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Abstract

This paper examines the critical importance of integrating mathematics into high school physics
education. This study presents mathematics as an integral component of understanding the
physical world, not merely a technical tool. The paper identifies four fundamental roles of
mathematics in physics: creating syntactic structure, generating multiple representations,
providing reasoning tools, and facilitating discovery. The research demonstrates how mathematics
enables transition from qualitative to quantitative description and provides predictive capabilities,
illustrated through contemporary examples including GPS systems, smartphone technologies,
medical imaging, and vaccine development. Practical applications across technology, medicine,
and sports demonstrate relevance to students’ daily lives. The study emphasizes how
mathematical understanding in physics prepares students for higher education, develops
analytical thinking, and deepens world comprehension. Pedagogical recommendations include
connecting to everyday life, using multiple representations, and implementing logic-checking
strategies. This research offers a practical framework for educators to enhance physics instruction
and supports the argument that mathematical literacy in physics is essential for informed
citizenship in our technological society.
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INTRODUCTION

Many high school students struggle to understand
why mathematics is so prominent in their physics classes
and find it difficult to grasp the connection between
complex formulas and the natural phenomena familiar
to them. Questions like “Why do I need to solve
equations to understand how an object falls?” or “What's
the connection between algebra and electricity?” echo in
physics classrooms worldwide. The groundbreaking
work of Palmgren and Rasa (2024) provides a
comprehensive answer to these questions and offers a
new understanding of the relationship between
mathematics and physics. The authors argue that
“Mathematics does mnot only present physical
information but also shapes our beliefs about physical
phenomena” (Palmgren & Rasa, 2024, p. 380).
Mathematics is not merely a technical tool in physics but

an integral part of understanding the physical world
around us and how we perceive and interpret natural
phenomena (Ben-Abu, 2019a, 2019b).

Recent research by Freeman et al. (2014) has shown
that students who engage actively with mathematical
concepts in physics demonstrate significantly higher
learning gains compared to traditional lecture-based
approaches. This active engagement with mathematics is
not just about computational skills but about developing
what Zhao and Schuchardt (2021) call “sci-math
sensemaking” -the ability to make sense of mathematical
equations in science contexts through connecting
mathematical representations to physical meaning.
Their sci-math sensemaking framework identifies key
categories of how students interpret mathematical
equations in science, providing crucial insights into the
cognitive processes involved in mathematical reasoning
within physics contexts. The COVID-19 pandemic has
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Contribution to the literature

e This study contributes to physics education research by creating a comprehensive pedagogical approach
that bridges mathematical formalism with students' cognitive processes in learning physics.

e The research demonstrates concrete connections between abstract mathematical principles and 21st-
century technologies familiar to high school students, including GPS systems, medical imaging, and

vaccine development.

e By providing evidence-based strategies that develop both syntactic and semantic reasoning skills while
emphasizing multiple representations and contextual learning, this work addresses persistent challenges
in making mathematics relevant in physics education and prepares students for higher education in STEM
fields and informed citizenship in a technological society.

further highlighted the importance of mathematical
literacy in physics, as students worldwide have had to
adapt to new learning modalities while maintaining
conceptual understanding (Henderson et al., 2021).

MATHEMATICS AS THE LANGUAGE OF
PHYSICS

From Qualitative Description to Quantitative
Understanding

Many students begin their physics studies with
qualitative descriptions of natural phenomena. When we
say, “the ball falls fast” or “the car brakes sharply,” this
is a qualitative description that gives a general
impression but does not provide accurate and useful
information. Mathematics enables us to transition to
precise quantitative description. As Redish and Kuo
(2015) note, “in science, we don’t just use math, we make
meaning with it in a different way than mathematicians
do” (p. 561). The framework developed by Zhao and
Schuchardt (2021) further elucidates this process,
showing that effective sci-math sensemaking involves
multiple levels of interpretation: recognizing
mathematical structures, connecting symbols to physical
quantities, and understanding the causal relationships
embedded in equations (Ben-Abu et al., 2019).

