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In writing this paper we draw considerably on the work of Jo Boaler and Leone Burton. 
Boaler’s studies of classrooms have been particularly poignant in alerting the mathematics 
education community to a number of key features of successful classrooms, and how such 
features can turn around the successes for students who traditionally perform poorly in 
school mathematics. This is supplemented by the recent work of Leone Burton who 
worked extensively with research mathematicians in order to understand their 
communities and ways of working. Collectively these two seminal works provide valuable 
insights into potential ways to move the field of school mathematics forward. In times 
when there is international recognition of the plight of school mathematics, there is a need 
for new teaching practices that overcome the hiatus of contemporary school mathematics.  
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INTRODUCTION 

For a long time now we have known that there have 
been serious problems with mathematics participation 
and engagement. The situation facing mathematics has 
been highlighted recently in Australia by two significant 
reviews into the mathematical sciences:  
Statistics at Australian universities (Statistical Society of 
Australia, 2005)  
Mathematics and statistics: Critical skills for Australia’s future 
(Australian Academy of Science, 2006).  

Although these reviews were conducted in Australia, 
a similar story has emerged around the world. In these 
reviews, particular attention has rightly been given to 
school mathematics and the problems of non-
engagement with an increasing number of students in 
higher level courses of mathematical study. That said, it 
has been known for a long time, through the many 
descriptive studies that have been undertaken since the 

1970s, that mathematics has been unpopular and 
disliked, and yet the problems appear to grow unabated 
and little progress has been made to arrest the decline. 

In this paper we draw on the work of two 
researchers - Jo Boaler and Leone Burton - who 
collectively create a new space for theorizing a way out 
of the potential teacher blame. Drawing on these works, 
we seek to illustrate the power of agency in working 
mathematically.  For too long, the pedagogy of school 
mathematics has focused on procedural knowledge 
rather than depth of understanding. Combining the 
work of Boaler and Burton, we draw on an illustrative 
example of teachers working to solve a task.  They draw 
on many of the concepts identified in the works of 
Boaler and Burton. Our contention is that the 
combining of Boaler's ‘dance of agency’ with Burton’s 
‘working as a mathematician’ enables a rich way forward 
in the teaching of school mathematics. 

Mathematics and Teaching: A Link?  

Recently there have been reviews of the preparation, 
qualities and qualifications of mathematics teachers (e.g., 
“The Preparation of Mathematics Teachers in Australia” 
(Harris & Jensz, 2006) for the Australian Council of 
Deans of Science). There have been reports highlighting 
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the poor mathematical content knowledge of teachers, 
particularly primary teachers and non-specialist teachers 
who are placed in front of secondary classes. Primary 
preservice teachers often are not confident with the 
study of mathematics and generally have low levels of 
understanding of many mathematical concepts (Kanes 
& Nisbet, 1996). Many preservice teachers enter their 
teacher education courses with low levels of 
mathematics knowledge as well as considerable anxiety 
towards the subject (Brown, McNamara, Hanley, & 
Jones, 1999; Cooney, Shealy, & Arvold, 1998; 
Grootenboer, 2003). In many cases, preservice primary 
teachers have opted for studies in areas other than 
mathematics so when they enter their courses they have 
low levels of mathematics content knowledge and 
frequently have an anxiety towards involvement in the 
discipline (Goulding, Rowland, & Barber, 2002). The 
development of a strong content knowledge is central to 
the development of quality mathematics teachers. For 
example, Mandeville and Lui (1997) concluded that the 
level of teacher knowledge impacted significantly on the 
learning of the students, whereby teachers with high 
levels of mathematical understandings provided higher 
quality learning opportunities for their students than did 
their peers with limited understandings of mathematics. 
Thus, the role of teacher education is to scaffold 
teachers into confident and competent developers and 
users of mathematics so that they are better able to 
teach mathematics. 

Simon (1993) has raised concerns about primary 
preservice teachers’ weak conceptual knowledge and 
Cooney et al. (1998) have noted similar difficulties with 
secondary teachers’ content knowledge. In their study of 
preservice teachers in the UK, Goulding et al. (2002) 
found that there was a significant link between “poor 
subject knowledge [being] associated with weaknesses in 
planning and teaching primary mathematics” (p. 699). 
Recognizing that such a correlation does not imply 
causation, the authors elaborated further that the 
positive links were potentially due to the connection 
that preservice teachers were making between content 
knowledge and pedagogic knowledge. Goulding, et al 
contended that the link was due to both cognitive and 
affective dimensions of the students. Being strong in 
content knowledge offered a sense of confidence, which 
in turn was realized through teacher actions. Offering a 
strengthened program in content knowledge gave 
students resources upon which they could draw as they 
planned their teaching. The authors concluded that 
where students had secure mathematical foundations, 
they had greater confidence in their own knowledge as a 
teacher. 

