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Abstract

This research evaluates how students’ perceptions of artificial intelligence (Al)-based learning
tools affect calculus education by examining the middle factors between cognitive and emotional
student responses. Research built upon cognitive load theory and social cognitive theory
evaluates how students perceive Al adaptability, feedback accuracy, trust, and pedagogical value
because these perceptions alter their learning processes as well as their academic outcomes.
University professors from nine Rajamangala Universities of Technology in Thailand provided data
through structured questionnaires to the research study. The researchers used partial least
squares structural equation modeling (PLS-SEM) to evaluate their proposed theoretical
connections. Results show that student perceptions regarding Al-based learning directly affect
cognitive-emotional responses, and these responses powerfully determine academic
achievements. The predictive model detects 75.7% of learning outcome variance in student
performance (R? = 0.757), which demonstrates robust model specification and documentation.
Research revealed that emotional and cognitive outcomes serve to bridge Al-based learning
perceptions and educational outcomes, thereby demonstrating their importance in the learning
achievement process. The research emphasizes the need to build Al learning platforms that
enhance students’ engagement alongside their resilience and confidence because these elements
drive academic achievement in calculus and STEM subjects.

Keywords: Al-based learning, cognitive load, emotional engagement, learning outcomes, PLS-

SEM

INTRODUCTION

Traditional education now relies on artificial
intelligence (AI) to create personalized learning
solutions that use data analytics for adaptive teaching
techniques, according to Baker and Inventado (2016) and
Luckin and Holmes (2016). Luckin and Holmes (2016)
argued that Al has the potential to transform education
by enabling personalized and data-driven learning
experiences. Their work emphasizes that Al can support
teachers in understanding students’ learning needs and
provide adaptive feedback that promotes autonomy and
deeper understanding. Several Al-driven learning

resources provide mathematics students with dynamic
feedback along with system-generated problem help
and customized educational sequences (Holmes et al.,
2019). STEM students find calculus to be fundamental
and challenging because this subject presents conceptual
challenges as well as cognitive stress, according to
research by Tall (2013). STEM students find calculus to
be both fundamental and challenging because this
subject imposes substantial conceptual demands and
cognitive stress. Cognitive stress arises when learners’
working memory is overloaded by complex symbolic
reasoning, abstract concepts, and multi-step procedures
inherent in calculus (Sweller, 2011). The necessity to
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Contribution to the literature

e In order to explain the effects of Al-based learning in calculus education, this study combines cognitive

and emotional theories.

e According to empirical data, perceptions and results of Al learning in Thai universities are mediated by

cognitive and emotional factors.

e A four-dimension Al perception model that has been validated improves learning success measurement

and prediction.

integrate algebraic manipulation with conceptual
understanding often exceeds students’ cognitive
capacity, leading to anxiety, confusion, and reduced
problem-solving efficiency (Holmes et al., 2019; Tall,
2013). Al-based learning systems work to minimize
barriers toward learning through targeted instruction
yet need additional empirical research to prove their
effectiveness in boosting student engagement and math
concept retention and self-efficacy (Zawacki-Richter et
al., 2019).

More teachers are implementing Al educational
technologies, yet several essential research questions
need answers. Previous studies examined Al effects on
learning efficiency along with problem-solving
competencies, yet they provide minimal evidence
regarding the influence of student-held AI tool
perceptions on calculus learning, cognitive engagement,
and emotional responses (Chen et al., 2020). Cognitive
load theory (CLT) demonstrates that students are prone
to diminished learning results when they expend excess
cognitive effort, yet researchers understand little about
how Al tools affect these difficulties in calculus
education (Sweller, 2011). The effectiveness of Al
enhancements for short-term results is established, yet
researchers are still investigating its impact on long-term
retention along with the transferability of STEM
problem-solving abilities (Nye et al., 2014; VanLehn,
2011). A deep evaluation involving structural equation
modeling (SEM) must analyze Al adaptability and
feedback accuracy and student engagement alongside
learning outcome indicators to repair gaps in current
understanding. The research investigates Al effects on
calculus learning through direct pathways along with
indirect mechanisms, which will expand existing
knowledge about Al in mathematics education.