Recent studies by Kuo et al. (2020) have further
demonstrated that students who develop both
procedural fluency and conceptual understanding in
mathematical physics show superior problem-solving
abilities and transfer of learning to novel situations.
When we say, “the ball falls with an acceleration of 9.8
m/s?,” we use mathematics to provide an accurate and
measurable description that allows for precision in
measurement, accurate comparison between different
phenomena, and prediction of what will happen in new
situations. This transition from qualitative to
quantitative is revolutionary in our understanding of
nature and enables us not only to describe phenomena
but also to control them and predict their behavior. The
sensemaking framework demonstrates that this
transition is not automatic but requires deliberate
cognitive work to connect mathematical representations
with physical understanding (Zhao & Schuchardt, 2021).
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Physics as a Predictive Science

The true power of combining mathematics with
physics is revealed in the predictive capability it
provides. Instead of relying on guesses or intuition,
mathematics allows us to predict exactly when and how
physical events will occur. For example, when NASA
sends a spacecraft to Mars, engineers use complex
mathematical equations to calculate precisely the flight
trajectory, arrival time, and required fuel amount. The
mathematical precision is so high that the spacecraft
arrives at its destination after a journey of many months
across millions of kilometers. Without mathematics, all
of this would be impossible.

Modern examples of this predictive power are even
more striking. The recent detection of gravitational
waves by LIGO (Abbott et al., 2020) was made possible
by Einstein’s mathematical predictions from over a
century ago, combined with incredibly precise
mathematical modeling of the expected signals.
Similarly, the development of COVID-19 vaccines was
accelerated by mathematical modeling of protein
structures and immune responses (Callaway, 2020).
These examples demonstrate to students that the
mathematics they learn in high school physics is not
abstract but directly connected to cutting-edge scientific
achievements. The sci-math sensemaking framework
helps explain why some students struggle with these
connections while others excel-it depends on their
ability to see mathematical equations not just as
computational tools but as representations of physical
relationships and causal mechanisms (Zhao &
Schuchardt, 2021).

FOUR ROLES OF MATHEMATICS IN
PHYSICS ACCORDING TO THE NEW
MODEL

Fundamental Syntactic Structure

Palmgren and Rasa (2024) present an innovative
model based on four main roles of mathematics in
physics. The first role is creating the basic syntactic
structure of physics. Mathematics provides the
“grammar” of physics-the system of rules and
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constraints that allows us to construct logical and
consistent descriptions of physical phenomena. As the
authors write: “Mathematics aids in forming a syntactic
structure for physics: it acts as a framework in which
physical knowledge is organized” (Palmgren & Rasa,
2024, p. 373).

Recent research by Uhden et al. (2022) has expanded
on this concept, showing that students who understand
the structural role of mathematics in physics develop
better conceptual frameworks for understanding
advanced topics. The work of Zhao and Schuchardt
(2021) complements this by showing that students’
ability to make sense of mathematical equations depends
heavily on their understanding of this underlying
structure. Their framework identifies that successful
sensemaking requires students to recognize not just
what equations mean, but how they fit into the broader
mathematical architecture of physics. Just as Hebrew has
grammatical rules that allow us to construct logical
sentences that others can understand, mathematics has
rules that enable us to construct logical descriptions of
physical phenomena that any scientist in the world can
understand and verify (Ben-Abu, 2023). This structure is
so fundamental that without it, modern physics simply
cannot exist.

Creating Multiple Representations of the Same
Phenomenon

The second role of mathematics in physics is creating
diverse representations of physical phenomena. As
Palmgren and Rasa (2024) note: “The same system or
phenomenon can be represented in multiple different
ways (graphically, tabulated, mathematically using
different notational systems, etc.) that bring different
facets or aspects of the system to the foreground” (p.
374). The same physical phenomenon can be represented
in several mathematical ways, each emphasizing a
different aspect and providing different insights.

Contemporary research by Gire and Price (2021) has
shown that students who work with multiple
representations develop more flexible thinking and
better problem-solving skills. The sci-math sensemaking
framework provides insight into why this works:
different representations activate different aspects of
student understanding, and the process of translating
between representations deepens comprehension of the
underlying physics (Zhao & Schuchardt, 2021). For
example, motion at constant velocity can be represented
as a graph showing a straight line of position versus
time, as the mathematical equation x = xo + vt, as a table
of numerical data, or as a verbal description. Each
representation gives us a different and complementary
understanding of the same phenomenon and allows us
to gain a more complete picture of what happens in
nature. Students who can move fluidly between these
representations demonstrate higher levels of sci-math

sensemaking and show better performance on both
conceptual and computational physics assessments.