Preservice teachers often enter their initial training 
courses with self doubt about their capacity to learn 
mathematics (Cooney et al., 1998; Philippou & Christou, 
1998). These conceptions come to frame how they will 

organize learning environments once they begin to plan 
for teaching (Sánchez & García, 2008). This extends to 
practicing teachers: Bibby (2002) showed that the belief 
that mathematics is about ‘right answers’ brings about 
feelings of shame amongst practicing teachers if they do 
not know the answers. This produces teaching practices 
that are governed by teachers ensuring they have correct 
answers, thereby offering a restricted repertoire of 
learning experiences for students. Ball (1990) argued 
strongly that the focus in teacher preparation needed to 
be one that encouraged students to relearn the content 
knowledge in order to develop new understandings of 
pedagogic knowledge. In attempting to break the 
distinction between content knowledge and how it is 
taught, Ball (1990) argued that preservice teachers 
needed to develop connections between mathematical 
knowledge and teaching knowledge. Strength in content 
knowledge can be transferred to pedagogical knowledge. 
This possibility was made evident by Mandeville and Lui 
(1997), who reported that teachers with a strong 
knowledge were “[able to provide] greater depth in 
dealing with concepts, better equipped to lead students 
to use their knowledge and use more higher-order 
content than teachers less knowledgeable about the 
content” (p. 406). 

At this critical point we want to suggest that it is 
time to move on from studies that repetitively show that 
mathematics is suffering from poor teacher knowledge 
and attitudes towards mathematics—either with 
teachers or students—and to try and look forward by 
offering some positive directions. To advance this 
agenda we need more than good ideas that seemed to 
have worked in a particular context; we need to begin 
developing a theoretical, robust framework that will 
address these concerns in a coherent and holistic 
fashion. In this paper we have drawn on the seminal 
works of Burton and Boaler to consider mathematical 
learning from both the discipline knowledge and the 
mathematical activity perspectives. After reviewing 
Burton’s findings from her study with research 
mathematicians we briefly highlight some relevant 
points from Boaler’s classroom studies. After presenting 
an example from teacher education we finish by 
employing the metaphor of a ‘dance of agency’ 
(Pickering, 1995) to discuss mathematics learning, 
particularly in the light of the current crisis.  

The Practice of Mathematicians  

The two recent reviews of mathematical sciences in 
Australia mentioned previously both made significant 
comment on and recommendations for school 
mathematics education. Interestingly, the authors of 
these reports were mathematical scientists and there 
appeared to be little input from mathematics educators 
and mathematics teachers. Although this is problematic, 
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it does perhaps highlight the gap that seems to exist 
between mathematicians and statisticians, and teachers 
and teacher educators. This is unhealthy and if the 
current decline in participation and interest in 
mathematics is to be arrested these groups need to 
engage in dialogue and mutual projects. To this end, the 
work of Burton (1999a, 1999b, 2001, 2002) is helpful 
because her research explored the practices of research 
mathematicians and their implications for the learning 
of mathematics. 

In 1997 Burton studied the practices of 70 research 
mathematicians in Great Britain and one of the key 
features she identified was the collaborative nature of 
their practice. The benefits for collaborating included 
practical (e.g., sharing the work), quality (e.g., greater 
range of ideas on problems), educational (e.g., learning 
from one another) and emotional (e.g., feeling less 
isolated) reasons. Clearly, working together with other 
mathematicians was seen as important, but there 
appeared to be a distinction between the public 
perception of mathematics as a lonely enterprise and the 
reality of mathematicians’ practice, in which 
collaboration is highly valued. 

Perhaps another anomaly from public perception 
was Burton’s finding that mathematicians have 
emotional, aesthetic and personal responses to 
mathematics.  

… although knowing when you know is extremely 
important, you have to live with uncertainty. You gain 
pleasure and satisfaction from the feelings that are 
associated with knowing. These feelings are 
exceptionally important since, often despite being 
unsure about the best path to take to reach your 
objective, because of your feelings you remain 
convinced that a path is there. … This is particularly 
poignant in the light of the picture painted of 
mathematics as being emotion-free … (Burton, 1999a, 
p. 134) 

The mathematicians in her study highlighted the 
power of the “aha!” moment and the joy of 
mathematical discovery, revealing the clear link between 
mathematics and those who produce it. Allied to their 
emotional responses to their mathematical practice were 
aesthetic reactions. They described mathematics in 
terms such as “wonder”, “beauty” and “delight” and 
these personal responses provided motivation for 
continued engagement and fuelled a passion for the 
discipline of mathematics. Davis and Hersh (1998, p. 
169) lamented that “blindness to the aesthetic element 
in mathematics is widespread and can account for the 
feeling that mathematics is dry as dust, as exciting as a 
telephone book …”. 

Another feature of research mathematicians’ practice 
was the importance of intuition or insight. While the 
mathematicians were less than clear in describing what 
intuition and/or insight were, they were unambiguous in 

highlighting the importance of these factors in their 
mathematical practice. The suggestion was that intuition 
can be developed through the application of knowledge 
and experience in mathematical discovery and reflection 
upon such investigations. 