LITERATURE REVIEW

Al in Mathematics Education

Research focuses on Al applications in education due
to their positive effects on student performance,
particularly when used to deliver customized learning
experiences combined with immediate performance
feedback (Zawacki-Richter et al, 2019). Adaptive
learning tools powered by Al technology enable
students to learn independently at variable speeds
through personalized guidance tailored to each learner’s
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unique profile. However, the idea of supporting
autonomous learning predates the widespread adoption
of Al Earlier technologies such as intelligent tutoring
systems (ITS) (VanLehn, 2011), adaptive hypermedia,
and computer-assisted instruction (Luckin & Holmes,
2016) had already been developed to promote self-
regulated learning by providing feedback and
scaffolding aligned with individual progress. What
distinguishes modern Al-based tools is their capacity to
analyze learner data in real time, predict performance
patterns, and continuously refine instructional
strategies, thereby enhancing personalization and
autonomy in calculus learning. The tools generate
adaptive  feedback and  provide intelligent
recommendations with interactive visualizations, which
makes them ideal for calculus education (Holmes et al.,
2019 ; Sweller, 2011). According to VanLehn (2011), Al-
based tutoring systems enhance learning efficiency
through continuous adaptation of instructional content
toward students’ cognitive needs and progress. The Al-
driven learning platforms actively facilitate self-directed
learning so students can independently investigate
calculus concepts under guidance that emulates
personalized tutoring experiences (Chen et al., 2020;
Luckin & Holmes, 2016). Al technologies toward
enhanced learning outcomes enable both cognitive
growth and decrease math-related stress when
combined with purposefully designed instruction
(Dweck, 2006; Nye et al., 2014).

The abstract essence and complex algorithms, as well
as intricate problem-solving approaches in calculus,
create major learning difficulties for students, according
to Tall (2013). Students face multiple barriers in
mathematics, particularly in calculus, where they often
experience excessive cognitive load, mathematics
anxiety, and difficulty connecting symbolic procedures
with conceptual understanding. The abstract and
sequential nature of calculus requires learners to
integrate algebraic reasoning, visualization, and multi-
step problem-solving, which can easily overload
working memory and lead to cognitive stress (Sweller,
2011; Tall, 2013). Modern Al tools, including ITS
integrated with automated assessment platforms, help
mitigate these barriers by providing step-by-step
feedback, personalized assignments, and real-time error
detection (Chen et al., 2020). Modern Al tools, including
ITS systems coupled with automated platforms and Al
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evaluation systems, combine step-by-step explanations
with personalized assignments while enabling real-time
error recognition (Chen et al., 2020). The system enables
students to construct a stronger conceptual grasp of the
material because it lets them examine their incorrect
responses and improve their problem-solving
approaches. The long-term effects of Al on student
retention of concepts and independent reasoning
abilities and general STEM discipline knowledge
transfer need additional experimental research studies
designed to address this issue (Nye et al., 2014). Al-
assisted learning tools succeed in developing higher-
order thinking abilities and extended mathematical
proficiency through effective tool design, which
maintains deep understanding and metacognitive
activities and sustains mathematical thinking after initial
assistance.

Students” Perceptions of Al-Assisted Learning

Students’ evaluations of Al-assisted learning guide
the efficiency of Al educational tools for calculus
education because they need understandable lessons
and organized guidance with adaptive support—that is,
instructional assistance that dynamically adjusts to
individual learners’ needs. In calculus learning, adaptive
support may involve providing step-by-step scaffolding
when students struggle with differentiation or
integration, adjusting task difficulty according to
performance, and offering conceptual visualizations to
reduce cognitive overload and enhance understanding
(Holmes et al., 2019; Sweller, 2011). Students outline
their understanding of Al-assisted education through
four primary influences that combine their individual
learning pattern capabilities with Al feedback accuracy,
Al explanation reliability, and the teaching capabilities
of tutors (Chen et al.,, 2020; Holmes et al., 2019). The
perception of Al systems as flexible and responsive
technologies leads students to become more involved
with Al-driven educational platforms, thus enhancing
motivation levels and persistence and developing better
conceptual knowledge (Luckin & Holmes, 2016).

