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EDITORIAL 
 
M. Fatih Taşar, Associate Editor 
Gazi Üniversitesi, Ankara, TURKEY 
 
 

Dear readers, 
We are glad to introduce the last issue of this 

volume. There are eight research articles representing 
the usual diversity of papers published by EURASIA. 
The diversity comes from both the regions that the 
papers are emerging and the fields that they represent. I 
hope you’ll find them useful and relevant to your 
endeavours. 

I wish to take this opportunity and annouce the 
second call for papers for the 2009 Conference of 
European Science Education Research Association 
(ESERA) which will be held in Istanbul between 31 
August and 4 September. Please visit the conference 
web site www.esera2009.org to find our more about the 
conference and the events that will be taking place.  

Another announcement is that Professor Reinders 
Duit retired from the IPN – Leibniz Institute for 
Science Education. He has been one of the most 
influential figures in the history of science education in 
the last thirty years or so. He contributed to the 
conceptual learning and conceptual change literature 
immensely. Another aspect of Prof. Duit is that he 
collaborated with colleagues from around the world in 
his endeavors and has been widely known in the 
international arena. We wish him a happier long life and 
expect to see his contributions at a more influential level 
in the years to come. 
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‘Now This is What Should Have 
Happened…’: A Clash of Classroom 
Epistemologies? 
 
Michael Allen 
Brunel University, Uxbridge, UNITED KINGDOM 
 
 
Received 16 December 2007; accepted 13 May 2008 
 
 
Current school science curricula attempt to reflect contemporary constructivist-
provisionalist related epistemologies as accepted by professional science. It is argued that 
conversely, the effect of science education is the creation of pupils holding naïve-realist 
epistemological beliefs, largely inductivist-positivist absolutists who chase an irrefutable 
‘right answer’. This outcome has unwelcome consequences: 

1. Encouraging positivist mind-sets during school science practical work that trigger 
confirmation bias and other deviant evidential attitudes. 

2. Philosophical inconsistency creating epistemological confusion with a tendency 
towards positivism that continues into higher education, and perhaps beyond. This 
forms a significant barrier to science learning and impacts on the quality of 
scientists within the workforce. 

Solutions are offered but as things presently stand, significant change is deemed unlikely. 
Discussion of these issues is timely in the light of the recent introduction into English 
secondary schools of a teaching scheme that articulates a post-positivist view of the nature 
of science, in the form of a How Science Works strand.  
 
Keywords: Literacy, Religion, Science, Sociocultural, Superstition 
 
INTRODUCTION 

Real science is the pursuit of provisional theories. 
Contemporary scientists seek to grasp the reality of 
natural phenomena by challenging self-constructed 
hypotheses with current empirical data, and so theories 
have to be impermanent in the event of a later 
experiment revealing an alternative theory as being more 
likely to represent that reality (Kuhn, 1996). A school 
science curriculum aims to foster a conventional 
scientific attitude within children (Gott and Duggan, 
1996; Millar, 1991), as the English Nuffield scheme of 
the 1960s put it, being scientist for a day (Fairbrother and 
Hackling, 1997). Citing instances from the UK system, 
this article intends to show that science education has 
failed in its quest to turn pupils into authentic 
constructivist scientists, and is actually producing 

antithetical inductivist-positivist experimenters. In 
addition, it is argued that contemporary science 
education would never be likely to produce 
constructivist ‘little scientists’ as other aims of the 
curriculum interfere with the process, manifesting as a 
clash of epistemologies. Solutions are suggested, but as 
things presently stand could only make the best of a 
flawed system. 

As well as introducing pupils to the acceptable 
conventions of experimentation school science also 
aims to deliver a body of ‘right answers’, as delineated 
by Attainment Targets 2-4 of the English National 
Curriculum (Osborne and Collins, 2000). In this respect, 
school science contrasts with professional science in the 
way it endeavours to transmit currently established 
theories as if they were irrefutable, so assuming the 
naïve-realist epistemological stance reflected by 
positivism, viewing pieces of knowledge as hard, fixed 
external entities. This rejection of a pluralist view of 
science that echoes a constructivist-realist 
epistemological standpoint where knowledge is 
considered an internal, human construction that is a 
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product of free will, is necessary otherwise pupils as 
novice scientist-thinkers may erroneously end up 
making up their own minds about phenomena and 
ignore the scientific position, becoming solipsists. The 
contexts of professional science and school science are 
diverse in this respect – the former allowing pluralism 
accompanied by peer debate that determines the 
provisional ‘best construct’, the latter perhaps paying lip 
service to pluralism, but ultimately siding with only a 
single absolute answer – that which external 
examination agencies see as being correct, who in turn 
reflect the current social consensus of the scientific 
community. 

In 1975, Driver explained how the two aims of 
encouraging an authentic scientific method and 
delivering a set body of knowledge are incompatible - 
and the same is true today - within school science the 
parallel encouragement of positivist and constructivist 
attitudes means that two conflicting epistemologies 
coexist in a state of uneasy peace. Pupils used to a diet 
of spoon-fed, absolutist science commonly have 
difficulty switching to pluralist mode during novel 
investigations where a right answer is initially unknown, 
and ‘Miss, have I got this right?’ becomes a frequently 
heard appeal. Such a dualist structure means teachers 
send mixed epistemological messages by requiring 
pupils on the one hand to be provisionalist, 
constructivist proto-researchers who will fairly collect 
and interpret data during enquiry-based investigations, 
faithfully rejecting hypotheses that observations and 
measurement refute to form tentative conclusions, 
though in a different context such as with illustrative 
practicals that are designed to verify the textbook, insist 
they have performed adequately only when their data 
support a naïve-realist, positivistic, unassailable ‘right 
answer’. To this latter end practical lessons are generally 
set towards producing the orthodox scientific response 
(Kirschner, 1992), and there are strong drivers presently 
in place that make pupils conduct their science 
positivistically in order to acquire the right answer 
during coursework and exams (Hodson, 1993). This 
notion of there being one right or scientifically 
acceptable answer has unsurprisingly led to shrewd 
students attempting to improve their grades by 
manipulating apparatus, methods and results to ensure 
they obtain that answer, behaviours which have been 
tolerated (Toplis, 2004) or perhaps even encouraged by 
teachers swayed by GCSE examination league tables. 

“Performance may also be affected if pupils 
believe they know 'the right answer’ and see this as a 
way of obtaining good marks. They may then write a 
convincing report based on previous ideas ignoring 
their own data, whether or not the data agree with 
their prediction of what the right answer should be 
and regardless of the teacher's guidance. Again we 
have recently seen evidence in the UK that some 

pupils are purposely gearing their work to achieve 
particular assessment goals” (Gott and Duggan, 1995, 
p61). 

Espousing the idea of a standardised result is 
something that all science teachers do at some stage, 
and since a good deal of practical work involves the 
verification of facts covered during theory lessons, this 
helps foster pupils’ desires to 'get the right answer', as 
stipulated by substantive content. If practical lessons fail 
to do this, which may happen due to inadequate 
apparatus or technique, teachers often conclude by 
stating ‘this is what ought to have happened’ (Simon 
and Jones, 1992, p3). Claxton (1986) echoes this 
sentiment, as the common practice of teachers stating 
‘your results are incorrect, but don’t worry, this is what 
you should have got’ undermines learner confidence in 
performing experiments and in science generally. Pupils 
may respond with ‘is this what ought to happen?’ or 
‘have we got the right answer?’ (Driver, 1975; 
Wellington, 1981), or even ‘if the answer was known 
anyway, and we always get the wrong result what is the 
point in doing the experiment?’ (Claxton, 1986). Hence 
for these learners data collection becomes a chore as 
outcomes have been determined in advance, and a lack 
of intellectual challenge focuses students on getting the 
right answer rather than carrying out genuine scientific 
enquiry (Fordham, 1980). Roth (1994) denigrates 
‘cookbook practicals’ as having low cognitive demand, 
precluding reflective thought and concentration. 
Roberts and Gott (2006) similarly note that the House 
of Commons Select Committee recently commented 
that GCSE science coursework such as the familiar 
generation of data to illustrate Ohm’s law is tedious and 
dull for both pupils and teachers, having little 
educational value.  

The presentation of science as a blend of two 
disparate epistemological positions does not help pupils 
to see the subject as a holistic entity. Most of the 
experience of school science education involves 
exposure to a set of dogmatic right answers which are 
required to be learned in order to pass formal 
examinations, for instance the variety of factors that 
influence the rate of a chemical reaction. Parallel with 
and subsequent to this epistemologically naïve-realist 
delivery of facts, pupils may be required to carry out a 
scientific enquiry task that ‘investigates’ the effect of 
variables such as reactant concentration, temperature 
and particle size on the rate of reaction when marble 
chips are added to dilute hydrochloric acid. The gestalt 
shift required when switching between already knowing 
the facts so therefore the ending, and then suddenly 
working in an epistemologically constructivist-realist, 
thus pluralistic mode in order to fairly consider all 
outcomes must perplex pupils, particularly the less able, 
consequentially prompting comments from insecure 
learners like those expressed in the previous paragraph.  
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In addition to these immediate issues of fraudulent 
behaviour, routine experimentation and epistemological 
confusion, there are more lasting, conceptual 
repercussions of the promotion of positivistic methods, 
discussed next.  

Cognitive implications of delivering a 
positivistic curriculum 

The idea that a right answer exists creates 
expectations within the minds of participants in the 
appropriate direction, and these expectations can be 
elicited during predictions. Properly conducted science 
should allow for the ‘bracketing’ of these expectations 
during the collection and consideration of data (Austin, 
Holding, Bell and Daniels, 1991), although famously 
some scientists have allowed their preconceptions to 
govern data collection so producing results that confirm 
desirable inferences – the Fleischmann and Pons cold 
fusion debacle (Huizenga, 1993) springs to mind. This 
experimenter-expectancy effect can hold considerable sway 
particularly when the stakes are high (Rosenthal, 1966). 
A long-term study of the expectation biases displayed by 
school pupils during practical lessons related how the 
wish to find a predetermined answer can initiate a wide 
variety of scientifically improper behaviours, or EROs, 
including the fabrication of data, ignoring anomalies, 
and rigging apparatus to generate a positivistic right 
answer (Author, 2006). Findings from this research have 
suggested there are chronic problems inherent in 
teachers presenting scientific theories as the products of 
an inductivist-positivist process that infers the existence 
of an absolute right answer, with five general areas of 
concern. 