Burton highlighted other features of the practice of 
mathematicians including the desire to seek and see rich 
connections between the various branches of 
mathematics and between mathematics and other 
disciplines, but her other main agenda was to highlight 
the pedagogical implications of her findings. 
Throughout her reports Burton highlighted the 
distinction that is evident between the work and 
learning practices of research mathematicians, and the 
learning experiences of mathematics students at almost 
all other levels from preschool to undergraduate degree 
programs. This led her to assert that “we have a 
responsibility to make the learning of mathematics more 
akin to how mathematicians learn and to be less 
obsessed with the necessity to teach ‘the basics’ in the 
absence of any student’s need to know” (Burton, 2001, 
p. 598). Even at a very general level, this would require 
mathematical pedagogy to be characterized by 
collaboration and group work with attention paid to the 
emotional, aesthetic and intuitive dimensions of the 
discipline. This encompasses the ‘doing’ of mathematics 
that has been under-emphasized in education as it has 
focused on the ‘knowing’ of mathematics. Indeed, 
perhaps an issue with the educational recommendations 
in the Australian review of mathematical sciences was 
the emphasis on mathematical content knowledge that 
can be taught largely through a transmission model. On 
this point Boaler (2003) commented:  

There is a widespread public perception that good 
teachers simply need to know a lot. But teaching is not a 
knowledge base, it is an action, and teacher knowledge 
is only useful to the extent that it interacts productively 
with all the different variables in teaching. Knowledge 
of subject, curriculum, or even teaching methods, need 
to combine with teachers’ own thoughts and ideas as 
they too engage in something of a conceptual dance. (p. 
12)  

In her seminal work in England and the United 
States, Boaler (1997, 2008) explored the mathematical 
practices of teachers and students in two different sorts 
of mathematics classrooms. In one group of classes, the 
mathematical pedagogy was ‘traditional’ and the 
students learned standard algorithms through worked 
examples and textbook exercises. The other classrooms 
were characterized by open-ended projects, group work 
and discussion (Boaler & Staples, 2008). Not 
surprisingly, Boaler found that generally students 
learned a form of mathematics that was consistent with 
the mathematical epistemology and pedagogy of their 
classroom experiences. In addition the students in the 
‘non-traditional’ classes performed better in a range of 
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assessment tasks and overall they developed more 
positive attitudes towards the subject and a stronger 
sense of their own mathematical identity. While the 
detail is light here, it seemed in short that the 
experiences of the students in the non-traditional 
classrooms were akin to the mathematical practices of 
research mathematicians outlined above. 

The studies undertaken by Boaler and Burton were 
substantially different in terms of their participants - 
school students and research mathematicians - but offer 
poignant insights into the ways in which working as a 
mathematician enhances the potential for learning 
school mathematics. The characteristics identified by 
Burton as being the ways of working as a research 
mathematician encouraged her to plead for schools to 
adopt such practices in school mathematics classrooms. 
She hoped that this would improve the learning 
outcomes for students. Boaler's study indicates that 
when teachers embrace the characteristics mentioned 
above there is enhanced performance of students. But, 
as we noted at the outset of this paper, there is a strong 
sense that many of the teachers entering school 
mathematics classrooms may have weak content 
knowledge, weak pedagogic content knowledge and/or 
a fear of mathematics. If school mathematics is to be 
reformed, then we propose that there should be some 
sense of agency among teachers that will enable them to 
move forward with their existing knowledge. To this 
end, we draw on Boaler's notion of agency which she 
expands from the work of Pickering (1995). 

The Dance of Agency  

The claims of Burton regarding the working 
practices of mathematicians and the classroom evidence 
of Boaler (2003) together seem to make a strong case 
for considering the learning of mathematics to be like 
‘working as a mathematician’. Conceptually, this 
requires engaging in what Pickering (1995) calls a ‘dance 
of agency’. In studying the practices of research 
scientists and mathematicians he noted that they 
choreographed a complex routine by which, at times, 
they drew on their own agency as scientists or 
mathematicians, and yet at other times they would 
concede authority to the agency of their discipline and 
associated community of practice. This is like the 
interplay between the activity of mathematics and the 
content knowledge of mathematics that was highlighted 
above. Rather than seeing the practice or knowledge-
base being supreme, it reveals a dialectic 
interdependence where the mathematician (at any level) 
requires both to meaningfully and successfully engage in 
the mathematical enterprise. Likewise, teachers also 
need to engage in a dance of agency where they appraise 
and decide when to encourage and support the students’ 
own agency as mathematicians and when to defer to the 

authority of the discipline (e.g., the requirement to 
follow a standard procedure or form of presentation). It 
is worth noting that mathematicians do defer to the 
agency of the discipline in their practice and it is this 
authority that is credible in a mathematics classroom. 
However, in traditional mathematics classrooms the 
authority usually resides with the textbook and the 
teacher, both of which are temporal aspects of students’ 
mathematical development and they do not endure as 
the discipline itself does. 

Boaler’s (2003) use of the dance of agency in her 
work illustrates the importance of the learner having a 
robust and empowering identity in relation to 
mathematics. Knowing how and when to draw on 
mathematical ideas to solve problems is a critical part of 
the dance of agency. Boaler used examples of learners 
who could not solve tasks but drew on a range of skills, 
knowledge and collective wisdom in order to solve 
those problems. This process is akin to that identified in 
Burton’s work with research mathematicians. The 
practices offered by Boaler and Burton may offer a way 
forward and out of the quagmire of contemporary 
school mathematics that is being identified by many 
external forces. 