Trust in Al-based educational tools may decrease
according to students who worry about system
dependability while questioning human-free instruction
and possible wrong information (Baker & Inventado,
2014). The belief that Al-generated responses provide
superficial understanding of material or poorly
understand student requirements or provide insufficient
guidance will cause students to avoid Al learning and
revert to traditional methods. Student experiences using
Al technology create differences in their readiness to use
Al during learning because technology-literate students
show stronger engagement when compared to students
who lack experience with Al-driven education
(Zawacki-Richter et al., 2019). Students from diverse
educational backgrounds and cultural backgrounds
form specific expectations of Al learning tools that

determine how they accept Al suggestions and
automated feedback. The successful implementation of
Al-based learning environments depends on grasping
these student perceptions, which ensures Al tools will
improve student independence alongside meaningful
feedback delivery and self-learning promotion for
creating beneficial educational experiences with lasting
academic impact.

Cognitive Load and Emotional Responses in Al
Learning

Cognitive load and emotional responses serve as
major factors in Al-assisted learning, and they
significantly impact the understanding of abstract
calculus concepts due to their complex procedural
nature. Learning becomes most effective under CLT
principles when cognitive resources are efficiently
managed. However, student performance declines when
learners experience cognitive overload or excessive
mental stress that interferes with working memory
processes (Sweller, 2011). Prior studies in calculus
learning have reported similar findings: for example,
Tall (2013) found that the abstract nature of calculus
concepts often overwhelms students’ cognitive capacity,
while Holmes et al. (2019) demonstrated that excessive
cognitive demands during symbolic manipulation tasks
significantly reduce problem-solving accuracy and
retention. Al teaching tools simplify education through
streamlined guidance systems, but their effectiveness
depends on the clarity of explanations and consistency
of feedback in addition to proper scaffolding methods
(Chen et al., 2020).

The relationship between students and Al-based
learning is substantially influenced by emotional factors
beyond cognitive requirements. Students with high
growth mindsets along with frustration tolerance
respond well to Al-generated explanations and problem-
solving suggestions. Students who possess a growth
mindset, which conveys that learning intelligence and
abilities through effort brings benefits, tend to stay
focused despite challenges and use Al for educational
purposes while remaining motivated (Dweck, 2006). The
inability of students to handle frustration tolerantly
causes them to separate from Al-based learning when
the Al-generated responses fail to match their
expectations, which in turn creates elevated anxiety
levels and reduces confidence alongside decreased
reliance on Al support (Zawacki-Richter et al., 2019). The
combination of relying too heavily on Al with
insufficient active engagement or metacognitive
strategies produces shallow understanding instead of
deep semantic mastery. According to research, it is
crucial to maintain proper cognitive challenges
alongside developing positive emotions when using Al-
assisted learning tools because this approach optimizes
learning  benefits by  strengthening students’
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understanding and self-assurance and enabling long-
term academic success in mathematics.

Al and Student Learning Outcomes

The application of Al assists students in achieving
better educational outcomes in calculus by providing
adaptive feedback, visual representations, and step-by-
step problem-solving guidance for complex concepts
that often hinder understanding. However, Al-
generated solutions are not always accurate and may
occasionally produce incorrect or oversimplified
explanations. Therefore, students must engage in critical
verification and reflection when using Al tools to ensure
conceptual accuracy and deep understanding (Holmes
et al., 2019). The main strength of Al-driven education
includes boosting student self-efficacy because students
with immediate adaptive feedback and guided problem-
solving assistance develop stronger mathematical self-
assurance (Chen et al., 2020). AI demonstrates features
for recognizing gaps in learning while providing
detailed breakdowns of steps and individualized
practice so students can receive specific help that
decreases their frustration and leads to better learning
success. The implementation of Al-based learning shows
positive associations with concept retention over time
because its personalized pathways with spaced
repetition techniques combined with interactive
problem-solving activities enhance long-term memory
retention (VanLehn, 2011). The capability of Al-based
tools lies in their ability to modify difficulty settings
automatically so students move forward with optimal
speed beyond cognitive overload limits.