1. Rejection of the scientific conception due to 
holding a misconception theory 

If pupils anticipate a right answer that constitutes a 
non-scientific theory, what they think to be the right 
answer is actually wrong. Nott and Smith (1995) say that 
unfair manipulations such as the rigging of students’ 
apparatus are justified in order to avoid the gathering of 
refutory data, which may be satisfactory if it is the 
scientific answer that is believed by the observers, but 
the authors fail to note that this is problematic when 
learners are aligned to a misconception theory. In this 
instance, valid data that support the correct view may be 
rejected as anomalies due to EROs, and so 
misconceptions will be reinforced. The author’s ERO 
study (2006) found that misconceivers would happily 
continue to reject any results that refute their personal 
theories until ‘forced’ to acknowledge otherwise by 
mounting peer pressure; such social influences, though 
purposely present in the particular lessons created for 

the study, may be lacking with traditional science 
practicals. 

Additionally, believing a scientific theory and 
knowing the right answer but mistakenly observing a 
different phenomenon can result in EROs where pupils 
have ignored valid data. An example of this would be 
applying the scientifically correct concept of different 
masses falling with equal velocity to objects dropped by 
parachute, where the action of air resistance becomes a 
significant variable; heavier objects should fall more 
quickly, though a desire to confirm the equal-velocity 
theory may cause EROs that miss the reality of the 
event. Roth, McRobbie, Lucas and Boutonne (1997) 
describe how previous, similar demonstrations interfere 
with interpretation of a current demonstration. 

2. Promoting a lack of differentiation between 
theory and evidence 

There exists a natural tendency for learners to 
believe evidence and theory are one in the same and use 
the terms interchangeably, with conclusions often given 
in place of results (Foulds, Gott and Feasey, 1992; 
Gunstone and Champagne, 1990; Kuhn, Amsel and 
O'Loughlan, 1988). If the two do not match unease is 
felt, analogous to travel sickness being a result of a lack 
of correspondence between stimuli from the eyes and 
inner ears, and there emerges a cognitive drive to reduce 
any disparities between them. Encouraging observers to 
collect data that only support a single, favoured 
hypothesis could nurture this tendency, with 
observations having the status of predetermined entities; 
Fordham (1980) states how such experimenting 
becomes a chore for participants. This approach can 
only blur the boundaries between empirical evidence 
and explanatory theory, with a further consequence 
being point 3, next. 

3. Causing a shift towards preferring theory over 
evidence 

During practical lessons learners are expected to 
behave as bona fide scientists, fairly acknowledging a 
variety of data that may support or refute a hypothesis. 
However, when pupils are asked to compare evidence to 
theory, disproportionate importance is often allocated 
to theory (Austin et al., 1991; Gunstone and 
Champagne, 1990; Lubben and Millar, 1996), with 
empirical data sometimes being discounted entirely 
(Foulds et al., 1992). The ERO research (Author, 2006) 
provides examples of the favouring of theory in the 
form of preconceptions over experimental results, for 
instance during interviews 8/10 pairs admitted to 
allowing preconceptions to govern data collection or 
inference making. One year 8 (age 13) pupil was asked 
to explain why he had recorded a particular result and 
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offered a theory statement, not referring to his data at 
all, “because we thought that the smaller the rod,…it will 
take in the heat” (Merdeep). If teachers encourage a 
view of the mechanical confirmation of an irrefutable 
right answer this derogates the value of practically 
derived evidence. 

Gilovich (1991, p4) describes how irrational 
believers of ESP routinely ignore evidence that contests 
the phenomenon, “...there is a notable gap in all cases 
between belief and evidence.” The denial of information 
that we do not agree with not only makes us poor 
scientists but unreasonable beings generally, and a 
liberal attitude towards the treatment of evidence lays us 
open to the persuasions of confidence tricksters and the 
embracing of desirable though evidentially unfounded 
pseudoscientific / supernatural matters such as 
astrology, extraterrestrial visitation, extant prehistoric 
creatures, cults, ghosts and crop circles. A recent drive, 
supported by a few academics, to promote creationism 
in the English school science curriculum represents an 
instance of complete negation of scientific evidence in 
favour of preconceived, irrefutable (religious) theory 
(Farrar and Shepherd, 2006). 

4. The creation of serial-EROers 

Allowing pupils to bend the procedural rules and 
selectively sort data so that a right answer may be 
confirmed sends out the wrong messages. If a practical 
activity is carried out, as many are in school science, for 
the purpose of confirming a well-known, established 
theory, having a predetermined outcome is unavoidable; 
when pupils know that only one hypothesis out of 
several alternatives is correct, any data that support 
disfavoured alternatives are bound to be negated, and 
ERO behaviours ensue (Author, 2005). If activities are 
commonly presented in this manner then improper 
behaviours will become part of pupils’ repertoires. 
Rigano and Richie (1995) note teacher admissions of 
their own ERO-driven manipulations, and these 
individuals have probably absorbed the ERO culture 
during exposure to the similar behaviours of their 
science teachers during childhood. 

As well, professional scientists can demonstrate 
improper confirmation bias, revising procedures until 
results that agree with their theory are gained 
(Greenwald, Pratkanis, Lieppe and Baumgardner, 1986); 
similar behaviours are known in the medical and 
psychology professions. Taken to the extreme, such 
EROing by scientists can culminate in serious fraud, 
when the desire for supporting evidence is so strong 
that results are altered or invented, papers published and 
invalid, often spectacular claims declared. 

 

5. The continuation of positivist-related 
epistemological belief into tertiary education 

“Naive epistemological beliefs have long been 
identified as a major impediment to the achievement 
of conceptual change in science education” 
(Theormer and Sodian, 2002). 

Significant numbers of science undergraduates and 
postgraduates have been shown to hold positivist-
related naïve-realist views of the nature of knowledge 
(e.g. Hammer, 1994; Theormer and Sodian, 2002), 
including the belief that scientific knowledge is certain 
and absolute. Such students have difficulties in 
understanding the relationship between theory and 
evidence (see points 2 and 3, above) and fail to 
restructure theory in the light of new, anomalous data, 
potentially and subsequently influencing the quality of 
professional scientists/persons in occupations allied to 
science within the workforce. 

To sum, despite teachers’ common desires for pupils 
to engage in authentic and contemporary constructivist 
scientific thinking, naïve-realist epistemology that is 
implicit in science curricula and reflected in teachers’ 
everyday behaviour during both practical and theory 
lessons guarantee that pupils will too behave as 
positivist right answer chasers. This outcome has 
unwelcome ramifications in two related though distinct 
ways: 

1. Encouraging positivist attitudes during school 
science practical work. 

2. Philosophical inconsistency creating 
epistemological confusion with a tendency 
towards positivism that continues into higher 
education, and perhaps beyond. 

Improving the situation 

It is of no surprise with that content-driven 
curricula, naïve and debunked positivistic approaches to 
science particularly inductivism that reflect realist 
epistemology continue to dominate in science 
classrooms (Hipkins and Barker, 2005), and since a 
teacher’s personal epistemological leanings are probably 
implicit or unconscious any philosophical clash would 
go unnoticed. In any case, teachers who might be aware 
of the mixed messages that they convey to pupils would 
find the inflexibly dichotomous structure of the science 
curriculum forgoes any attempt to align philosophical 
inconsistencies. Despite previous work demonstrating 
the favourable effects of a long term, consistently 
constructivist science programme in changing positivist 
attitudes (Smith, Maclin, Houghton and Hennessey, 
2000), at present, remedies might ultimately be limited 
to merely acknowledging the dualist character of the 
curriculum, continuing to compartmentalise 
philosophical approaches to their corresponding 
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constructivist or positivist activities, and resigning 
ourselves to turning out yet another cohort of 
epistemologically-obsolescent, positivist ‘little scientists’. 
The remainder of this article assumes this stance of 
‘making do’ and suggests ways in which the impairments 
linked to positivistic attitudes in the form of right 
answer chasing might be limited.  

Disquiet in relation to a dualistic science curriculum 
has been reported elsewhere in the literature (e.g. 
Osborne, Ratcliffe, Collins, Millar and Duschl, 2001), 
and currently a re-consideration is appropriate in view 
of the recent inclusion of a How Science Works strand 
into GCSE syllabi that promotes a post-positivist view 
of science, discussed in greater depth later in the article. 

Discouraging the careless disposal of anomalous 
data 

Findings from the ERO study (Author, 2006) show 
that one of the most common evidential misbehaviours 
(38%) was the rejection of data and repeating the 
experiment in a different way. Thoughtless discarding of 
negative data needs to be discouraged in favour of the 
reasoned justification of rejections, for instance on 
grounds of truly invalid method. Pupils need to be 
aware that it is acceptable to ignore their results, but 
only with good reason. Fairbrother and Hackling (1997) 
concur with this approach, and state that when judging 
if an experiment works one should not think about if it 
has delivered the right/wrong answer, but see if it gives 
an answer that can be defended, by checking, as you 
would a well oiled machine, the whole thing fits 
together and runs properly. Gunstone (1991) 
recommends an increased awareness of the biasing 
effects of preconceptions: 

“...use chosen examples of observation and 
subsequent discussion to help students realise the 
effect of their own theories on their observing and 
referring from observing, the importance of 
discriminating between observation and inference, and 
the claims which can validly be made from 
observation. The POE [Predict, Observer, Explain] 
strategy is a powerful approach here because the use 
of predictions with reasons can so readily bring out 
personal theories prior to observing” (ibid., p73). 

Millar (1989) suggests that in order to demonstrate 
to learners the relationship between expectations, data 
and theory, i.e. making observations and their 
subsequent interpretation, half a class should be asked 
to provide empirical evidence to support one theory, 
while the other half be asked to provide evidence about 
a contradictory theory (students are not told that the 
theories oppose each other), and then results presented 
to the class. 

Teaching a greater awareness of the statistical 
uncertainty of data collection 

Fairbrother and Hackling (1997) propose alternatives 
to chasing a commonly known right answer during 
science practicals, stating the hothouse conditions 
related with assessed coursework can only promote 
improper behaviours. They conclude that pupils should 
not be chasing a right answer, and anomalous data 
should not be called wrong, but uncertain, due to the 
inherent randomness of unreliable measurement. If 
pupils view science results as a right/wrong dichotomy, 
erroneous results giving rise to a wrong conclusion are 
viewed as their fault and something to be corrected, 
whereas it may be due to chance fluctuations of the 
system. Citing uncertainty means it will not be seen as 
their error, and being uncertain in drawing conclusions 
may be an alien idea to students, but is scientifically 
acceptable. Gunstone (1991) similarly prescribes a 
greater awareness of the natural statistical uncertainty of 
data collection, which will help learners appreciate that 
sometimes an apparent ‘wrong answer’ is produced and 
further positive observations will reduce the significance 
of these aberrations. However, allowing pupils the 
choice to selectively label and reject anomalous, 
unwanted data might result in an attitude of 
measurements being viewed as judgements and the 
replacing of observations with opinions, a prime ERO-
related behaviour. The authors also value open-ended 
investigations where the right answer is not obvious at 
the outset, thus setting a context for authentic enquiry, 
although expectations would form as the process 
progressed, and the pluralist approach accompanied by 
the reduced teacher-supervision associated with such 
investigations would increase EROs (Author, 2006) and 
possibly misconceptions (Kirschner, 1992). 