In the remainder of this paper, we draw on an 
example taken from a professional development activity 
that one of us undertook with a group of primary 
school teachers. We argue that the level of the learners 
is not the feature of the analysis as we contend this 
example can be used across all sectors of learning—
primary, secondary and preservice/inservice education. 
Rather, the analysis focuses on the ways of working, 
which is the significant aspect of the example. These 
provide an illustration of how learners, in this case 
teachers, can draw on previous knowledge to work 
collectively to achieve a common goal. That is, they 
drew on their sense of agency around particular 
mathematical ideas and their collective wisdom as a 
group to solve the task. Collectively the goal is attained 
but not without considerable input from the learners. 
The input varies in form and timing, and helps to 
illustrate the powerful learning made possible when 
working in ways similar to mathematicians but also 
having a sense of agency that allows for the legitimate 
use of learners’ understandings that enable the building 
of deeper understandings. However, as Boaler’s work 
has highlighted, such success is dependent on the 
learners’ sense of identity with mathematics and their 
sense of agency through which they can ‘dance’ between 
the known and the unknown in order to build deeper 
understandings. It is for this reason we have used this 
example. After describing and illustrating the 
mathematical practices of these teachers we will draw on 
their example to discuss the features of mathematical 
classrooms that promote the development of robust 
mathematical identities through an authentic ‘dance of 
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agency’. We use this illustrative example to show how 
the mathematical identity of learners may be constituted 
through particular practices of mathematics. 

The data provided in the following example are 
drawn from field notes from the professional 
development activity. The quotes and drawings are 
those written by the observer and are representative of 
the discussion made by the participants as no formal 
recording tools (tape recorders) were used. The data 
were triangulated with participants so that they are an 
accurate summation of the interactions in the workshop.  

Sum of the Interior Angles of an Octagon: A 
Working Example  

A group of primary school teachers had been 
working on mathematical problems as part of a 
professional development day. The participating 
teachers were engaged in the mathematical tasks in 
order to better understand their own teaching of 
mathematics. A standard geometry task was provided 
that required the teachers to work out the sum of the 
interior angles of an octagon. There was some 
discussion as to what an octagon is, and how many sides 
it has. Once this was clarified, the teachers worked in 
small groups. In the example we have used here, there 
were four teachers in the group and they were all 
relatively experienced teachers. 

I have no idea on how to work this out.  
Well if you look at it you can divide it into triangles. 

[T divides octagon into 8 triangles; see Figure 1]. See, 
there are 8 triangles. Each triangle has got 180º so to 
work out what the angles are on the bottom of the 
triangle, you have to work out how many degrees are in 
the top angle there [draws an arrow to the centre].  

Ah, so that is 360° divided by 8  
Huh? [unsure of where the figures are coming from]  
Well you know that there are 360° in a circle [draws 

a circle around the centre where the apexes of the 
triangles meet] and you can see there are 8 triangles 
making up that circle.  

So, 360 ÷ 8 is [some talk on how to work this out, 
two teachers use pencil and paper for the division] … 
45.  

OK now what we have to do is work out how big 
the other angles are. They are the same size so you take 
45 from 180 and then divide by 2.  

Why?  
Well there are two angles [points to the two angles at 

the bottom of one triangle] and we need to see how big 
one is.  

The discussion continues so that the group identifies 
the size of one of the interior angles of the constructed 
triangles as being 67.5º. There is some discussion that it 
cannot be correct. One teacher commented that she 
thought it must be incorrect as the leader would not 
have given them an angle with a half in it. Calculations 
are checked and the answer is seen to be correct. 
Someone then suggested that they have to multiply it by 
8 so it will not be a “half number” any more. 

To this point, the teachers have been drawing on 
their shared knowledge of the properties of a triangle, in 
particular, the internal angles of the triangle.  There has 
been considerable sharing of intellectual resources that 
have enabled the group to move forward. At this point, 
one of the teachers noticed incongruence between what 
had been calculated and her knowledge of angle types.  

Another teacher in the group comments that it 
cannot be right as the number they have calculated is 
less than 90° which would make for a less than ‘straight 
angle’ [assumed to mean a ‘right angle’]. There is some 
discussion and movement of the shape and then 
agreement that they have done something wrong.  

I know what it is… that is only half of the angle. See 
look, we have worked out half of the angle; the other 
part is in the triangle next door.  

You’re right, so the size of one angle is really double 
what we found so that makes it 135. And that is bigger 
than 90 so we must be right now.  

Ok, then we multiply by 8 and find out what the 
total size is.  

Someone in the group then multiplied 135 by 8 using 
pencil-and-paper to come to an answer of 1080. 

At this point the group has successfully completed 
the task of finding the internal angles of an octagon. 
This is often the end of a mathematics exercise. 
However, such an approach leads to shallow thinking 
and not what we would see as working as a 
mathematician. Much like the task of the scientist, the 
task of the mathematician is to find generalizations and 
to prove their results. In this case, all that has been 
achieved is the answer to a routine problem. To 
facilitate the moving into the 'working as a 
mathematician' the leader of the session then asked the 
group to find patterns.  