Experts have discovered that Al-driven education
creates transferable skills that students can use to solve
problems in physics, engineering, and computer science
(Holmes et al., 2019). Students find the cross-disciplinary
application especially useful because they need to unite
mathematical principles across various fields when
solving real-world problems. Al tools generate math
anxiety for students who encounter stress and feelings of
uncertainty while working with Al systems, particularly
when these students do not understand Al technology or
feel overwhelmed by automated feedback systems
(Luckin & Holmes, 2016). Al's benefits for STEM
education stem from its ability to provide cognitive
support and foster engagement and problem-solving
proficiency but require optimal alignment between
cognitive help systems and emotional engagement and
individualized learning approaches to generate
successful academic results and build enduring STEM
skills.

The Relationship Between Al Perceptions, Cognitive
Load, and Learning Outcomes in Calculus Education

Students form their perception of Al-based learning
tools, which determines how engaged they become and
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how they handle cognitive load and manage their
emotions, which affects their academic performance.
Studies indicate that Al systems that dynamically
modify content through individual learning needs
analysis improve student motivation alongside their
engagement and problem-solving abilities before
decreasing cognitive mental stress (Holmes et al., 2019;
Zawacki-Richter et al., 2019). Student trust in Al-assisted
learning directly correlates to how accurate the feedback
provided by Al technologies proves to be. Students
develop trust in Al-driven instruction when the
technology delivers exact and purposeful feedback and
individualized responses, according to Chen et al. (2020).
Al feedback that provides inaccurate or unspecific
information produces negative results that include
student frustration and disengagement while increasing
their mental load until they start doubting the reliability
of Al learning tools (Luckin & Holmes, 2016).

The manner in which students perceive Al affects
both their mental processing capabilities and their
emotional capability to handle challenges and their
overall commitment to learning activities. The effective
learning process happens when we minimize extraneous
cognitive load because it gives students the opportunity
to focus on solving core problems according to CLT
(Sweller, 2011). Al systems, which offer detailed
explanations together with adaptable learning routes,
enable students to manage mental load better; therefore,
they become more efficient at processing new
information while actively participating in educational
tasks (Chen et al., 2020). Students who maintain a
growth mindset that allows them to grow abilities
through effort succeed more persistently in their
problem-solving work. Students who receive support
from Al-assisted learning through structured instruction
and adaptive difficulty levels typically succeed at
overcoming obstacles and strengthen their mathematical
skills (Dweck, 2006, Zawacki-Richter et al., 2019).
Students who face difficulty tolerating annoyance find it
challenging to work with Al-driven educational
systems, which results in increased worry and reduced
engagement and purposeful task-avoidance habits
(Holmes et al., 2019).

Al perceptions along with cognitive engagement and
emotional responses create a direct impact on student
learning outcomes in calculus. Research proves that
mathematics self-efficacy functions as a leading
indicator of academic success because students who
receive adaptive Al support with positive reinforcement
tend to develop higher confidence and improved
conceptual retention and problem-solving abilities
(Chen et al., 2020; VanLehn, 2011). Al-assisted learning
provides better transferability of skills which enables
students to implement calculus concepts across physics
engineering and computational sciences (Holmes et al.,
2019). Students tend to develop math anxiety related to
Al when they face challenges due to heavy cognitive
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Figure 1. Conceptual framework (Source: Authors’ own
elaboration)

workload and do not trust the feedback produced by Al
systems (Luckin & Holmes, 2016). Stressful mental work
and poor tolerance for discomfort create anxiety which
prevents effective retention and conceptual application
of learned material (Sweller, 2011). Empirical findings
show Al-based learning experiences become more
effective when researchers decrease cognitive obstacles
and develop positive emotions for students which
results in improved active participation alongside
enhanced comprehension together with sustainable
achievement outcomes (Chen et al., 2020). Al instruction
faces obstacles that can be resolved so it optimizes
learning outcomes specifically for calculus subjects by
boosting student confidence and lowering anxiety.