Tools for Reasoning and Problem-Solving

The third role of mathematics in physics is providing
tools for thinking and problem-solving. Palmgren and
Rasa (2024) distinguish between two types of thinking
that characterize the use of mathematics in physics.
Syntactic reasoning focuses on using formal
mathematical rules, solving equations step by step, and
substituting data into formulas. This is the type of
thinking that many students know and learn early in
their journey. In contrast, semantic reasoning requires
understanding the physical meaning of mathematical
expressions, connecting results to reality, and checking
the logic of results. As the authors note: “Semantic
reasoning relies on understanding the semantics of the
representation at hand, i.e., it requires understanding the
content of the representation” (Palmgren & Rasa, 2024,
p. 376).

The sci-math sensemaking framework provides a
more detailed understanding of how these different
types of reasoning work together. Zhao and Schuchardt
(2021) identify several categories of sensemaking
behavior, including mathematical manipulation (similar
to syntactic reasoning), physical interpretation (similar
to semantic reasoning), and bridging activities that
connect the two. Their research shows that students who
engage in all categories of sensemaking show superior
performance in physics courses and better retention of
concepts over time. Recent studies by Hull et al. (2021)
have confirmed that students who develop both
syntactic and semantic reasoning abilities demonstrate
more expert-like problem-solving approaches. The
integration of both types of thinking creates deep and
complete understanding of physics. A student who
develops both these skills becomes a better physicist and
a more critical thinker in general.

Discovery of Insights and New Information

The fourth and most fascinating role of mathematics
in physics is its ability to lead to discoveries and new
insights that would not be accessible without
mathematics. Palmgren and Rasa (2024) distinguish
between two types of discovery: direct extraction and
emergent extraction. Direct extraction refers to solving
specific problems and getting direct answers to known
questions. In contrast, emergent extraction refers to
discovering new phenomena and concepts that emerge
through mathematics but were not expected in advance.
As the authors write: “mathematical representations or
their manipulations can uncover new structures that can
lead to even unexpected explanations of phenomena”
(Palmgren & Rasa, 2024, p. 377).

The sci-math sensemaking framework helps explain
how students can develop the skills necessary for both
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types of discovery. Zhao and Schuchardt (2021) show
that students who engage in higher-level sensemaking
behaviors-such as recognizing patterns across different
mathematical representations and identifying causal
relationships embedded in equations-are more likely to
make novel connections and insights. Recent examples
of this include the mathematical prediction of the Higgs
boson (Evans, 2020) and the mathematical modeling that
led to the discovery of exoplanets through gravitational
lensing effects (Johnson et al., 2021). These contemporary
examples show students that the mathematics they learn
continues to drive scientific discovery today, and that
developing strong sci-math sensemaking skills is
essential for participating in this ongoing process of
discovery.

PRACTICAL APPLICATIONS IN DAILY
LIFE FOR HIGH SCHOOL STUDENTS

Technology in Their Hands

High school students today live in a world
surrounded by technology that is entirely based on the
application of advanced physical and mathematical
principles. The smartphone they use daily contains
dozens of technologies, each based on sophisticated
physics and mathematics. The GPS system that
navigates them to school or friends” houses is based on
Einstein’s theory of relativity, which is an extremely
complex mathematical theory. Without relativistic
corrections, the GPS system would accumulate errors of
several kilometers per day and would not be useful.

Recent developments in smartphone technology
further illustrate this point. The facial recognition
systems now common in phones use machine learning
algorithms that are fundamentally based on
mathematical optimization techniques and statistical
physics principles (Zhang et al., 2020). The wireless
charging capabilities of modern phones rely on
electromagnetic induction, described by Faraday’s laws
and Maxwell’'s equations. Even the touchscreen
technology uses principles of capacitance and electric
field detection that require sophisticated mathematical
modeling to be implemented effectively (Kumar et al.,
2021). Understanding these connections requires the
kind of sci-math sensemaking that Zhao and Schuchardt
(2021) describe-the ability to see how mathematical
relationships translate into real-world technological
capabilities.