Once the group has finished, the leader then asks 
them to find out what it might be for a hexagon and 
some other shapes. The group goes through a similar 
process, this time drawing the hexagon, finding the 
magnitude of the central angle and then the size of each  

Figure 1. Participant’s diagram 
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interior base angle. This is then doubled and multiplied 
by 6. At this point, a woman who had not contributed 
too much of the discussion interrupts and poses the 
following:  

You know what we are doing… making more work 
for ourselves. Look at this. You divided the 120 by 2 
and got the size of the angle inside the triangle and then 
you doubled it. We halved and then doubled so we have 
just done the same thing twice.  

The teachers then go on to do two more shapes of 
their own choosing. The leader then posed the problem 
to see if they could make a prediction for any shape and 
how would they do it. The response was that this means 
they needed to make a formula for the problem.  

For us, it is this step that makes this activity more 
akin to Burton’s proposition that schools adopt the 
practices of working as mathematicians. By seeking ways 
to make generalizations, the teachers were being asked 
to think as mathematicians do. As the following section 
of the field notes suggest, the two groups of teachers 
being observed used different strategies, one of which 
was more effective in resolving the generalization task.  

Group one made a table for their results. Aside from 
the triangle which they knew had 180º, they had only 
made shapes with even numbers of sides so that the 
table looked like that shown in Figure 2.  

Hey, look at that you can see a pattern there. Each 
time we go up by 2 sides, it gets bigger by 360. That is a 
square so if we only increased by one side it would be 
getter bigger by 180o – that is a triangle.  

However, this group was unable to move beyond 
this observation to make a more generalizable 
statement.  

 Group two used a similar method and when it came 
to the discussion at the end of the session during which 
groups shared their findings, this group explained that 
they found that the pattern was “increasing by 180o each 

time a side was added to a shape” but you could not go 
below one triangle as this was the lowest point. One 
teacher explained their generalization as follows:  

We found that what the pattern is- is that each shape 
is the number of sides take away 2 and then you 
multiply by 180o. So if you use a hexagon as the 
example, you can see that it has 6 sides but if you 
takeaway 2, you have 4 and then if you multiply it by 
180 you get the sum of the interior angles. We thought 
you could say it like (number of sides minus 2) and then 
multiply by 180 so that is (n-2) x 180. We checked it out 
with the others and it worked. So if you use the triangle. 
It has 3 sides, so that is 3-1 and then times 180 so that is 
180 and that is right.  

This final part of the activity we see as critical in 
enabling participants to justify and explain their working 
processes. Again, as Burton's work indicated, 
this justification strategy is used by working 
mathematicians. It made the teachers use metacognitive 
processes to think through and then articulate their 
working and thinking strategies. 

In the next section we draw on this example to 
theorize the aspects of 'working as a mathematician' 
from the combined works of Boaler and Burton.  In this 
section, we identify three key elements to working as a 
mathematician which are evident in the example cited.  

Coming to Understand “Working as a 
Mathematician” 

In drawing on Burton’s and Boaler’s work, we 
propose that there are three elements to developing a 
sense of working as a mathematician. There are the 
cognitive aspects of knowing mathematics and thinking 
like a mathematician. Burton draws considerably on the 
cognitive features of working mathematically. Both 
Boaler and Burton recognize the importance of the 
social context within which learning occurs. The 
pedagogy employed at Railside was strongly influenced 
by Complex Instruction (Cohen & Latan, 1997; Cohen, 
Latan, Scarloss, & Arellano, 1999) in terms of 
organizing the learning environment. Burton draws 
more closely on the literature regarding communities of 
practice (Wenger, 1998) to theorize her position, and in 
doing so, sees that “knowledge and the knower are 
mutually constituted within these dialogic communities” 
(1999a, p.132). Collectively the two positions provide a 
more comprehensive picture of the potential for 
classroom practice. Finally, the focus of both authors, 
and this paper, is that of mathematics. This tripartite 
model – social/cultural, cognitive/affective and 
mathematics – is represented diagrammatically in Figure 
3. 

What can be seen in this example are a number of 
features about working as a mathematician. We use the 
example presented above to illustrate the notion of  

Figure 2. Participant’s table 
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working as a mathematician and the importance of 
agency in this process. In so doing, we link this to 
classroom practice as a means of moving forward the 
debates on mathematical thinking and learning.  

Socially  

We define the context within which learning and 
working is occurring as the social dimension. This 
includes the ways in which the learning environment is 
organized along with the social and cultural dispositions 
that learners bring to that environment. Indeed, the 
social context of mathematical learning has been widely 
discussed in the literature and many of the concepts that 
emerged (e.g., agency) have been dealt with in greater 
depth elsewhere, but here we want to particularly 
highlight aspects of the example through which we can 
see features that enabled the learners to work as 
mathematicians. 

Group Work: Being part of a group and working as a 
collective enabled the teachers to share their knowledge 
which is often tacit and not well understood. The 
sharing and discussion of mathematical knowledge can 
also be generative and leads to more complete 
understandings. Furthermore, it can reduce the pressure 
that individual students can experience in mathematics 
to memorize and readily recall mathematical rules and 
formulae and hence, they can devote more attention to 
mathematical thinking and problem solving. In this 
example, the teachers did not know the formulae and so 
they relied on their collective wisdom, which enabled 
them to fill in gaps in each other’s knowledge. Without 
the input from various members of the group it is 
unlikely that the collective would have advanced as far 
with their thinking as was evident in the observations. It 
is also important to note that this form of collaborative 
group work is consistent with the practices of 
mathematicians highlighted by Burton in the studies we 

reviewed earlier. It seems that when individuals are 
released from the pressure of having to carry the 
complete package of relevant knowledge to work on a 
particular mathematical problem, they are free to engage 
more fully in the generative mathematical thinking and 
conceptualizing, and more significant outcomes are 
possible. This sort of community activity is based on 
constructive discussion. 

