
students’ strategies to read proofs presented in multiple 
proof formats so that researchers and mathematics 
teacher educators gain insights into the students’ 
perspectives and their strategies that may help with 
reading comprehension of geometry proof. 
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APPENDIX 1 
As shown in Fig. 4, 𝑊𝑊𝑊𝑊����� bisects ∠𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊�����; then must 𝑇𝑇𝑇𝑇���� and 𝑉𝑉𝑉𝑉���� be congruent? 

 
Figure 4. 
 
For this problem, Budi makes a proof (Fig. 5): 

   
Figure 5. Flow-chart proof 
Statements Reasons  
𝑊𝑊𝑊𝑊����� is a bisector of an angle ∠𝑇𝑇𝑇𝑇𝑇𝑇 Given  Line 1 
∠𝑇𝑇𝑇𝑇𝑇𝑇 ≅ ∠𝑉𝑉𝑉𝑉𝑉𝑉  Definition of a bisector of an angle Line 2 
𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊�����  Given Line 3 
𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊�����  Axiom of reflection Line 4 
∆𝑇𝑇𝑇𝑇𝑇𝑇 ≅ ∆𝑉𝑉𝑉𝑉𝑉𝑉  Axiom Side-Angle-Side Line 5 
𝑇𝑇𝑇𝑇���� ≅ 𝑉𝑉𝑉𝑉����  Definition of congruent triangles Line 6 
Answer the following on the basis of the question "must 𝑇𝑇𝑇𝑇���� and 𝑉𝑉𝑉𝑉���� be congruent?" and Figure 5. 

1. Label ∠𝑇𝑇𝑇𝑇𝑇𝑇 in Figure 4 as 1 and ∠𝑉𝑉𝑉𝑉𝑉𝑉 in Figure 4 as 2. 
2. Do you agree that ∠𝑇𝑇𝑇𝑇𝑇𝑇 ≅ ∠𝑉𝑉𝑉𝑉𝑉𝑉? Explain why or why not. 
3. If ∆𝑇𝑇𝑇𝑇𝑇𝑇 ≅ ∆𝑉𝑉𝑉𝑉𝑉𝑉 , what is the corresponding side of 𝑇𝑇𝑇𝑇����? 
4. Apart from the known conditions ( 𝑊𝑊𝑊𝑊����� bisects ∠𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊�����), which conditions can be directly applied? 
5. If someone suggests that the proof process of flow-chart 1, 2, 3, 4, 6, 5 is correct after box 5 and 6 are interchanged, 

would you agree with his or her opinion? 
6. Which properties/axioms are applied to this proof? 
7. This proof process derives an important result from the condition that 𝑊𝑊𝑊𝑊����� bisects ∠𝑇𝑇𝑇𝑇𝑇𝑇, 𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊����� and another 

condition. 
a) What is this important result? 
b) What can be derived from this important result? 

8. Do you agree that this proof process is correct? 
9. Statement A: If 𝑊𝑊𝑊𝑊����� bisects ∠𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑊𝑊𝑊𝑊����� ≅ 𝑊𝑊𝑊𝑊�����; then 𝑇𝑇𝑇𝑇���� ≅ 𝑉𝑉𝑉𝑉����. 

a) Do you agree that this proof process can prove that Statement A is always correct? 
b) Do you agree that this proof process can prove that Statement A is sometimes correct and sometimes incorrect? 

Answer the following questions on the basis of what you know. 
10. In triangle ∆𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴���� ≅ 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴���� is an angle bisector of ∆𝐴𝐴𝐴𝐴𝐴𝐴, which conclusions can be derived? 
11. There is a circle with center point 𝑃𝑃, radius 𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃. If a point S is an intersection point of a bisector of ∠𝑄𝑄𝑄𝑄𝑄𝑄 and 

𝑅𝑅𝑅𝑅����, are 𝑄𝑄𝑄𝑄���� and 𝑅𝑅𝑅𝑅���� congruent? 
12. Sides 𝑉𝑉𝑉𝑉����� and 𝑉𝑉𝑉𝑉���� are legs of an isosceles triangle ∆𝑉𝑉𝑉𝑉𝑉𝑉 and a point 𝑇𝑇 is on the base 𝑊𝑊𝑊𝑊����� such ∠𝑇𝑇𝑇𝑇𝑇𝑇 ≅ ∠𝑇𝑇𝑇𝑇𝑇𝑇, then 

is 𝑇𝑇𝑇𝑇����� ≅ 𝑇𝑇𝑇𝑇���� always correct? 
The test is adapted from Yang and Lin (2008). 
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