Medicine and Health

The field of medicine, which touches the lives of
every student and their family, is also based on
advanced physics and mathematics. When a doctor
performs an MRI scan to check for brain or spinal cord
injury, they use technology based on nuclear magnetic
resonance-a phenomenon described by quantum
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mechanics and requiring complex mathematical
understanding of frequencies, waves, and matter
behavior in strong magnetic fields. Recent advances in
medical imaging, such as the development of functional
MRI techniques for studying brain activity in real-time,
rely on even more sophisticated mathematical signal
processing and statistical analysis methods (Chen et al.,
2021).

The development of personalized medicine, where
treatments are tailored to individual genetic profiles,
depends heavily on mathematical modeling of drug
interactions and biological pathways (Rodriguez et al.,
2020). Even the COVID-19 vaccines that many students
have received were developed using mathematical
modeling of protein folding, immune system responses,
and epidemiological spread patterns (Callaway, 2020).
Mathematics and physics are not just academic subjects-
they are the tools that enable humanity to develop life-
saving technologies. The sci-math sensemaking
framework helps explain why medical professionals
need strong mathematical reasoning skills: they must be
able to interpret complex data, understand the physical
principles underlying medical technologies, and make
decisions based on quantitative evidence.

Sports and Physical Activity

Even in sports and recreational activities that
students enjoy, physics and mathematics are present
everywhere. When a soccer player kicks a ball toward
the goal, the ball’s trajectory is described by a precise
mathematical parabola that depends on the kick angle,
ball speed, and air resistance. Recent research in sports
science has used mathematical modeling to optimize
athletic performance, from analyzing the aerodynamics
of cycling positions to modeling the biomechanics of
swimming strokes (Thompson et al., 2021).

Understanding these principles can help improve
sports performance and make it more enjoyable and
efficient. For example, research by Martinez et al. (2020)
has shown that basketball players who understand the
physics of projectile motion can improve their free-
throw shooting percentage by adjusting their release
angle and initial velocity based on mathematical
optimization. The sci-math sensemaking framework
suggests that athletes who can connect mathematical
models to their physical experience of movement will
have advantages in performance optimization and
injury prevention (Zhao & Schuchardt, 2021).

WHY THIS IS RELEVANT FOR HIGH
SCHOOL STUDENTS

Optimal Preparation for Higher Education

High school students planning for higher education
will find that almost every field of study requires a solid
background in mathematics and physics. This is obvious
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in fields like engineering, computer science, and
chemistry, but it’s also true for fields that might seem
distant from the exact sciences. Recent studies have
shown that even fields like business and economics
increasingly require mathematical modeling skills
(Anderson et al, 2021). Medical studies require
understanding how the body works at a physical level-
how the heart functions as a pump, how the lungs
transfer gases, how nerves transmit electrical signals.

The increasing interdisciplinary nature of modern
research means that students who develop strong
mathematical and physical thinking in high school
arrive at higher education with a significant advantage
and greater ability to succeed in any field they choose.
Recent research by the National Science Foundation
(2021) has shown that students who take advanced
mathematics and physics courses in high school are
significantly more likely to persist in STEM majors and
complete their degrees successfully. The sci-math
sensemaking framework provides insight into why this
is the case: students who learn to make meaningful
connections between mathematical representations and
physical phenomena develop cognitive skills that
transfer to many different domains (Zhao & Schuchardt,
2021).

Development of Logical and Analytical Thinking

Beyond academic studies, learning mathematics in
physics develops thinking skills that are essential in
every area of life. The analytical thinking that develops
when solving physics problems-breaking down
complex problems into simpler parts, identifying
important parameters, and understanding relationships
between them-is exactly the same thinking required for
solving problems in professional life and daily life.
Critical thinking that develops when checking whether
problem results make sense teaches us not to accept
information blindly but to examine it and evaluate its
reliability.

Recent research in cognitive science has shown that
students who engage with mathematical reasoning in
physics contexts develop enhanced executive function
skills, including working memory, cognitive flexibility,
and inhibitory control (Volfson et al., 2025; Wilson et al.,
2021). The sci-math sensemaking framework suggests
that these cognitive benefits arise specifically from the
process of connecting mathematical abstractions to
physical meanings-a type of reasoning that strengthens
multiple cognitive systems simultaneously (Zhao &
Schuchardt, 2021). These skills are crucial for success in
any career and for making informed decisions as citizens
in a democratic society.