Contrastingly, Nott and Smith (1995) conclude that 
espousing at all costs the idea of a positivistic right 
answer is a necessary evil in order to confirm accepted 
scientific views and challenge misconceptions. But such 
a position would only serve to enhance the five ERO-
related problems cited above, albeit pupils would ERO 
in line with the scientific theory. 

Rediscovering discovery 

As long as positivist practical illustrations of 
scientific theory confirmation continue in schools, so 
will pupils’ negations of anomalous data along with 
other ERO-related pursuits. Despite these problems we 
cannot reject wholly this useful approach. Presenting 
practical work as enquiry-based, open investigations 
may not give pupils a textbook right answer to adhere 
to, and there are some data to suggest that ERO 
behaviours would be less (Rigano and Richie, 1995). As 
stated, Fairbrother and Hackling (1997) say 
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investigations place less emphasis on getting the right 
answer and more on the science processes involved in 
getting an answer. Indeed, it appears that with other, 
more closed practical tasks a drive to get the right 
answer, especially when linked to gaining vital marks 
during assessed work, is inevitable. Findings from the 
Author’s ERO study (2006) bring an awareness of the 
advantages of discovery-based practical work as an 
alternative to confirmatory activities where a universally 
known right answer is chased. These constructivist-
provisionalist pseudo-discovery lessons start with only the 
teacher being aware of a little-known right answer and 
learners are invited to uncover this secret by 
experimentation, and involve empirically testing a series 
of given hypotheses. A routine process where a well-
known textbook result is churned out is avoided, and 
although affinity to theory does occur, there is an air of 
insecurity about whether a student’s chosen theory is 
actually the right answer, especially when the concepts 
involve common misconceptions where the scientific 
view is not universally accepted by learners. No marks 
are lost for aligning oneself with the wrong theory, and 
the knowledge of no potential loss of real academic 
status encourages pluralism in the classroom, 
representing a retreat from naïve-realist absolutist views 
of theory. Pseudo-discovery allows a return towards a 
genuine spirit of enquiry for pupils, as did the Nuffield 
‘scientist for a day’ experiments, which pupils find 
engaging despite the fact they have to play a game where 
what they ‘discover’ is known by the teacher, having 
been previously constructed by scientists and given the 
status of a currently acknowledged ‘right answer’. 

Overt encouragement of an authentic view of the 
nature of science 

Recent revisions of the KS4 (14-16 years) science 
curriculum in England re-emphasises the nature of 
science under the umbrella of the How Science Works 
strand (QCA, 2006), with aspects of contemporary 
constructivist scientific methods being mirrored in 
GCSE examination board specifications, including 
pluralism, uncertainty, the statistical variability of data 
and the refutation of pure, unbiased, inductive 
observation. Perusing the specifications of one board as 
an exemplar (AQA, 2006), one finds statements that 
clearly imply a post-positivist view of science. 

“We are still finding out about things and 
developing our scientific knowledge. There are some 
questions that we cannot answer, maybe because we 
do not have enough reliable and valid evidence. For 
example, it is generally accepted that the extra carbon 
dioxide in the air (from burning fossil fuels) is linked 
to global warming, but some scientists think there is 
not sufficient evidence and that there are other factors 
involved” (ibid., p31). 

These measures represent a step in the right 
direction and should have some influence on how 
practical work is delivered by addressing and reducing a 
number of ERO behaviours, and conceivably moving 
both pupils and teachers away from familiar naïve 
realism. That said, despite this new promotion of a post-
positivist science, the presentation of substantive 
content as set out in the same document (ibid.) remains 
both linguistically and notionally a secure positivistic 
canon of right answers to be transmitted by teachers 
and digested by pupils,  

“A body of content has been identified which 
underpins the knowledge and understanding of How 
Science Works at all levels” (ibid., p12)…[An aim of 
the course is for pupils to] acquire and apply skills, 
knowledge and understanding…”  (p16). 

No matter how far post-positivistic influences 
permeate into the teaching of science content it seems 
unlikely that a view of the necessary status of absolute 
right answers will be replaced, with the familiar mixed 
epistemological messages being repeated by the new 
generation of syllabus writers. The desire to integrate 
How Science Works with substantive content is repeatedly 
stated throughout the AQA specifications, though the 
real extent to which teachers will present scientific facts 
as tentative entities to pupils remains to be seen – in all 
likelihood such an untried approach will be largely 
rejected, initially at least, in favour of the usefulness of 
the familiar transmission methods that have been shown 
to be successful in getting pupils through examinations.  

The partial promotion of post-positivism in How 
Science Works is opposed by external cultural factors that 
are likely to play a significant role, as a predominant 
naïve-realist epistemology is reflected in the common 
media presentation of a positivistic interplay between 
scientific theory and evidence. Taking the example cited 
above, the tentative hypothesis of greenhouse gas build-
up triggering global warming is currently offered by 
prime-time TV news programme makers as an absolute, 
with dissenters of the theory ridiculed as being irrational 
or having hidden agendas.  

Although not expressed explicitly, it may have been 
the intention of the GCSE specification authors for all 
substantive content to be presented pluralistically as a 
tentative set of theories/facts to which valid alternatives 
exist. The delivery of such an authentic view of the 
nature of science to pupils was expounded by a sample 
of practising scientists during Osborne et al.’s (2001) 
survey, one of who cited provisionalism as ‘ “a very 
important concept” (So5)’ (p59); also, that science does 
not currently hold all the answers was seen as 
motivating for pupils considering a scientific career. 
However, a minority held reservations about making 
known to pupils the view of theoretical tentativeness, as 
specialist knowledge was required to appreciate that 
there might be doubt about scientific theories. This 
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rings true, as since good reasoning faculties are probably 
required to assimilate the authentic though pluralistic 
sections of How Science Works, these ideas could be lost 
on the less able, which would only swell the ranks of 
disenchanted teenagers who find science ‘too difficult’. 
As argued earlier in the current article, offering science 
concepts as provisional entities may induce free choice 
when considering alternatives to long-established 
scientific hypotheses, leading to a simplistic, relativistic, 
radical-constructivist view of science as solipsism, and 
potentially result in for instance our pupils becoming 
fervent flat-earthers. The current attacks on evolution 
theory by proponents of Intelligent Design attempt to 
extend pluralism towards a relativistic extreme where all 
points of view have equal weighting, and pupils holding 
underdeveloped models of a solipsist nature of science 
would be susceptible to these arguments.   

In response to a statement presented by Osborne et 
al. (2001) which reflected an epistemologically dualist 
curriculum, one scientist echoed the dilemma expressed 
in the current article. 

“ ‘At one level [the statement] requires the child not 
to question school science; at another to view 
‘frontier’ science as not beyond question. Where does 
the boundary lie between those two types of science?” 
(PS05)’ (ibid., p60). 

Despite these difficulties, the promotion of an 
authentic post-positivist approach to science seems the 
most efficacious way to resolve the current 
epistemological clash, with the ideal being all pupils 
assimilate a sophisticated view of science that reflects 
contemporary constructivist philosophy. It has been 
realised for some time that historical illustrations of 
interplay between theory and evidence might help pupils 
construct appropriate views of pluralistic science (Fisher 
and Lipson, 1986), having been integrated for a number 
of years into an Ideas and Evidence strand in the science 
KS3 (ages 11—14) curriculum – the acceptance of a 
conventional pluralistic view would help bolster the 
defences against pseudo-scientific attacks such as those 
from adherents of Intelligent Design – paradoxically, 
the successful teaching of pluralism would counter the 
problems of potential solipsism noted previously that 
are associated with exposing pupils to post-positivistic 
science. Further research is necessary to determine the 
comparable effects of exposure to a curriculum based 
on a constructivist-realist epistemology, particularly with 
respect to performance in examinations that test 
learning of a substantive canon of right answers. 

SUMMARY 

Current curricula may present a confused view of the 
nature of science to pupils. On the one hand, theories 
are viewed as absolute truths to be learned as an 
examinable canon of facts; on the other, practical 

activities may be carried out in a spirit of genuine 
enquiry, where pupils collect data and judge hypotheses 
pluralistically towards an unknown end point. These 
two approaches are epistemologically conflicting, 
instilling a sense within pupils of the ‘difficulty’ of 
science.  

Pupils adopt a positivist epistemological position 
when conducting many science practical activities, 
chasing an irrefutable right answer, and scientifically 
acceptable theories need to be viewed as sacrosanct in 
the school laboratory with the aim of many activities 
being the confirmation of these. However, pupil 
knowledge of a right answer leads to ERO behaviours 
in order to produce that answer, and may have further, 
cognitive repercussions; despite this some authors 
recommend data manipulations that ensure the right 
answer is inferred.  

There are some ways in which to limit the problems 
relating to epistemological clash and positivistic 
experimenting. Discouragement of a neglectful rejection 
of anomalous data and reinforcing the uncertainty of the 
statistical nature of data collection should reduce ERO 
behaviours. Presenting practical work as a pseudo-
discovery task, where only the teacher is initially aware 
of the right answer may be an appropriate compromise 
due to utilisation of positivistic right answer 
endorsement, but presentation to participants as a 
provisionalist task. The most holistic and effective 
approach would involve pupil assimilation of a fully 
integrated, authentic post-positivist view of the nature 
of science; however, currently this seems beyond the 
capability of science education. 
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Laboratory work is one of the main forms of teaching used in chemistry, physics, biology 
and medicine.  For many years researchers and teachers have argued in favor or against 
this form of education.  Student opinion could be a valuable tool for teachers to 
demonstrate the validity of such expensive and work intensive forms of education as 
laboratory work.  However, due to concerns regarding overly positive replies and a strong 
personal bias in opinions regarding various courses, teachers and technicians, student 
opinion has largely been discounted so far.  A set of markers based on the strategic aims 
of Victoria University of Wellington, New Zealand, have been selected and used to collect 
student opinion.  The markers appear to be independent and present a more objective 
view of the value of student opinion regarding laboratory education.  In contrast, direct 
questions showed exactly the positive bias criticized by researchers and academics.  The 
markers based on strategic aims revealed that laboratories are valued but that certain areas 
of this form of education require improvement.  The trends collected by use of the 
markers were line with replies to free-form questions and could therefore present a valid 
option for researchers to evaluate the effectiveness of various forms of education based 
on the opinions of the people most concerned, the students. 
 