Collaborative Talk: The interactions between the 
participants were focused on the task, and thus enabled 
them to talk through their observations. When working 
alone the individual has to undertake the roles of worker 
and observer either simultaneously or by flipping 
between the two (or some combination), but in the 
group context there are opportunities for learners to 
negotiate, either overtly or tacitly, times of activity and 
times of reflection and observation. In the example 
above, having some participants working on the task 
and others observing enabled the observers to gain 
insights into the actions and base their discussion on 
shared and recent experiences. In this case, one of the 
teachers was able to ‘see’ that her colleagues were 
halving and then doubling. Being able to provide this 
input in a non-threatening way to colleagues enabled the 
group to move forward in a productive way. 

Ethos: The environment established in this session 
was non-threatening and supportive so that learners 
could actively engage in the task at levels that met their 
current needs and understandings. Issues relating to 
student affect in learning mathematics have received a 
lot of attention in recent years, and it is clear that there 
have been real problems for many students when they 
are stressed and anxious about mathematical 
activity. The benefits of developing and sustaining a 
supportive ethos have been documented in Boaler’s 
studies (Boaler, 2002a, 2002b) as enabling learners to 
participate without threat and hence open opportunities 
for participation and learning. While teachers have a 

 
Figure 3. Aspects of working as a mathematician 
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significant role in developing this sort of learning 
environment, there is a sense of camaraderie and shared 
mission when the students can provide this mutual 
support through operating in a collaborative group. 

Agency: In the example presented, the participants 
seemed to have a sense of agency because they were 
able to draw on their own understandings of the 
situation and use these to develop richer understandings 
that were strongly mathematical. Given their ages and 
teaching background, it would not have been 
unreasonable to expect that they recalled the formulae 
for internal angles of a polygon. However, none of them 
could remember this formula (which is what we had 
hoped in planning the activity). Instead, they drew on 
their preexisting knowledge in ways that enabled them 
to move forward with the problem, and to ultimately 
solve it—and to generate their own formula. Being able 
to draw on existing knowledge to solve the problem in 
non-traditional ways ensured task completion and also 
allowed the participants to gain a strong sense of 
achievement. Their sense of agency was not based on 
their knowledge, attitude, aptitude or ability to single-
handedly complete the investigation, but rather on being 
able to contribute something to the shared dynamic that 
emerged as they engaged with the task collaboratively. 

Task: A critical dimension to the successful 
mathematical work of the participants was the task. The 
design of the task may be seen as quite traditional but 
the leader deviated from those practices often found in 
classrooms where rote procedures are applied to a range 
of questions and little opportunity is provided to 
develop richer understandings. Extending the task to 
find the generalization enabled the teachers to develop 
ways of thinking mathematically and to construct their 
own formula/generalization. It is important to note that 
the task was inherently mathematical in both content 
and process and, as such, it was consistent with the 
practices of mathematicians (as highlighted by Burton 
and summarized previously). Moving away from tasks 
that can be solved through the application of formula 
that are applied in a rote, lock-step manner is critical in 
fostering learning environments that encourage deep 
learning. 

Working as a Mathematician 

 This aspect of the learning environment is very 
different from the format of the traditional classroom 
where the learner is often situated as a ‘consumer’ or 
user of mathematics rather than a creator of 
mathematics. The practices of research mathematicians 
are creative in that their work is to ‘create new 
knowledge’ by drawing on their own sense of agency 
and by working with others in ways consistent with their 
discipline. While the knowledge developed by the 

participants in the example was not unknown, it was 
new to them and, as such, it involved a creative process. 
Furthermore, the participants drew on their collective 
mathematical knowledge and developed their thinking 
within a mathematical framework.  

Mathematically  

This aspect of working as a mathematician draws on 
features that can be considered as part of the 
mathematical content knowledge or the pedagogical 
content knowledge identified by Shulman (1986). These 
features are often distinctly mathematical and are what 
can be seen to differentiate mathematics from other 
curriculum areas. The features involve mathematical 
knowledge, but also mathematical practices. Unlike 
traditional classrooms where rote-and-drill learning, 
textbook-based exercises and strong teacher direction 
dominate, mathematicians employ practices that are 
quite different from school mathematics practices. 
Indeed, this difference does raise concerns about the 
'mathematics-ness' of what occurs in classrooms as we 
would argue students’ contemporary mathematical 
experiences are not necessarily based on mathematical 
behaviour. Below we highlight some of the key 
mathematical practices that were identified in the 
example. 