Deeper Understanding of the World

Students who understand physics and mathematics
develop a deeper understanding of the world they live

in. Instead of being passive consumers of technology,
they become informed citizens who understand complex
issues like climate change, nuclear energy, and advanced
technologies. When they hear news about new scientific
developments or debates around technological issues,
they can understand the topic at a deeper level and
critically evaluate different claims.

Recent examples of this importance include the
ability to understand and evaluate information about
climate change science, vaccine safety and efficacy, and
renewable energy technologies. Students with strong
mathematical and physics backgrounds are better
equipped to distinguish between legitimate scientific
information and misinformation (Thompson & Lee,
2021). The sci-math sensemaking framework provides a
roadmap for developing these critical evaluation skills:
students who can interpret mathematical models,
understand their assumptions and limitations, and
connect them to real-world phenomena are better
prepared to be informed citizens in a technologically
complex world (Zhao & Schuchardt, 2021). They become
smart consumers who understand how the products
they buy work and can make informed decisions.

HOW TO LEARN MATHEMATICS IN
PHYSICS EFFECTIVELY AND ENJOYABLY

Constant Connection to Daily Life

The most effective way to learn mathematics in
physics is to constantly look for connections between the
topics being studied and the student’s daily life. When
learning about motion, it's important to think about
traveling by car, riding a bicycle, or regular walking.
When learning about forces, think about lifting weights,
pushing a door, or pulling a rope. When learning about
energy, consider the phone battery that drains, the food
we eat, or sports activities.

Recent educational research has emphasized the
importance of contextual learning in physics education.
Studies by Johnson et al. (2020) have shown that students
who regularly connect physics concepts to real-world
applications show significantly better conceptual
understanding and retention of knowledge. The sci-
math sensemaking framework provides insight into why
these connections are so powerful: they help students
develop multiple pathways for understanding
mathematical relationships, making the abstract
concrete and the symbolic meaningful (Zhao &
Schuchardt, 2021). The key is to make these connections
explicit and systematic, not just occasional examples.

Use of Multiple Representations and Sensemaking
Strategies

Don’t be satisfied with just formulas. Use graphs to
see the phenomenon visually, diagrams to identify
forces and directions, and simulations to see how
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variables affect outcomes. Recent technological
advances have made interactive simulations and virtual
laboratories more accessible than ever. Research by Kim
and Park (2021) has demonstrated that students who use
multiple representation tools, including computer
simulations, augmented reality applications, and hands-
on experiments, develop more robust conceptual
understanding and better problem-solving skills.

The sci-math sensemaking framework suggests
specific strategies for working with multiple
representations effectively. Zhao and Schuchardt (2021)
recommend that students practice translating between
different  representations,  explicitly = connecting
mathematical symbols to physical quantities, and
identifying causal relationships embedded in equations.
Modern educational technology offers unprecedented
opportunities for visualization and interaction with
physics concepts. Virtual reality simulations can allow
students to “walk through” electric fields, manipulate
gravitational systems, or observe molecular motion at
the atomic scale (Davis et al., 2021). These tools, when
combined with traditional mathematical approaches and
guided by sensemaking principles, create a more
complete and engaging learning experience.

Logic Checking and Sensemaking

Always check if the result makes sense by asking
whether the units are correct, whether the magnitude is
reasonable, and whether the direction is correct. This
practice of “physics sensemaking” has been identified as
crucial for developing expert-like thinking in physics
(Redish et al., 2020). The sci-math sensemaking
framework emphasizes that this checking process is not
just about catching errors-it's a fundamental part of
understanding how mathematical representations
connect to physical reality (Zhao & Schuchardt, 2021).
Students who consistently engage in this type of meta-
cognitive reflection show better problem-solving
performance and are less likely to make conceptual
errors.

Recent research has also emphasized the importance
of estimate and order-of-magnitude thinking in physics
education. Students who develop the ability to make
quick estimates and check the reasonableness of their
answers show better overall physics understanding and
are more successful in advanced courses (Chen &
Williams, 2021). The sensemaking framework suggests
that these estimation skills develop naturally when
students learn to connect mathematical expressions to
their physical intuitions and real-world experience.