Laboratory education; Strategic Aims, Students’ Opinions, Survey Validity 
 
INTRODUCTION 

Laboratory work is one of the main forms of 
teaching used in chemistry, physics, biology and 
medicine.  Studies carried out in the seventies and 
eighties showed that students did not enjoy laboratory 
work (Beard and Hartley, 1984; Bliss and Ogborn, 1977, 
Boud, Dunn, & Hegarty, 1986; Hegarty, 1984), which 
came as no surprise looking at the effort (workload, 
commitment) and risks (chemical burns, poisoning) 
associated with it (chemical burns, poisoning etc.).  
Since then safety technology has been improved to a 
point where laboratory work is safe and in principle, 
enjoyable.  But the technology improving laboratory 
conditions brought a significant increase in costs and 

effort to equip and maintain practical work areas, raising 
financial questions regarding their necessity and 
viability.  New Zealand’s tertiary education budget is 
above average for Organization for Economic Co-
operation and Development (OECD) countries with 
1.7% compared to 1.4% of the Gross Domestic Product 
(GDP) (examples:  Ireland 1.3%, Finland and Sweden 
1.7% and Australia 1.5%) to address continuing skills 
shortages (LaRocque, 2007).  The GDP of New 
Zealand is approximately three quarters of that of other 
OECD countries (for example Finland and Ireland) 
meaning that the actual amount of funding available for 
tertiary education is comparatively low.  Furthermore, 
the market-driven nature of New Zealand universities 
and educational institutions places limitations on the 
willingness of financers and managers to approve 
comparatively costly forms of education (Kelsey, 1998).  

Doubts about education in laboratory environments 
are not limited to managers and financiers; teachers, 
lecturers and students have discovered new 
technologies, which can be applied in teaching at a 
fraction of the costs and effort of laboratory education 
(Bodner, 2001; Grosso, 1995; Walton, 2002; Willet, 
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2006).  The discussion about laboratories and other 
educational techniques is very opinionated, with many 
scientists arguing heatedly either in favour (Blosser, 
1990; Bond–Robinson, 2005; DeMeo, 2001; DiBase and 
Wagner, 2001; Hofstein, 2004; Johnstone and Al-
Shuaili, 2001; Kampourakis and Tsaparlis, 2003; Lloyd, 
1992; Stanholtzner, 2002; Stanholtzner, 2003) or against 
(Balla, 1990; Hawkes, 2004) laboratory education.  
Recently, the online journal Chemistry Education 
Research and Practice (2007) dedicated a special issue to 
articles about “Experiments and the Laboratory in 
Chemistry Education”.  Several articles in this edition of 
the journal discuss the history, development and current 
standard in laboratory education.   

One question is often ignored in this context: What 
do students think about laboratory education?  In 2006 
John Steven Polles wrote a PhD thesis investigating the 
student perspective on chemistry teaching laboratories.  
Polles (2006) found that students’ experiences were 
strongly dependent on their learning environment and 
the stance of their teachers, lecturers, demonstrators and 
technicians.  This dependence raises questions regarding 
the validity of assessing student opinion.  Many 
academics feel that students tend to give overly positive 
replies that do not reflect their true opinions regarding 
different forms of education, if asked directly.  
However, if independent and indirect instead of direct 
questions are used, where, for example, students 
comment on the realization of certain aims and goals 
instead of commenting on the matter in question 
directly, a more objective and useful opinion poll might 
be collected.  A comparison of the direct and indirect 
method of questioning, for example in a survey, should 
show a difference in the distribution of opinions 
depending on the method of questioning.  It is 
postulated that asking students about the realization of 
aims and goals in a course should yield a wider spread of 
replies overall and clear differences in the opinions 
regarding various goals and markers.  This is in contrast 
to direct questioning, which yields positive but dubious 
results as expressed in a lack of spread between replies 
to different questions.  Therefore, the validity of an 
indirect approach for collecting students’ opinions can 
be shown by an investigation of the statistical 
distribution of replies.  Should the distribution yield a 
believable spread and prove questions to be 
independent, students’ opinions might be considered 
more valuable and useful in deciding on the quality and 
usefulness of different forms of chemistry education. 

Case Study - An Investigation of Students’ 
Opinions Regarding Chemistry Laboratory 
Education 

As a case study an investigation of students’ opinions 
regarding chemistry laboratory education was chosen.  

The reasons for this choice were the familiarity of the 
investigator with the subject area and the clarity of the 
aims and goals formulated.  Based on statements from 
the strategic plan of Victoria University of Wellington, 
New Zealand, and conversations with the Dean of 
Science, with lecturers in chemistry and the Head of the 
School of Chemical and Physical Sciences a list of the 
seven most important joint strategic goals for the 
University and the School was collated.  The goals are 
directly linked to generic, course-independent attributes, 
which a chemistry student at Victoria University should 
have or attain during study.  The list was limited to 
seven items based on the weighting attributed to the 
individual goals in the discussions.  Between the selected 
seven items and other items not included in this study a 
perceivable step in weighting was noticed.  According to 
University and School guidelines the goals assessed in 
this study should be realized in the teaching curriculum, 
for examples in the university calendar, course outlines 
and reports.  

The seven attributes thought to be the seven most 
important (in no particular order) are: 

i. Confidence 
ii. Interest 
iii. Linking theory with observation 
iv. Critical thinking 
v. Scientific methods like analysis, observation and 
 the deduction of results based on observations 
vi. Leadership skills 
vii. Practical skills 
A questionnaire was formulated and distributed in 

chemistry lectures and laboratories of all levels in the 
last week of the second trimester in 2006.  Ethical 
standards were strictly obeyed in the collection and 
handling of the questionnaire, a copy of which is 
available as appendix.  Early in the planning of the 
presented study the need for strict limits was noticed.  
These limits were set in order to minimize disruptions 
to the students’ curriculum and were realized by 
focusing on seven strategic goals perceived as most 
important by the University and School (listed above).  
Furthermore, the study was limited in terms of the data 
collection method applied – meaning that the only 
method of collecting data used in this study was a 
questionnaire.  A small follow-up study was carried out 
mid 2007 to elucidate the effect of level on the results 
obtained.  Further follow-up studies should investigate 
the same set of goals using other techniques, for 
example interviews of focus groups, to ensure the 
validity of the results presented here. 

The questionnaire was structured into four blocks, 
the first being used to accumulate demographic 
information about the students participating (enrolment 
in lectures, enrolment in laboratory courses, number of 
laboratory courses participated in, involvement in 
research projects, gender, origin, and status – 1st Year, 
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2nd Year etc.).  The second block contained four direct 
questions regarding the general value of laboratory 
education, (1) evaluating how laboratories contribute to 
the general understanding of chemistry, (2) the 
understanding of key concepts, (3) the value of practical 
education in respect to time and effort spent and (4) the 
achievements and progress in chemistry.  The third 
block (the indirect part) asked how far the strategic aims 
listed above are realized in Victoria University chemistry 
laboratory courses.  The last block contained four free-
form questions, asking for feedback on the positive and 
negative aspects of laboratory education, suggestions for 
improvements and general comments. 

Answers to the questions were categorical to avoid 
confusion, with five categories given – the positive 
always being on the left and the negative always being 
on the right hand side (see appendix).  Students were 
told that they could choose two categories to express 
that their answer lies between the categories given.  This 
means that a total of nine categorical answers were 
possible for each question.  For the evaluation of the 
student’s answers, the five main categories and four 
intermediates were translated into a 9-point scale of 
numbers, ‘5’ standing for most positive and ‘1’ for most 
negative possible.  The step width was 0.5 (meaning 
answers could have the following values: 5.0, 4.5, 4.0, 
3.5, 3.0, 2.5, 2.0, 1.5, 1.0).  After compilation of 
statistical data (calculation of means, errors, chi-tests 
etc.) and construction of box plots the numbers were 

transformed back into categories for interpretation of 
the results calculated. 

Return Rate 

One of the issues facing any study is that of return 
rate: Is the sample group participating in a study 
representative of the student population?  In this study 
it was decided to choose all enrolled chemistry students 
as population.  As no sampling was undertaken the 
study should be representative of the opinions of all 
chemistry students at Victoria University.  It was further 
decided to carry out a survey close to the end of a 
trimester.  This choice of time means that students are 
pre-occupied with exams, assignments and presentations 
and attendance levels and response rates to 
questionnaires can be low.  This is offset by the higher 
level of experience the students have accumulated.  As 
experience of laboratory teaching is important for the 
purposes of this study, a lower response rate was 
accepted as a risk.  As expected attendance levels had 
dropped (Table 1).  However, even an attendance of 
77.8%, as on the 100-level (1st year students), is 
respectable.  Therefore, a return rate of 72.8% means 
that 56.6% of all 100-level students enrolled in 
chemistry participated in this study, which means that it 
can be considered representative.  The values for 200-
level (2nd year students) and 300-level (3rd year 
students) are even better, 86.1% and 75.0% respectively.  
This means that a total of 65.6% of all undergraduate 

 Table 1.  Return rate 

Level Students 
Enrolled, No. 

Questionnaires 
Distributed, No. 
(Percentage) 

Questionnaires 
Returned, No. 
(Percentage) 

Return Rate - Returned 
Questionnaires/Enrolled 
Students (Percentage) 

100 189 147 (77.8%) 107 (72.8%) 0.566 (56.6%) 
200 72 67 (93.1%) 62 (92.5%) 0.861 (86.1%) 
300 24 22 (91.7%) 18 (81.8%) 0.750 (75.0%) 
All 285 236 (82.8%) 187 (79.2%) 0.656 (65.6%) 

 

Table 2.  Statistics from direct questions asked regarding the value of laboratory education 

 General 
Understanding 

Understanding Key 
Concepts 

Time and Effort Achievements  
and Progress 

Median 3.7123 3.5189 3.4764 3.4811 
Mean 4.0000 3.5000 3.2500 4.0000 
Std Dev 1.0023 0.8421 0.9471 0.9282 
Std Err 0.0973 0.0818 0.0920 0.0902 
95% Conf 0.1930 0.1622 0.1824 0.1788 
90% Conf 0.2554 0.2146 0.2414 0.2365 
Size 106 106 106 106 
Total 393.5 373 368.5 369 
Min 1.0 1.0 1.0 1.0 
Max 5.0 5.0 5.0 5.0 
Min Pos 1.0 1.0 1.0 1.0 
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students enrolled in chemistry at Victoria University 
participated in this study.  It is possible but not expected 
that the opinions of these students differ significantly 
from the opinions of all chemistry students. 