Identifying Patterns: Creating the table enabled the 
participants to observe a pattern. Some participants 
were able to describe the pattern but not the 
generalization. For others, seeing the pattern through 
representing the information on the table enabled them 
to construct the generalization. It is important to note 
that although most students can be taught to draw a 
table (and they are in most classrooms), the drawing of 
the table was not an end in itself, but rather it was a 
technology to help the participants engage in the 
mathematical task of identifying a pattern. Of course, 
teaching mathematical learners to identify a pattern is a 
much more difficult task than to teaching them to 
simply draw a table or memorize a set algorithm to see 
prescribed patterns - it involves less tangible aspects of 
mathematicians’ practices such as insight and 
perception. But it is these very aspects that make it a 
rich mathematical experience rather than the dehydrated 
pseudo-mathematical task that most students experience 
- the clear and easily defined mathematics that has been 
carefully programmed, pre-processed and homogenized 
so all can get the right answer. Perhaps in our attempts 
to make mathematical knowledge more accessible to 
students we have kept the knowledge but lost the 
mathematical behaviours, and in the process the 
mathematical experiences of the classroom can no 
longer be regarded as 'mathematical'. 
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Constructing Generalizations: Another integral part of 
working as a mathematician is about making the 
generalizable statement. The insight to see and construct 
the generalizable statement, and to be able to state it 
clearly, is an important mathematical practice. In this 
case, the development of a formula for the interior 
angles of a polygon was part of the task. Unlike 
traditional mathematics classrooms where the 
generalization (i.e., the rule) is often the starting point 
and learners are encouraged to practise on examples, 
this learning enabled the participants to generate their 
own generalization. At this point it is worth noting that 
the participants in our example did not perhaps take the 
final mathematical step of proving their result. Indeed, 
they were not far away from it and if they could have 
drawn the construction lines shown in Figure 4, they 
may have been able to complete their ‘proof’. 

We do acknowledge that it is also an 
important activity to apply and use known mathematical 
rules, but this is relatively straight-forward and simple, 
and perhaps inherently less mathematical, than the 
engaging and creative task of constructing 
generalizations. Boaler’s research  suggests that 
mathematical knowledge developed in this way is more 
robust and accessible for learners than prepackaged 
formulas that are memorized as preordained facts. 

Using a Simple Example to Test the Hypothesis: Once a 
potential generalization had been developed, the 
participants applied this to a simple example (the 
triangle) to check its validity. In this case it worked so 
the generalization appeared valid to the participants. 
They also applied the generalization to the examples 
that they had worked out (and recorded in the table) to 
check that the generalization was valid in other 
examples. It seems that in a traditional classroom there 
is little scope for conjecturing and hypothesizing, as the 
route to the answer is known and the task of the student 
is to travel the prescribed and clearly structured route to 
the known answer. Dead-ends and time-wasting side 
tracks are thus avoided and the journey is quick and 
efficient. However, this is not consistent with 
mathematical practice (as outlined previously) and hence 
its place in the mathematics classroom deserves 
consideration. 

Identifying Limits: Finally, part of working on a 
mathematical task is being able to determine parameters. 
Of course, it is not a necessary mathematical action if all 
the mathematical tasks faced are bounded and clearly 
defined. As noted by one group, the limit in this activity 
was that the shape had to have three or more sides if the 
generalization was to work. Again, this was a relatively 
innocuous observation, but an integral mathematical 
process that can easily be lost in the process of 
sanitizing authentic mathematical tasks for the 
classroom, thus diminishing the true mathematical 
thinking required by students.  

Cognitively  

Drawn from Burton’s work are aspects of cognition, 
affect and other constructs of the internal features of 
working as a mathematician. Rather than trying to 
delineate these various dimensions, we have accepted 
their inter-connectivity and tried to note them as they 
arose in the example. This approach is similar to that 
undertaken by Burton and means we do not apply a pre-
determined theoretical framework. Historically, affect 
and cognition have largely been studied independently, 
or at least as separate concepts, but here we have not 
made that distinction. What we have done is identify 
particular features of cognition and dispositions that are 
part of the learners’ ways of approaching the tasks, 
particularly as exemplified in the account above. 

Thinking Styles: As shown in the example used, the 
learners engaged a range of thinking styles that included 
verbalization, drawing illustrations, and the use of tables 
to arrive at insights about the problem, the mathematics, 
and ways to solve the problem. These various thinking 
styles enabled the group to gain insight into the 
problem, and whether they would have been successful 
with a uni-dimensional approach is debatable. Indeed, 
drawing on a range of thinking styles– visual, analytic 
and conceptual - was identified by Burton (2001) in her 
study of mathematicians, and we can see how most of 
the participants in our example used a composite of 
these styles. The use of a variety of cognitive 
approaches is valued in the mathematics community 
because it is integral to, and enhances, the mathematical 
endeavour. 

Insight/Intuition: Burton’s (2001) mathematicians 
referred to the ‘light being switched on’ which enabled 
them to see what works and what does not work 
without being overtly aware of how they gained such 
insights. Barnes (2000) also studied ‘aha moments’ in 
school students’ mathematical experiences. While these 
sorts of expressions seem to be common in general 
conversations about mathematics learning, they are 
relatively absent in the research literature, and yet both 
Burton and Barnes saw them as critical 

 
Figure 4. Octagon with construction lines 
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affective/cognitive components of doing mathematics. 
We cannot do justice to this topic in this example, but 
we do want to flag insight and intuition as aspects that 
require further research. 