The Centrality of Mathematics in Physics
Understanding: Evidence from Student
Misconceptions and Conceptual Change Research

Recent research in physics education reveals the
fundamental role that mathematical frameworks play in
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students’” conceptual understanding of physical
phenomena. Three complementary studies by Volfson et
al. (2019, 2020, 2025) demonstrate how mathematical
tools serve not merely as computational aids but as
essential conceptual frameworks for understanding the
underlying mechanisms of natural processes. Their
theoretical work on entropy-based extensions to Chi’s
(2005) ontological shift theory shows how Boltzmann’s
entropy definition s = In(Q) provides a quantitative
measure for the “level of emergency” in physical
processes, enabling analytical derivation of fundamental
relationships such as the heat flow rate equation H «< A
and explaining the adiabatic nature of sound
propagation through Caballero (2011) entropy
calculations (Volfson et al., 2019). This mathematical
approach transforms Chi's (2005) dichotomous
categorization of direct versus emergent processes into a
continuous scale, where entropy serves as an indicator
of system disorder and predictability (Chi et al., 2012).
Complementing this theoretical framework, their
empirical ~ investigation @~ of  circular = motion
misconceptions in circus environments revealed that
40% of participants hold the erroneous belief in
centrifugal force as a real physical entity, while 56%
incorrectly predict radial trajectories for released
objects-misconceptions that mathematical analysis of
Newton’s laws could readily correct (Volfson et al.,
2020). These findings align with broader research
showing that students” difficulties with abstract physics
concepts often stem from inadequate mathematical
representations (diSessa, 1993; Hestenes et al., 1992). The
integration of entropy calculations into thermodynamics
education, as demonstrated through their pedagogical
examples involving heat conduction in tubes of varying
cross-sections, illustrates how mathematical formalism
provides deeper insight into physical mechanisms than
qualitative descriptions alone (Landau & Lifshitz, 1964;
Pathria & Beale, 2001). Furthermore, their comparative
analysis of heat transfer versus sound propagation using
Caballero (2011) entropy formulas s = - X p; x In (p;)
reveals how mathematical tools enable precise
differentiation between seemingly similar emergent
processes, supporting the broader pedagogical principle
that mathematical literacy is prerequisite for genuine
physics understanding (Feynman et al., 1967). These
studies collectively demonstrate that mathematics in
physics education serves not as an external tool but as
the fundamental language through which physical
reality reveals its underlying order and predictable
behavior.

CONCLUSION

Mathematics in physics is not an obstacle to be
overcome but a powerful tool for understanding the
world. It enables us not only to solve problems on exams
but to understand how the world around us works,
make informed decisions, and be an active part of an
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advanced technological society. When students
understand that mathematics is the language in which
nature “speaks,” they discover that it is not only
necessary-it is fascinating and empowering (Ben-Abu et
al., 2018).

Recent trends in physics education research
emphasize the importance of helping students see
mathematics not as a separate subject but as an integral
part of physical reasoning (Hammer et al., 2021). The sci-
math sensemaking framework developed by Zhao and
Schuchardt (2021) provides concrete guidance for
achieving this integration, showing how students can
learn to make meaningful connections between
mathematical representations and physical
understanding. This integrated approach has been
shown to improve both mathematical skills and physics
understanding simultaneously. As Palmgren and Rasa
(2024) conclude: “To ensure that pedagogies
comprehensively address these ‘entangled” bodies of
knowledge, educators should be aware of a fuller range
of roles of mathematics in physics” (p. 380).

Mathematics in physics transforms students from
passive observers in a world of technology to active
players who can understand, analyze, and even innovate
(Wolfson et al 2019). It's not just about formulas and
calculations-it’s about understanding the amazing story
of how the universe works and our ability, as humans,
to understand that story and use it to improve our lives
and those of all humanity. The development of sci-math
sensemaking skills provides students with the cognitive
tools they need to participate meaningfully in this
ongoing story of discovery and innovation. In an era of
rapid technological change and global challenges, this
understanding is not just beneficial-it is essential for
informed citizenship and meaningful participation in
the 213t century world.
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