Comparison of Results – Direct Questions 
versus Indirect Indicators (Strategic Aims) 

Looking at the replies for the first year students, the 
distribution of medians for the direct questions 
regarding the value of laboratory education is 3.55 ± 
0.09.  This spread of results is well within the standard 
error of each of the four individual results (Table 2).  
The consistency of replies raises serious doubts 
regarding their value.  It is quite possible that the 
positive aspect of the replies is overstated and approval 

for laboratory education solely based on these results 
would be over-estimated.  A graphical interpretation of 
the spread of results between the different questions can 
be found in Figure 1.  The size of the spheres is 
equivalent to the number of replies. Table 3a and b 
show that the distribution of medians for the indirect 
questions regarding the realization of strategic aims in 
laboratory education is far less uniform.  The average of 
the medians shows a far larger spread with a value of 3.4 
± 0.5.  The standard errors for the individual strategic 
aims are of the same order and magnitude as those for 
the direct questions.  This indicates that the results in 
themselves for the indirect questions are as consistent as 
the direct questions, but the spread of the means is five 
times as large compared to the standard errors, 
indicating that the variables assessed are independent 

 Table 3a.  Realization of strategic aims in laboratory education; Part 1 

 Confidence Interest Linking Theory with Observation 
Median 3.4764 3.4387 3.5896 
Mean 4.0000 4.0000 4.0000 
Std Dev 0.9370 1.0904 0.9631 
Std Err 0.0910 0.1059 0.0935 
95% Conf 0.1805 0.2100 0.1855 
90% Conf 0.2388 0.2779 0.2454 
Size 106 106 106 
Total 368.5 364.5 380.5 
Min 1.0 1.0 1.0 
Max 5.0 5.0 5.0 
Min Pos 1.0 1.0 1.0 

 

 Table 3b.  Realization of strategic aims in laboratory education; Part 2 

 Critical Thinking Scientific Method Leadership Practical Skills 
Median 3.1132 3.8113 2.2311 3.9292 
Mean 3.0000 4.0000 2.0000 4.0000 
Std Dev 0.8654 0.8178 0.9836 0.8603 
Std Err 0.0841 0.0794 0.0955 0.0836 
95% Conf 0.1667 0.1575 0.1894 0.1657 
90% Conf 0.2205 0.2084 0.2507 0.2192 
Size 106 106 106 106 
Total 330 404 236.5 416.5 
Min 1.0 1.0 1.0 1.0 
Max 5.0 5.0 5.0 5.0 
Min Pos 1.0 1.0 1.0 1.0 

 
  Table 4. Comparison of average medians, spread of medians and maximum standard error for years 1-3 

Year 1st  2nd  3rd  
Questions Direct Indirect Direct Indirect Direct Indirect 
Average Median 3.55 3.36 3.74 3.61 4.18 3.95 
Spread of Median ± 0.09 ± 0.52 ± 0.12 ± 0.51 ± 0.23 ± 0.49 
Max Std Err 0.10 0.11 0.12 0.13 0.22 0.25 
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and probably closer related to the real opinions of the 
students.  The question regarding leadership even 
yielded a response slightly below medium.  A graphical 
representation of the spread of results between the 
different strategic aims is shown in Figure 2.  The size 
of the spheres is equivalent to the number of replies. 

Results for years 2 and 3 show similar statistics but 
as the sample size decreases the standard errors increase, 
while the spread of results remains similar.  A 
comparison distinguishing between direct and indirect 
questions of the standard errors (maxima only), average 
medians and their spread for the years 1 to 3 is 
presented in Table 4.  In principle the postulation 
appears to be true that using indirect questions gives a 
wider spread of results than the more direct approach.  
It appears that the results from the direct questions 

indeed over-estimated the positive nature of students’ 
opinions and were of limited usefulness to assess the 
value of laboratory education.  In return this indicates 
that the indirect method has some degree of validity and 
that the strategic aims chosen, as indicators are useful 
assessment tools. 

Interpretation of Results from the Direct 
Questions Regarding the Value of Laboratory 
Education 

In general the attitude towards laboratory education 
is positive.  The medians for all answers are in the range 
between average and positive (Table 2).  The 
interquartile range as calculated from the probability 
density function is nearly always within one main 

 
Figure 1.  A bubble plot showing the distribution of answers to the direct questions regarding the value 
of laboratory education 

 

 
Figure 2.  A bubble plot showing the distribution of answers to the indirect questions regarding the 
realization of strategic aims in laboratory education 
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category; the only exception is the question regarding 
the contribution of laboratories to the general 
understanding of chemistry.  All observations are within 
two to three main categories, meaning that the opinions 
are very consistent for all students participating.  While 
answers were received in all five main and four 
intermediate categories, the most negative opinions 
were only present as outliers, meaning that answers in 
them are located more than one main and one 
intermediate category outside of the interquartile range.  
Less than 1% of all students have a negative or very 
negative opinion about laboratory education. 

This is illustrated in Figure 3, a box plot created 
according to guidelines by Tukey and Iglewicz (1989).  
In light of the study carried out by Polles (2006), this 

could mean that the learning environment in the 
laboratories was supportive and positive, credit to the 
chemistry staff of Victoria University.  However, as the 
statistical analysis of the results indicates that results 
might be overly positive, care must be taken in the 
interpretation of these findings.  As before the plot in 
Figure 3 was constructed from the surveys collected 
from 1st year students as the larger numbers gave an 
adequate frequency of responses (Figure 4).  While the 
margin of error increased, the distributions for 2nd year 
and 3rd year students compared to 1st year and for 
students from all years, the histograms appear to follow 
approximately the same shape, which indicates that 
results are valid and can be used for modelling replies 
and constructing box plots.   

 
Figure 3.  Box plot showing the spread of opinions of 1st year students regarding laboratory education 
assessed by direct questions 

 

 
Figure 4.  Histogram showing the frequency of replies in each approval category:  
1 = very low, 2 = low, 3 = average, 4 = high, 5 = very high 



Laboratory Education 

© 2008 EURASIA, Eurasia J. Math. Sci. & Tech. Ed., 4(4), 327-335 333 
 
 

Opinions Regarding the Realization of Strategic 
Aim 

Results in terms of the strategic aims are more 
diverse (Figure 5).  Aims in regards to confidence, 
interest, linking theory with observation, and scientific 
method have been achieved well, with replies being 
between neutral and positive.  Critical thinking is not 
realized as well, with opinions tending more towards a 
neutral position.  It is likely that due to a relatively 
narrow knowledge, undergraduate students have not yet 
had sufficient opportunity to train themselves in the 
evaluation and discussion of concepts.  Pending findings 
among the postgraduate students, this might be an issue 
that should be discussed amongst and remedied by the 
academic staff and students.  Leadership was the only 
strategic aim not fully realized in chemistry laboratories.  
The undergraduate laboratories leave little room for the 

students to take leadership roles.  Owing to safety 
considerations, instructions, guidelines and requirements 
are precise and strict, especially for 100-level students, 
allowing little room for taking leading roles.  Only on 
300-level do students start to embark on self-guided 
independent research.  Whether this independence is 
reflected in their tendency towards this strategic aim will 
be discussed below.  One other strategic aim is 
prominent – practical skills, which due to the nature of 
laboratory courses is not surprising.  Opinions regarding 
the acquisition of these skills are positive to very 
positive with the median lying above the positive 
category. 

Several researchers have investigated the relation 
between laboratory work, lectures and other teaching 
techniques (Bodner, 2001; Grosso, 1995; Walton, 2002; 
Willet, 2006).  DiBase (2002) and Polles (2006) both 
came to the conclusion that a good alignment between 

 
Figure 5.  Box plot showing the spread of opinions of 1st year students regarding laboratory education 
assessed by indirect questions.  Students were asked to judge the degree at which strategic aims were 
realised in laboratory education 
 

 
Figure 6.  Box plot showing the spread of opinions of 3rd year students regarding laboratory education 
assessed by indirect questions 
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the different forms of teaching needs to be achieved for 
maximum effectiveness.  DiBase (2002) and Deters 
(2005) have both suggested strategies for how this may 
be achieved.  The effectiveness of the link between the 
different teaching techniques, lectures and laboratories, 
at Victoria University was documented in the 
corresponding question (see Figure 5. Linking theory 
and observation) and in the free-form part of the 
questionnaires, where 31.3% of the students stated that 
laboratories helped them understand concepts and how 
they relate to observations and findings, something 
which is difficult to achieve, if the students are only 
presented with data and do not carry out the 
experiments.  Further positive points mentioned by 
approximately a quarter of the students were visual 
learning (22.9%) and the acquisition of practical skills 
(27.7%).  Negative remarks – only comments about the 
high workload and time required were stated by a 
significant amount of students (28.2%).  Only 33.2% of 
all participating students used the free-form questions. 

The raw data has been submitted to Chi-square tests 
to see if group (other than level) specific trends would 
be noticeable by correlation of the replies to the 
questions with demographic data also collected in the 
questionnaire.  The result was overwhelmingly negative, 
with the error in the Chi-square test being unacceptably 
high (22%), which means that no statistical significance 
for differences between any of the demographical 
groups has been observed. 

While the spread of results includes negative as well 
as positive opinions, the overall trend is quite positive, 
with students’ opinions being quite favourable towards 
laboratory education. 

The Development of Opinion through the 
Levels 

Student opinions, regarding the alignment of 
laboratory education and strategic aims, improve as 
students advance through the levels.  While there is a 
noticeable improvement in opinion between 100-level 
and 200-level, the opinions expressed by 300-level 
students are very positive (Figure 6).  Victoria University 
has a policy of research-led teaching in line with good 
teaching practice as formulated by Vallarino, Polo, & 
Esperdy (2001).  At 300-level the students become 
involved in independent three-week research projects.  
Nearly all opinions are in the range between positive 
and very positive.  Only the opinions regarding the 
realization of critical thinking and leadership in 
laboratory education are still lower than the rest, but 
even they are significantly improved, with critical 
thinking tending towards a positive rating and the 
opinions regarding leadership being expressed relatively 
evenly around the neutral mark.   

Seeing the improvement in opinions as the students 
advance through the levels, one question remains: Did 
student opinion improve or did the students with 
negative and neutral opinions move to other subject 
areas?  This question was answered in a short follow-up 
study that showed that over 95% of the students’ 
opinions improved as they progressed through the 
levels. The follow-up study included students moving to 
other subject areas; of the seventy-two 200-level 
students surveyed initially 52 (72.2%) were included and 
replied to the follow-up study. Of these 52 students 38 
were still pursuing a chemistry degree at Victoria 
University. The students commented that this 
improvement in opinion is due to better linkages 
between lectures and laboratories at 300-level than at 
the lower levels. 