CONCEPTUAL FRAMEWORK

The research framework demonstrates how students’
Al-based learning tool perceptions affect their academic
results and shows cognitive and emotional responses
function as intermediary variables. The positive
assessment of Al features like adaptability, feedback
accuracy, trust, and pedagogical value drives better
student learning results, including improved self-
efficacy and better retention and skill transfer to other
STEM subjects (H1). The positive perceptions that
students hold about Al technologies directly affect their
cognitive processing along with emotional reactions,
which include lighter cognitive burdens, elevated
interest levels, increased tolerance for frustration, and
stronger commitment toward development. Hypothesis
3 (H3) indicates that students develop enhanced
confidence levels together with improved persistence
abilities and deeper conceptual assimilation due to their
internal responses. Hypothesis 4 (H4) establishes that
cognitive along with emotional responses function as
intermediaries linking student outcome performance to
perceived experiences with Al technology. Learning
outcomes from Al education depend on both
computational abilities and learner perception of Al
through CLT (Sweller, 2011) and social cognitive theory
(SCT) (Bandura, 1997), as it determines their mental

response and emotional experience, as shown in Figure
1.

Research Hypotheses

The study tested the following research hypothesis:

1. H1. Al-based learning perceptions has a direct
effect on cognitive and emotional responses.

2. H2. Al-based learning perceptions has a direct
effect on student learning outcomes.

3. H3. Cognitive and emotional responses has a
direct positive effect on student learning
outcomes.

4. H4. Cognitive and emotional responses mediate
relationship  between  Al-based  learning
perceptions and student learning outcomes.

METHODOLOGY

Participants

The research received institutional review board
approval to conduct the study while gathering
participant consent before data collection started. The
data protection process consisted of anonymous
responses to preserve confidentiality. Surveys and
structured interviews carried out online enabled
professors to discuss Al implementation in higher
education along with its pedagogical results and the
obstacles they encounter from Al-assisted instruction.

Materials and Measures

A structured questionnaire served to evaluate
essential concepts regarding Al-assisted learning in
calculus education. Research on previous literature
served as the foundation to design this instrument that
suits higher education institutions in Thailand. The
instrument contained three essential parts, which
included

(1) Al-based learning perceptions,
(2) cognitive and emotional responses, and
(3) student learning outcomes.

The survey used a 5-point Likert scale that ran from
1 (“strongly disagree”) through to 5 (“strongly agree”)
for measuring all survey items.

Al-based learning perceptions (independent variables)

Participating students used this construct to evaluate
their general attitudes toward Al-based learning tools. It
included four sub-dimensions:

1. The first dimension is Al adaptability perception
(AAP): Describes how learning tools powered by
Al adjust their content based on how students
perform (Yang et al., 2013; Zawacki-Richter et al.,
2019).
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2. Feedback calibration accuracy (FCA): Students
benefit from dependable Al feedback, which
boosts their intellectual comprehension of the
material (Zapata et al., 2024).

3. Allearning trust (ALT): Al tools earn my trust for
distributing reliable and effective explanations of
calculus concepts to students (Pepin et al., 2025;
Yang et al., 2020).

4. Perceived Al pedagogical value (PPV):
Demonstrates that Al-assisted learning reaches
equal effectiveness to human-led tutoring in
teaching calculus (Serhan & Welcome, 2024).

Cognitive and emotional responses (mediating
variables)

Psychological perceptions toward Al demonstrate
how they affect both mental effort requirements and
emotional involvement during this process. It included
four sub-dimensions:

1. Cognitive load (CL): Student learning with Al
assistance demands notable mental concentration

for completing their assignments (Sajja et al., 2023;
Sweller, 2011).

2. Growth mindset in calculus (GM): Al-supported
practice together with persistent effort, students
can develop their capabilities to solve calculus
problems (Boaler, 2016; Dweck, 2006).

3. Engagement with Al (EAI): Students benefit when
I advise them to manipulate calculus problems
through the use of Al-based tools (Awang et al.,
2025; Heung & Chiu, 2025).

4. Frustration tolerance (FT): Students are able to
work through problems that prove difficult using
Al-based feedback tools (Alsaiari et al., 2024).

Student learning outcomes (dependent variables)

Al-assisted learning effectiveness in calculus was
assessed using four outcome indicators within this
construct. It included four sub-dimensions:

1. Self-efficacy in calculus (SE): Students develop
stronger calculus problem-solving self-efficacy
through their experience with Al tools, according
to SE (Jia & Tu, 2024).

2. Al-induced math anxiety (AIMA): Using Al tools
for calculus problem-solving generates anxiety
among certain students who need this assistance
(Chen et al., 2025).