Making Connections: It can be seen from the 
example that various elements of mathematics have 
been linked together to form a coherent whole. Burton 
(2001) argues that it is akin to fitting the pieces of the 
jigsaw together. What can be seen in this example is 
how the teachers have drawn on various aspects of 
mathematical knowledge, in particular their knowledge 
of triangles, and have pooled this knowledge in order to 
come up with a deeper appreciation of mathematical 
understanding. This making of connections leads to a 
more robust and inter-connected mathematical 
knowledge by which mathematics is not seen as 
a collection of isolated procedures and concepts. In 
general, it seems that a more holistic and related 
mathematical understanding is not developed in 
mathematics classrooms because experiences are based 
around learning small, bite-sized conceptual chunks that 
are rarely stitched together into a broader conceptual 
framework. This is often exacerbated by the teach-test-
and-forget program mentality that discourages applying 
a range of mathematical concepts to the solution of a 
problem. Thus, for mathematics learners to engage in 
the critical cognitive activity of making connections, 
they need problems and tasks that inherently demand 
more than one mathematical idea to solve. 

In this section we have discussed the example 
presented earlier vis-à-vis the activity of working as a 
mathematician. To do this, we briefly explored the 
activities of the participants under quite a few themes. 
In the next section we look at the example at a more 
macro level, in particular noting the choreography of 
agency between their mathematical identities and the 
discipline of mathematics.  

Identity and the Dance of Agency  

What becomes possible to see through this example 
is that the learning situation draws considerably on 
those aspects of working as a mathematician as 
identified by Burton’s work and on the aspects of 
classrooms and teaching identified by Boaler’s work. 
Boaler’s work has been particularly powerful in 
illustrating the importance of agency and identity. When 
we consider the activity identified in this paper, we 
recognize that the three features – social, mathematical 
and cognition – are critical variables in the provision of 
quality learning opportunities. If we are to emerge from 
the current demise in mathematics education identified 
at the start of this paper, then reforms are needed to 
enable change from the current, traditional practices to 
ones which are more empowering for learners. This 
requires a shift not only in pedagogy and curriculum but 

also in the dispositions of learners. As noted by 
Zevenbergen (2005) many of the current practices in 
school mathematics create particular mathematical 
habitus which are far from empowering for learners and 
indeed encourage disengagement with the discipline. 

This example and our analysis of that practice 
highlight some of the features that foster the 
characteristics of working as a mathematician that have 
been identified through the combined work of Burton 
and Boaler. However, in this final section, we want to 
draw more constructively on Boaler’s use of Pickering’s 
(1995) notion of a ‘dance of agency’. For Boaler this 
construct is critical, as it enables learners to draw on 
their mathematical understandings, to build on what 
they know, and to construct deeper understandings. 
This is one of the fundamental premises of much 
mathematical learning but it is improbable in many of 
mainstream classrooms due to the pedagogies being 
implemented. As shown in the Queensland School 
Longitudinal Reform Study (Education Queensland, 
2001), the teaching of mathematics in schools is the 
most poorly taught area of school curriculum and 
dominated by shallow teaching approaches with little 
scope for students to engage substantially with ideas and 
deep learning. The example here provides some insights 
into the ways in which a commonly used activity can be 
adjusted to allow for depth of learning. However, as 
Boaler’s work highlights, learners must feel some sense 
of agency to be confident to draw on other forms of 
knowing in order to solve problems. 

In the example provided, we note that the first 
comment provided by a participant was “I have no idea 
of how to work this out”. Such a comment is not a 
surprise for many mathematics educators and has been 
well documented as an outcome of the teaching of 
school mathematics. Yet, as the activity unravelled, the 
engagement and success of the participants illustrated 
the importance of a number of characteristics Burton 
identified among the practices of research 
mathematicians who strongly identify with mathematics. 
We suggest that the activity, including the way it was 
organized and presented to participants, enabled them 
to engage with the problem in order to solve it.  It 
seems that allowing the participants/learners to engage 
in a collaborative group and to draw on pre-existing 
concepts, which they knew were robust, enabled them 
to engage successfully with the task. Further, it was 
critical to the dance of agency that the participants felt 
confident to draw on their existing knowledge to build 
deeper mathematical understandings.  The participants 
appeared to be confident in their knowledge and they 
identified strongly with the concepts encountered in 
their teaching of primary mathematics, including the 
properties of triangles in particular, and polygons in 
general, along with the types of angles. They then drew 
on this knowledge to solve a more complex problem - 
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something that they did not encounter in their teaching 
in the primary school, and hence was unfamiliar to 
them. 

We contend that traditional classrooms would have 
fostered learning activities around the application of a 
formula for calculating the sum of interior angles. In 
this example, the participants could not remember this 
formula (and it was not provided) so they needed to rely 
on their existing knowledge, the collective wisdom of 
the group and a sense that they could solve the problem. 
This sense of agency - where not only could they rely on 
their own knowledge in a legitimate sense, but also the 
collective knowledge across the group – enabled them 
to gain a sense of learning and achievement through the 
completion of the task. We contend that such practice is 
far more enabling and develops a strong sense of agency 
and identity with mathematics.  
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