CONCLUSION 

The presented study yielded two results.  First, 
responses from asking students directly to assess the 
value of laboratory education were compared to 
questions where students assessed the realisation of 
strategic aims in Victoria University of Wellington 
laboratory courses.  It was shown that the direct 
questions over-estimate the approval of students for the 
form of education they are undergoing.  The strategic 
aims appeared to act as independent indicators giving a 
far more realistic picture of student opinion.  The 
second result from this study is the finding that even the 
indirect questions yielded a positive result.  Students 
appear to value laboratory education highly and as they 
progress through the levels and the linkages between 
lecture and laboratory materials increases the 
appreciation of students for laboratory education grows 
as well.  Several strategic aims, especially those regarding 
confidence, interest, linking theory with observation, 
scientific method and practical skills have been achieved 
quite well, with replies ranging between neutral and 
positive.  Critical thinking and leadership are not 
realised well and laboratory personnel and academics 
should consider how to improve laboratory education in 
this regard.  Lectures and other forms of teaching and 
learning usually achieve better results in regards to 
critical thinking, but fall short in terms of inspiring 
confidence, interest, and linking theory with 
observation. In light of the achievements of laboratory 
education, and the way it compliments other forms of 
education, it remains important to keep it despite the 
(sometimes) high costs involved.  Student opinion 
certainly appears to places a value on it, and teachers 
and academics are wise to consider the opinions of their 
students. 
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This study investigates the role of graphing calculators in multiple representations for 
knowledge transfer and the omission of oversimplification in complex function graphs. 
The main aim is to examine whether graphing calculators were used efficiently to see 
different cases and multiple perspectives among complex function graphs, or whether 
graphing calculators were used only as a mechanical tool to push buttons and execute 
memorized steps. Twenty individuals chosen from seven college calculus I classes (148 
students) participated in this study. A survey was administered to students in order to find 
their attitudes and prior use of using graphing calculators. Data was gathered from the 
video-taped interviews with students to determine how the graphing calculator was used in 
the tasks and to get a deeper understanding of college students’ engagement process with 
graphing calculators. The results indicated that experience with the graphing calculator was 
important factor in solving the tasks with the graphing calculator, while attitude seemed to 
have no effect on task solving steps. Results clearly show that in order to use the graphing 
calculator in complex function graphs to implement the multiple representations of 
knowledge, the students need to know characteristics of features on the graphing 
calculator. They have to have some use of skills and good experience on the machine, not 
just skills of thinking and skills of knowing the concept.  
  
Keywords: Complex, Function, Graph, Attitude, Experience, Calculator. 
 
THE EFFECT OF USING GRAPHING 
CALCULATORS IN COMPLEX FUNCTION 
GRAPHS 

The use of graphing calculators is becoming 
common in mathematics classes. However, little is 
known about why and how graphing calculators make a 
difference in mathematical understanding. There are 
two reasons for that. First, much of the initial research 
on graphing calculators only compared the achievement 
and attitudes of different student groups using graphing 
calculators and traditional instruction (non-calculator 
groups). Secondly, research generally looked at students’ 

basic mathematical ability with very minimal graphing 
calculator utilization. What is missing from research on 
the use of graphing calculators is important information 
about the role the graphing calculators play in the class 
environment. The students’ flexibility on understanding 
of graphical concepts was mostly ignored.  

Hennessy et al. (2001) showed both that graphing 
calculators can be used mechanically, and 
manual/paper-pencil work to show the steps of drawing 
the graphs on the paper is essential for students to 
develop concepts and skills in a difficult curriculum 
area. In their survey results, it seemed clear that despite 
positive immediate feedback, rapid and easy plotting, 
and visualization with graphing calculators, most 
students struggled with understanding mathematical 
concepts. This indicated to authors that some manual 
(paper-pencil) work and tutor help was needed.  
Graphing calculators saved both time and space, but 
Hennessy et al. (2001) concluded that both graphing 
activities and examinations need some kind of 
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conceptual understanding rather than the sole use of 
graphing calculators.  

Graphing calculators give students automatically 
produced graphs. By using real data, students can get 
immediate feedback from the graphing calculators, 
compare and contrast different graphical representations 
simultaneously. In this way, with immediate input and 
output, students can improve their own explorations by 
using the features of graphing calculators. However, it is 
also possible that graphing calculators might cause 
automatized procedures (key pressing steps or 
memorizing to push buttons) rather than enhance 
students’ understanding of complex graphical concepts. 
Automatized procedures might affect students’ 
understanding of graphical concepts. Using graphing 
calculators might cause students to memorize key 
stroking steps (and only produce answers) for graphical 
tasks, without understanding the drawing steps of 
graphs.  

Some researchers expressed their concern about the 
use of graphing calculators as a mechanical process (e.g., 
memorization of key pressing steps). They stated that 
this process might lead students to avoid the process of 
drawing a graph and turn their attention to only the 
graph itself (Yerushalmy & Schwarts, 1993; Hennessy et 
al., 2001). Even with the easy plotting with graphing 
calculators, students may not get beneficial ideas from 
the multiple representations of functions. Doerr & 
Zangor (2000) found that students saw graphing 
calculators as a “black box” and they only used it as a 
private tool. In their study, as a private tool, students 
showed frequent failure to join group discussions while 
using graphing calculators. Moreover, students did not 
show a meaningful strategy for the use of the graphing 
calculators. They failed to produce meaningful 
interpretations of the task situation with the graphing 
calculator. 

 Kwon (2002) focused on students’ graphing ability 
in terms of interpreting, modeling, and transforming, 
and indicated that calculator-based range activities 
enhanced students’ ability to understand graphs. 
Actually, these three components (interpreting, 
modeling, transforming) were based on Leinhardt et al.’s 
(1990) action-task classification of graphing and 
functions. In this classification, there are two 
components (interpretation and construction of the 
graph) in action and four components (prediction, 
classification, translation, and scaling of graph) in tasks. 
When graphing calculators are used, scaling and 
construction processes (and partially translation) are 
totally lost. However, interpretation, classification, and 
prediction have the potential to be improved efficiently 
when using the features of graphing calculators for 
complex graphs. Literature does not say explicitly 
whether using graphing calculators cause students to 
lose some of these components. Especially, when the 

graphs become complex, we do not know how much 
graphing calculators can make positive contribution to 
students’ graphical understanding.  

Spiro et al. (1991), in their cognitive flexibility theory, 
gives considerable attention to complex domains in the 
learning process. They suggest that learners integrate 
different aspects of the knowledge to increase 
transferability to different learning contexts in order to 
create new representations. However, one would 
appreciate how it is difficult to make these 
transformations in the reasonable class time. It is not 
very clear whether using different cases and examples 
(with graphing calculators) in their full complexity 
facilitate learning in complex function graphs. Someone 
would expect that students will be able to classify, 
translate and interpret the complex function graphs 
flexibly. Since some studies argue that the graphing 
calculator can be used mechanically, it is important to 
see how this mechanic procedure occurs in students’ use 
of the graphing calculator. Seemingly, using the 
graphing calculator might help student to see and 
master categorization of graphing tasks and affect their 
understanding in the process of constructing graphs, 
when the graphical tasks become complex. 

There is some research on how students use 
graphing calculators and what kind of patterns/modes 
emerge (e.g., as a tool for exploratory or confirmation 
tool, and /or for graphical representation or numerical 
representation) on complex functions that have not 
been always examined.  Hennessy et al. (2001) identified 
three roles of graphing calculators: a catalytic role, a 
facilitating role, and a checking role. However, Doerr & 
Zangor’s (2000) description was more detailed. Through 
their analysis of the data, they identified five categories 
of patterns and modes of calculator use: computational 
tool, transformational tool, data collection and analysis 
tool, visualizing tool and checking tool. Similarly, Kwon 
(2002) highlighted three patterns: interpreting, 
modeling, transforming. From a different perspective, 
Choi-Koh (1999), in his case study with one student, 
used Bloom’s taxonomy for cognitive domain in the use 
of graphing calculators. He identified six patterns while 
the student was working on graphing calculators: 
evaluation, synthesis, analysis, application, 
comprehension, and knowledge of terminology. 

It can be hypothesized that graphing calculators, by 
using supporting material, are suitable to understanding 
and solving complex function graphs and helping 
students use different representations. Graphing 
calculators can provide opportunities to solve complex 
function graphs and by helping students explore 
functions and their graphs in more than one way. Heid 
(1988) pointed out that in calculus courses, students are 
mostly assigned very traditional and straightforward 
functions to graph such as y= 2x²+5x+2 or y=2x²-5x-3. 
Without technology, these equations also require 
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considerable time to draw the graphs. Demana, Schoen, 
&Waits (1993) argue that limiting ourselves to 
traditional function graphs seriously restricts students 
from functions that they can manipulate. Students 
mostly solve linear and quadratic functions in both 
traditional high school curricula and college calculus 
classes. However, as Tall (1997) pointed out, traditional 
calculus curriculum includes mastery of symbolic 
methods for differentiation and integration and applying 
these to work with a range of functions. This position 
makes it necessary to approach calculus in different 
ways, with a consequent variety of curricula. Moreover, 
calculus includes a broad range of functional forms that 
college calculus classes do not cover as much.  

Moschkovih, Schoenfeld & Arcavi (1993) argue that 
there are at least two ways to approach solving calculus 
tasks (analytic solutions and graphical solutions). The 
situation becomes more challenging when considering 
more advanced functions. Additionally, Romberg, 
Carpenter & Fennema (1993) argued that the creation of 
most graphs, especially in complex functions, like 
polynomial or logarithmic functions, is very difficult. 
The difficulty comes from the fact that many function 
graphs require many points to be plotted and sketched. 
Also, the creation of the pair values in a table is a more 
difficult and advanced situation. Using the graphing 
calculator allows students to see changes and 
transformations on more advanced functions and their 
graphs at the same time. In other words, graphing 
calculators allow students to see where complex graphs 
shift, reverse, and stretch; and allow students to see 
different case examples(function and their graphs) to 
show multiple perspectives of the content with its 
complexity and ill-structuredness. 