3. Delayed retention (DR): Students retain calculus
concepts for delayed periods after utilizing Al-
driven educational tools for learning (McLaren et
al., 2015).

4. Transferability of skills (TS): The implementation
of Al for calculus education leads to enhanced
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competency for handling physics and engineering
applications (Alvarez, 2024).

Expert reviewers validated the constructs for content
validity before the researcher tested their reliability and
consistency levels wusing Cronbach’s alpha and
composite reliability (CR). A prior confirmatory factor
analysis validated construct validity before the
structural model received its constructs.

Construct Reliability

A measurement model reliability assessment
occurred through evaluation of Cronbach’s alpha and
CR. The measurement model performed acceptably with
Cronbach’s alpha levels crossing the threshold > 0.70 as
per Tavakol and Dennick (2011). The factor loadings and
error variances were effectively analyzed by CR = 0.70 to
validate the latent constructs’ reliability (Hair et al.,
2019). This research confirmed the statistical reliability of
the instrument along with its consistency in measuring
Al-based learning perceptions and cognitive-emotional
responses and learning outcomes since all constructs
surpassed the suggested standards.

Construct Validity

The researchers evaluated construct validity by
performing tests for convergent and discriminant
validity (Schumacker et al., 2019). The assessment of
convergent validity showed favorable results using
factor loadings = 0.50 and average variance extracted
(AVE) 2 050 and CR measuring > 0.70 to prove
indicators from the same construct displayed high
interdependence (Hair et al, 2019). Each construct
demonstrated discriminant validity based on the
Fornell-Larcker criterion (Fornell & Larcker, 1981),
where the AVE square root value exceeded all other
construct correlations. The SEM analysis benefits from
the reliable measurement model because its constructs
demonstrate both statistical distinction and conceptual
soundness.

Data Analysis

Each survey item underwent a reverse-notation
transformation before analysis commenced. The authors
employed partial least squares structural equation
modeling (PLS-SEM), which Henseler et al. (2016) and
Kock (2022) described as the multivariate statistical
technique for testing their proposed research model after
performing descriptive statistics examination. The
complex relationship models explored in exploratory
studies utilize PLS-SEM because of its effectiveness
(Kock, 2022). Analysis was performed through PLS-SEM
because the research needed flexibility and met
minimum sample size demands (Hair & Alamer, 2022).
Using smartPLS software (Ringle et al., 2015), the
analysis was carried out in two stages: measurement
model assessment and structural model evaluation. PLS-
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Table 1. Convergent validity

Table 2. Discriminant validity

Construct Item Loadings Cronbach’salpha CR AVE  Construct ALP CER SLO
ALP AAP 0.894 0.886 0.922 0.747  ALP 0.879
FCA  0.889 CER 0.718 0.882
ALT  0.888 SLO 0.719 0.857 0.865
PPV 0.843
CER CL 0.899 0.902 0.931 0.772
GM 0911 Structural Model
%;I 82;2 PLS-SEM analysis showed that the structural model
%) SE 0.890 0,904 0.933 0.777 validated all proposed connections. The research results
AIMA  0.882 will now follow an analysis for each hypothesis.
DR  0.906 Results from data analysis indicate Al-based learning
TS 0.773 perceptions result in strong positive influences on

SEM allows researchers to examine direct and indirect
causal paths through which Al-based learning
perceptions  interact = with  cognitive-emotional
responsive outcomes to affect educational results (Kline,
2005). The research utilized 368 participants who
followed the sufficient requirements set by the 10-times
rule for PLS-SEM (Hair et al., 2011).

RESULTS

Measurement Model

The assessment of latent variable reliability and
validity came prior to examining construct relationships
in the model. Each construct requires validated
measurement to function properly in PLS-SEM analysis.
An analysis of indicator reliability and internal
consistency reliability together with convergent and
discriminant validity was performed during the
assessment (Hair et al., 2019).

Marker reliability met our standards through
standardized factor loadings that reached or exceeded
0.70. The research utilized Cronbach’s alpha and CR to
analyze internal consistency reliability through
threshold values exceeding 0.70 (Hair et al., 2019;
Tavakol & Dennick, 2011). The AVE test demonstrated
convergent validity by showing that construct variables
explained more than fifty percent of their indicator
variances when AVE exceeded 0.50, as shown in Table 1.