Thinking about the complexity of calculus topics, 
one would appreciate how it is important to use 
multiple representations of information. An assumption 
underlying this study was that graphing calculators are 
suitable to do these multiple representations. It is vital 
to see which representation (graphical, numerical, or 
algebraic) or combination of representations students 
choose to use and how they use them when they solve 
complex function graphs with graphing calculators. 
Therefore, there is a need for a study to document the 
ways graphing calculators were used by individual 
students. It is necessary to look at the students while 
using graphing calculators to examine how they used 
them, when they were using them, for what kind of 
purposes, and whether calculator use enhanced their 
understanding/learning in complex function graphs. 
Tall (1997) argued that a student’s development of 
cognitive flexibility in calculus requires significant 
constructions and re-constructions of knowledge. He 
mentioned that the way in which numeric and symbolic 
representations develop involves an interesting form of 
cognitive flexibility. In his study, calculus was 

summarized as the study of “doing” and “undoing” the 
process. In this process, the flexibly in switching from 
one representation to another seemed very difficult for 
the average student. Students managed to move from 
one representation to another, but failed to move 
flexibly back and forth. Graphing calculators can be 
capable of providing multiple representations of many 
calculus tasks to help students learn to think about 
calculus concepts flexibly. Additionally, Boers & Jones 
(1993) studied students’ use of graphing calculators to 
find the graph of  

                         
2 2

2  

Results indicated that 80%of the students had 
difficulty reconciling the graph with the algebraic 
information. Moreover, Quesada (1994) introduced 
graphing calculators into a calculus class. However, 60% 
of the students received a grade of D or F, or withdrew 
from the course, which the author interpreted as 
students’ lack of a clear understanding of the basic 
function graphs that they could not read basic graphs, 
after calculators were introduced.  

Mostly, in traditional math classes, students are 
supposed to stick with certain types of functions. 
However, graphing calculators can give students a 
chance to see different and more complex function 
graphs by using different representations. Actually, the 
teacher, in a class environment, needs some kind of 
environment in which multiple representations are used 
efficiently to transfer knowledge, and that 
oversimplification must be avoided. Since most existing 
studies only compared the use of graphing calculators 
with the use of paper and pencil methods on the same 
kind of tasks in a very short class time, the question of 
how the use of graphing calculators can be used to 
enhance cognitive flexibility is unanswered. 

This study looks at the role of graphing calculators in 
multiple representations for knowledge transfer and the 
omission of oversimplification. For example, thinking 
about the transfer of knowledge through the lens of 
literature, it is interesting to see the reactions of students 
to basic types of transformations (e.g., horizontal shift, 
vertical shift, reflection about the x-axis/y-axis/ the 
origin) done using graphing calculators. Thinking about 
the notation y=f (x), even in simple function graphs, the 
importance of using graphing calculators is still 
unknown. The idea of using multiple representations of 
knowledge fits well with using the graphing calculator. 
That is, graphing calculators are capable of providing 
multiple representations of mathematical concepts. 
Students can easily switch among tabular, algebraic, and 
graphical representations, allowing them to observe 
patterns and relations. By building tables, tracing along 
curves, and zooming in on critical points, students may 
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be able to process information in a varied and 
meaningful way. 

Purpose of the Study 

By connecting the ideas from current research 
literature on graphing calculator, this study investigates 
how college students use graphing calculators to 
construct and understand complex function graphs in 
calculus. The main aim is to examine whether graphing 
calculators were used efficiently to see different cases 
and multiple perspectives among complex function 
graphs, or whether graphing calculators were used only 
as a mechanical tool to push buttons and execute 
memorized steps. It can be expected that allowing 
students to use graphing calculators will enable to look 
at the introduction of complex function graphs without 
oversimplification. Or, as some researchers argue, 
college students might become too dependent on the 
graphing calculator and lose rich and flexible 
understanding in calculus topics when the graphing 
calculator is used.  

Spiro et al. (1991) and Resnick (1988) argued that 
most teachers heavily rely on the simplification of the 
topic. It is not saying that learning should begin with 
mass complexity, because that can lead to confusion. 
Theoretically, using graphing calculators can accelerate 
the understanding of experiences with different function 
graphs so students are better prepared to apply their 
knowledge to new or similar cases.  

The literature suggests that students must build a 
broad knowledge base and flexibility of thought that 
facilitates learning in complex, non-linear functions. 
Therefore, it was hypothesized that graphing calculators 
would help students enhance their understanding of 
function graphs in calculus classes. Moreover, this study 
will examine whether students' understanding is affected 
by their prior knowledge of and attitudes toward 
graphing calculators. Following questions were 
addressed by this study: 
1. How are the patterns students follow in constructing 

complex function graphs related to complexity and 
difficulty level of tasks when the students work with 
graphing calculators? 

2. To what extent flexible thinking and/or rote 
memorization of knowledge occur when students are 
working with complex functions on graphing 
calculators? 

METHOD 

Participants and Setting 

Twenty individuals chosen from seven college calculus I 
classes (148 students) in Upper New York State 
participated in this study. This study was conducted in 
at three institutions: private college, community college, 

state university. In order to diversify the range of 
students, I chose classes with differing ability of using 
graphing calculators. Seven classes were from a 
community college (one class=22 students), a private 
college (three classes=total 53 students), and a state 
university (three classes=total 73 students).  

A survey was administered to students in order to 
find their attitudes and prior use of using graphing 
calculators. Attitude survey questions were based on the 
work of Meriwather & Tharp (1999) and Milou (1999) 
who used the Attitude towards Graphing Calculators 
(UATGC) survey for attitudes/beliefs about graphing 
calculator. This survey was used before and established 
content validity. The prior knowledge survey was a set 
of 8 statements that were intended to find students’ 
prior/initial knowledge and expertise in use of graphing 
calculators. The survey consisted of four yes/no items, 
two Likert Scale items, one application question, and 
one qualitative question. For this survey, based on 
Hennessy et al. (2001) and Hubbard (1998), a Prior 
Knowledge with Graphing Calculators (PKGC) rating 
scale was developed. Two experts in mathematics 
education independently reviewed the instrument and 
indicated that, in their opinion, it had content and 
construct validity. The surveys were administered during 
the first two weeks of classes. I used mean (average) 
scores for the cutoff between positive attitude-negative 
attitude and high experience- low experience. For 
attitude scores (for 148 students), the average score was 
55.5(minimum=37, maximum= 74). For prior 
experience scores, the average score was 10.9 (with a 0 
minimum score and 16.5 maximum score). However, 
0(zero) represented the group of the students who were 
unlikely to use the graphing calculator at all. Thus, the 
minimum non-zero prior knowledge score was 2.5, and 
students with a scale score of 0 were excluded.  

Twenty students (from the students who agreed to 
be interviewed) were chosen based on four groups:  
positive attitude+low experience, positive attitude+high 
experience, negative attitude+low experience, and 
negative attitude+high experience. There were several 
reasons for the choice of these four groups. These 
groups were selected in accord with practical 
considerations. That is, based on students' prior 
knowledge and attitudes, these groups were crucial to 
goal of determining whether students’ interaction with 
the graphing calculator was taking place and, if so, 
identifying the patterns of the interaction (graphing 
calculator use) and the practices facilitating it.  
Additionally, it was vital to use these groups to ensure a 
valid sample and how each group responded to using 
graphing calculators based on complexity and 
transferring knowledge. A total 88 students (out of 148) 
agreed to come to interviews. After that, I began to 
email students to choose 20 targeted participants (out of 
88 students).  
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Students Interviews 

Videotapes were used to record the interviews. In 
this way, the tape was replayed several times for analysis. 
Also, videotapes were used for comparisons. The video-
tape only showed students’ work and captured their 
calculator strokes. Video camera was set up and 
operated by researchers. Videotapes were needed to 
show exactly students’ work and key strokes while 
students were using graphing calculators. In order to 
describe students’ interactions with the graphing 
calculator, these interviews were vital in terms of how 
each student responded to certain situations on the 
tasks.  

 Targeted students were interviewed after their mid-
term exams about their intentions for the use of 
graphing calculator, the tasks they received during the 
interview, and their general reactions while working on 
the tasks. During the first tasks, the questions were 
easier and shorter (low level tasks) compared to the 
questions in the latter tasks. There were two reasons for 
that. First, the goal was to minimize the pressure on 
students and get them more engaged with the tasks. 
Moreover, the goal was to try to understand student’s 
fluency with graphing calculators and to gather 
information about students' familiarity with the 
graphing calculator. Secondly, by giving students more 
complex tasks in latter tasks (high level tasks), I was be 
able to see their proficiency in calculator use more 
closely. The time period ranged from 26 to 52 minutes 
for the interviews.  The number of tasks in the 
interviews ranged between 4-6(no less than 4, and no 
more than 6) tasks depending on students’ enthusiasm 
and on what they were capable of. As soon as the 
interview begins, I provided only one task to the 
student. When the student is done, I provided another 
task (Questions were given separately). I arranged tasks 
based on their difficulty level. All students did not 
receive the same sequence of tasks. Tasks were given 
based on the students’ ability so that they were working 
on tasks that matched their level of expertise. 
Practically, it was not very possible to give the students 
same tasks since they had different mathematical 
knowledge and different tendency to use the graphing 
calculator. Mostly, I decided give next task while the 
students was working on previous one.  I asked two 
mathematics professors(not from the study classes) 
independently to review and categorize each task as low 
level, medium level, and high level task based on its difficulty 
and complexity. Complexity and difficulty are based on 
required conceptual and procedural understanding in 
the tasks. Categorization was collected from two 
professors, compared with each other and each task was 
given a difficulty level. There are 5 low level, 3 medium 
level, and 6 high level questions, out of 14 tasks. 

Data Analysis 

Each interview was coded on following steps: 
• Quantitative data was obtained by measuring the 

variables (e.g., calculator use, calculator fluency, 
graph of the function, mathematical understanding, 
solution etc.) being studied along a scale that 
indicated how much of the variable was present. 
Researcher coded each interview according to rubric 
developed. Higher score indicated that more of the 
variable (such as 2 for mathematical understanding) 
was present than do lower score (0 for mathematical 
understanding). 

• Categorical data was obtained for: whether they 
graph on the graphing calculator, the features they 
used on the graphing calculator, how much they did 
calculations on the paper, how much they did 
calculations on the graphing calculator, 
representations they used in the process of solving 
task. Categorical data simply indicated that the total 
number of events (e.g., the features used) researcher 
found in solving the problem. In order to measure 
the features students used and the representations 
they used, researcher used a frequency table and 
nominal scale to get the percentages.  

• Qualitative data: Field notes were taken for each 
video- taped interview to reflect each research 
question. Researcher mostly wrote a paragraph or 
passage, sometimes a label, describing what was seen 
in each task that is more important. Moreover, 
researcher, by using the notes from the interviews, 
compared pair of students who did things/scored on 
the problems differently. Second, I transcribed all 
interviews for qualitative data and tried to find some 
patterns among the groups. I looked at the interview 
transcripts to examine patterns in students’ task 
solving activities with the graphing calculator. 