The evaluation of discriminant validity utilized the
Fornell-Larcker criterion. The measurement model
demonstrates discriminant validity if each construct’s
AVE square root exceeds its relationship strength with
other constructs (Fornell & Larcker, 1981). The
measurement model proved valid and reliable because
each construct exceeded the minimum standards set by
Fornell and Larcker (1981). Structural model analysis
received suitable instrumentation through validation
processes, as shown in Table 2.

cognitive and emotional aspects (f = 0.718, t = 25.245, p
< 0.001). Teachers who believe Al tools are adaptive,
trustworthy, and pedagogically valuable demonstrate
higher levels of engagement and enable students to
develop growth mindset capabilities and tolerate
frustration better. The study findings mirror similar
results obtained in Chen et al. (2020) and Zawacki-
Richter et al. According to Zawacki-Richter et al. (2019),
Al perception develops emotional resilience together
with motivational factors. The outcome of J
demonstrates users think perception plays an essential
role in their internal processing of Al-based learning
experiences.

The latest study findings support the conclusions of
this research. Students received improved emotional
feedback through Al systems, according to Alsaiari et al.
(2024), which enhanced their engagement in classes.
Positive student sentiments about Al tools directly
impacted their ability to manage challenges and
motivated their learning process, according to Yao and
Liu (2025). Student performance improves when Al
technology provides them programming assistance
through higher intrinsic motivation and better emotional
control, according to research by Fan et al. (2025). The
real-time assessment of student engagement operates
through an Al-powered learning analytics system
developed by Sajja et al. (2023) to deliver customized
educational programs. The research findings establish
how students’” understanding of Al tools creates internal
psychological frameworks that deepen their educational
success.

Research data showed that student learning
outcomes maintain a strong correlation with Al-based
learning perceptions, with 3 = 0.215, t value = 4.261, and
a p < 0.001. Progressive student perceptions of Al
constitute a moderate yet significant factor that enhances
both confidence and memorization abilities and skill
transfer in calculus courses. The research of Holmes et
al. (2019), along with VanLehn (2011), shows how
students’” perception of Al effectiveness leads to
academic success. Similarly, a study by Heung and Chiu
(2025) showed that students experienced greater
engagement when using ChatGPT during educational
activities.
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Table 3. Hypothesis testing

Hypothesis Path Path coefficient (j3) T statistics p-value Result
H1 ALP > CER 0718 25245 0.000 Supported
H2 ALP - SLO 0215 4261 0.000 Supported
H3 CER > SLO 0702 11.994 0.000 Supported
H4 ALP > CER 2 SLO 0504 13.084 0.000 Supported
c GM EAI FT
» 4
0.899 0911 0879 gg3g
R 0718 0702 |z

0.894
*0.889

FCA

40888

0.843

~ ALP
PPV

ALT

0.215

SLO

Ts

Figure 2. Structural model developed using SmartPLS (Source: Authors” own elaboration)

Furthermore, a study by Zouhaier (2023) conducted a
study that demonstrated AI can benefit students’
cognitive abilities through increased critical thinking
abilities together with more effective learning results,
especially for students who actively approach their
education. The study conducted by Blahopoulou and
Ortiz-Bonnin (2025) analyzed students’ interactions with
Al tools in higher education by revealing improved
productivity, but students also expressed concerns about
excessive dependence and academic integrity violations.

The study showed that academic achievement
directly links to student cognitive-emotional responses
with B = 0.702 and t = 11.994, respectively, at p < 0.001.
Academic achievement is heavily dependent on
psychological internal processes, which the study shows
are fundamental elements. CLT (Sweller, 2011) and SCT
(Bandura, 1997) show that students and instructors
achieve better results when they have reduced cognitive
pressure and improved emotional adaptability. The
research data  supports recent experimental
investigations. Students who learn physics with Al-
supported data analysis show improved academic
outcomes and decreased stress while maintaining higher
motivation, according to Henze et al. (2024). Emotionally
enriched Al feedback, according to Lin and Chen 2024)
studied how Al-integrated educational applications
modify the creative abilities and academic feelings of
college students to reveal major learning experience
changes. The relationship between Al-based learning
perceptions and student learning outcomes maintains its
strength through cognitive and emotional mediation
responses (B = 0.504, t = 13.084, p < 0.001). The data
demonstrates that perception does not lead to direct
outcomes because it requires participants to process
information internally prior to producing outcomes.
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Support systems and content delivery must harmonize
in Al tools based on the insights of Dweck (2006) and
Chen et al. (2020). For instance, Saxena and Doleck (2023)
created a structural model to examine students’
continued utilization of ChatGPT through their study,
which proved perceived usefulness along with
satisfaction as strong predictors of ongoing utilization by
emphasizing cognitive and emotional student needs
alignment with Al tools. Additionally, Jeilani and
Abubakar (2025) established perceived institutional
support as a strong determinant of how students view
Al-supported learning, while perceived learning
outcomes acted as a partial mediator, showing Al
integration works best in supportive settings, as shown
in Table 3 and Figure 2.

CONCLUSIONS

The study utilized PLS-SEM for analyzing how
student perceptions of Al-based learning and cognitive
and emotional responses link to calculus education
learning outcomes. Perceptions of Al tools that
emphasize adaptability and deliver accurate feedback
while building trust and pedagogical value demonstrate
strong effects on academic outcomes while improving
internal  learning processes. Al-based learning
perceptions produced strong emotional and cognitive
responses yet directly impacted student outcomes to a
moderate extent. Direct cognitive-emotional responses
from students produced student success indicators by
decreasing mental task burden and boosting student
interest and psychological development towards
learning. Studies demonstrated that students’ responses
to Al-based learning experiences work as the bridge
between their perception of Al and their academic
achievements.
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Research indicates that well-designed Al tools should
be implemented as educational enhancements in higher
education STEM fields, specifically calculus courses.
This research builds academic understanding about
optimizing Al learning systems to customize
mathematics content delivery with cognitive
effectiveness and emotional engagement for students.
Research delivers essential knowledge about refining Al
technology tools to deliver personalized mathematics
instruction, which simultaneously decreases mental
burden and builds strong audience engagement.

Recommendations

This study recommends Al-assisted learning
instruments for deployment in calculus education to
build positive perceptions among students and teachers.
Learning institutions must educate their users about the
Al's range of capabilities together with its accuracy
levels and educational merits to build trust between
users and improve their involvement with Al systems
(Zawacki-Richter et al., 2019). The role of Al developers
should involve creating usable systems that support
students through information management and
immediate feedback delivery to help maintain student
motivation throughout tasks (Chen et al.,, 2020). The
integration of human educators becomes crucial because
Al exists solely to assist developers in creating
educational programs that students can utilize
independently. A variety of scholarly timescales are
needed to investigate Al's impact on student
performance outcomes along with competency levels,
according to Zawacki-Richter et al. (2019). Institutions
partaking in higher education can achieve effective and
lasting Al implementations by adopting appropriate
recommendations (Sanusi et al., 2023).

Limitations

Scientific understanding from this research needs to
recognize its several known limitations. The cross-
sectional research design prevents researchers from
demonstrating the cause-and-effect relationships
between Al perception and cognitive-emotional
reactions as well as learning outcomes (Garcia et al.,
2025). Future research needs to use longitudinal design
approaches to monitor modifications that develop across
time (Chen et al., 2020). The self-reported questionnaire
used for data collection risks two weaknesses that stem
from social desirability bias together with personal
interpretations of items (Podsakoff et al., 2003). Research
limitations arise from collecting data only from
professors at nine Rajamangala Universities of
Technology in Thailand, resulting in restricted
applicability for other academic environments and
student groups. PLS-SEM serves as a suitable tool for
exploratory research of complex models yet requires
researchers to interpret distribution assumptions with
freedom during analysis (Hair et al, 2019). This

investigation concentrated on Al applications in calculus
and STEM-related classes, leading to results that might
not directly impact non-STEM subjects or Al-free
educational frameworks. The researchers emphasize the
requirement for future studies that will include diverse
methodologies and examine additional educational
contexts.
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