In order to find out how much using graphing 
calculator played an important role in high-level tasks, 
researcher also looked at 3 different item difficulty 
scores for each group. Accordingly, same trend was 
found for negative attitude-high experience, negative attitude-
low experience and positive attitude-low experience groups 
(Table 1). These groups’ overall scores on medium level 
tasks were higher than low level tasks. However, scores 
on high level tasks were lower than medium level tasks. 
While moving from low level tasks to medium level 
tasks, these groups were more successful to solve the 
problems with the help of a graphing calculator; 
however, there was a decrease from moving medium 
level tasks to high-level tasks.  

On the other hand, positive attitude-high experience 
group showed different trend (Figure 1). This group 
scored low on medium level tasks, and almost equal on 
low and high level tasks. There is no clear evidence to 
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suggest that one group overall score on high level tasks 
was quite distinctive then medium and low level tasks. 
Actually, low experience groups (negative attitude-low 
experience, positive attitude-low experience) scored 
even lower on high level tasks than low level tasks. 
Results suggest that the harder the question is, the lower 
the students’ ability to handle the question by using the 
graphing calculator. 

In order to verify quantitative data, I also looked at 
categorical data for percentage on item difficulties. It 
means in what percentage low, medium, and high level 
tasks were graphed on the graphing calculator. When 
looking at the percentage on item difficulty, there is 
slightly difference between negative attitude-high 
experience and positive attitude-high experience groups 
on high level tasks (Table 2). Other than that, both high 
experience groups preferred to use the graphing 
calculator in almost every question. Negative attitude-
low experience group has the lowest percentage on 
three levels. There is clear evidence that low experience 
students (negative attitude-low experience, positive 
attitude-low experience) followed same trend; because 
these groups’ calculator use on medium level tasks were 
higher than low level tasks but there was again a 

decrease on using the calculator for high level tasks.  
When looking at the percentage in terms of students’ 

preference to use the graphing calculator in high level 
tasks, there is little evidence to say that low experience 
students showed more flexibility in high-level tasks 
(Figure 2). 

The features(on the graphing calculator) students 
used in the questions and representations they used 
were coded to see how much they graphed the function 
on the graphing calculator and on the paper as well as 
how much they made calculations on the paper and 
graphing calculator. For high experience groups 
(negative attitude-high experience, positive attitude-high 
experience), there seems to be some dependency on the 
graphing calculator; because both groups’ score for 
calculations on the graphing calculator were higher than 
other two groups (Table 3). Positive attitude-high 
experience group scored highest for calculations on the 
graphing calculator (%14). However, this group also 
scored second highest for calculations on the paper. 
This tendency shows that positive attitude-high 
experience group followed more flexible ways by 
switching from paper- pencil method to calculator use 
or vice-versa.  

Figure 1. Mean scores on item difficulty 

 
Figure 2. Percentage for the use of the g.c. on high level problems 
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Table 3 shows that negative attitude-low experience 
group scored highest for calculations on the paper. This 
group never made calculations on the calculator 
(scientific mode). This group mostly preferred to use 
paper pencil work for the solution of the problem. 
Percentage for calculations on the paper was same for 
positive attitude-low experience and negative attitude-
high experience groups. 

Total, 12 graphing calculator features were identified 
while the students were solving the problems with the 
graphing calculator. Table 4 shows that students, 
generally, used GRAPH (80.17%), WINDOW 
(32.92%), TABLE (31.75%), TRACE (19.83%) 
functions on the calculator. Especially, high experience 
groups (negative attitude-high experience, positive 
attitude-high experience) used TRACE, TABLE, CALC, 

 

 Figure 3. The use of the representations 

 Table 1. Groups’ mean on item difficulty (level of the tasks) 

 Item difficulty 

 Low level   Medium Level High Level 
Negative attitude- Low experience 0.91  1.11  0.88  
Positive attitude-Low experience 1.4 1.48 1.28 
Negative attitude-High experience 1.44 1.68 1.56 
Positive attitude-High experience 1.7 1.54 1.72 

 
 Table 2. Groups’ percentage on item difficulty (level of the question) 

 Item difficulty 
 Low level  Medium Level High Level 
Negative attitude-Low experience    40.00% 70.00%  43.33% 
Positive attitude-Low experience 70.00% 100.00% 100.00% 
Negative attitude-High experience 100.00% 100.00% 93.33% 
Positive attitude-High experience 100.00% 100.00% 100.00% 

 
 Table 3. Groups’ percentage for calculations on the paper and on the graphing calculator 

 Did they do calculations  
on the paper? 

Did they do on the g.c. 
(scientific)? 

Negative attitude- Low experience 25.00%    0.00%  
Positive attitude-Low experience 4.00%     3.33% 

Negative attitude-High experience 4.00% 8.00% 
Positive attitude-High experience 13.33% 14.00% 
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MATH features extensively. However, these features 
were not extensive for the other two groups (negative 
attitude-low experience, positive attitude-low 
experience).  

TABLE feature seemed somewhat important in the 
interviews that this feature helped a lot to find the y axis 
and x axis coordinates for the function on the table. 
Moreover, some students were able to discover any 
discontinuity on the function (hole) by using this 
feature. Relatively, many students preferred to get y 
values from this feature rather than making table on the 
paper, and giving some values for x to get y values. This 
pattern was quite extensive among students. I mostly 
saw that, even in low level questions like one degree 
function, many students tried to get intersections by 
looking at TABLE feature or using TRACE feature to 
spot the intersections on the function graph. Most 
students solved the problem in this mode by using 
TABLE to get the x and y values or WINDOW, 
ZOOM, TRACE features to get a better picture of the 
graph and look at graph to identify the critical points 
(maxima, minima, and hole).  

Students’ preference to use graphical representation 
(%89.67) was reasonably higher than algebraic, verbal 
and tabular representations (Figure 3). Second highest 
representation use was on tabular representations 
(%19.92). However, there is a clear pattern on using 
graphical representation that students mostly tried to get 
the function graph on the graphing calculator and 
explained to solve the problem verbally by looking at 
the calculator. Positive attitude-high experience group 
scored highest on using tabular representations, while 
negative attitude-low experience group scored highest 
on algebraic/symbolic representations. 

DISCUSSION AND CONCLUSION 

This exploratory study investigated students’ 
interaction with complex function graphs in using 
graphing calculators. In this sense, this study looked at 
college students’ use of graphing calculators and tried to 
see whether graphing calculators were used efficiently to 
see different cases and multiple perspectives among 
complex function graphs, or whether graphing 
calculators were used only as a mechanical tool to push 
buttons and get answers (graphs) while working on the 
tasks. 

Research suggests that an instructional method 
must be as complicated as is necessary to give the 
students necessary information and learning goals. It 
was expected that using the graphing calculators will 
enable to look at the introduction of complex function graphs 
without oversimplification in calculus topics. Tasks were 
chosen around the first five chapters of Calculus I and 
administered to students. Students had the option to use 
the graphing calculator, which allowed to discover their 

preference for the representation (graphical, analytic, 
etc.), and their dependency on the graphing calculator. I 
investigated what kind of patterns/modes of graphing 
calculator use emerged in students’ use of graphing 
calculators with calculus tasks of varied difficulty. 

The findings from the interviews clearly showed 
that students who had more experience and knowledge 
on graphing calculators were more flexible in solution 
strategies than students who had limited experience on 
the graphing calculator. In other words, high experience 
groups showed their flexibility in multiple case examples by 
moving from one representation to another (e.g., their 
flexibility to move from paper- pencil work to graphing 
calculator use or vice versa). 

Students mostly were confused when the tasks 
were getting complicated; and their translation skills did 
not improve while moving from one representation to 
another by using the graphing calculator. Moreover, it 
was clear in interviews that the graphing calculator and 
mathematical understanding must work together for the 
solution of the task. Without understanding the task’s 
underlying principles, using the calculator is not enough 
for students to reach an acceptable outcome. 
Understanding of the mathematical concept and using 
the graphing calculator are related to each other, and 
there is a positive correlation between these two 
variables. In other words, it is hard to master the task 
without having initial concept knowledge or a general 
principle of the concept. Although the order of tasks is 
arranged in accord with the its complexity and difficulty, 
giving low level and then high level tasks to the students 
(especially for low experience students) did not work 
very well since each task needed some kind of  
“situation-based” or “case-based” knowledge to be 
solved. 

Interviews clearly showed that students’ class 
experiences regarding graphing calculator use effected 
students’ use of the graphing calculator in the tasks. 
Students’ explanations of the task solving procedures 
revealed that students seemed to follow the methods 
they learned in the classes or they followed the methods 
that are shown by teachers in the classes. 

In this study, as indicated by previous research, 
students used the graphing calculator as a visualization 
tool to get a clear picture of the function graphs; as a 
checking tool to see whether the graph they produced 
on the paper is correct or not; and as a comparing tool 
to compare different function graphs and see the 
changes at the same time. However, regarding using the 
graphing calculator in high level tasks, there is little 
evidence to say that using the graphing calculator 
promoted students’ understanding of the high level 
tasks. Rather, using the graphing calculator mostly 
caused students (especially for low experience students) 
to produce prepared graphs and copy those graphs on 
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the paper, without finding critical points of those high 
level function graphs.  

High experience groups were better prepared to 
use the graphing calculator in the tasks and successfully 
to go beyond low level knowledge (when high level tasks were 
given). The positive attitude-high experience group was more 
flexible in the use of the graphing calculator. Previous 
experiences with the graphing calculator appeared to 
allow students to find the answer quickly, without 
hesitation and error. This group also showed more work 
on the paper; and explanation was more clear and 
understandable than in the other groups. This group 
was the most successful in connecting algebraic work 
with the result on the graphing calculator. High 
experience students’ use of the graphing calculator 
seems to fit well in complex tasks and seemed to allow 
students to create multiple representations of knowledge. The 
results indicated that experience with the graphing 
calculator was important factor in solving the tasks with 
the graphing calculator, while attitude seemed to have 
no effect on task solving steps. Low experience students 
mostly missed the critical analysis and complexity of 
high level tasks and only focused on getting the image 
from the graphing calculator. Although the students had 
sufficient mathematical knowledge on the tasks, the 
adequate and necessary skills on using the graphing 
calculator were needed to understand the tasks’ 
underlying principles and to get the correct solution. 
For example, negative attitude-low experience group was the 
lowest group for mathematical understanding, solution 
process of the tasks, and graphing calculator use in high 
level tasks. However, this group followed more 
algebraic ways for the solution of the tasks. In other 
words, low experience and negative attitude on the 
graphing calculator enforced this group to work on the 
paper. Low experience groups mostly used the graphing 
calculator as a visual help to get the graphs; however 
because of the unfamiliarity with the features on the 
calculator, low experience students made errors finding 
critical points of the graphs and made calculation errors 
on the paper. Negative attitude-high experience group 
members scored higher than positive attitude-low experience 
group members. Results clearly show that in order to 
use the graphing calculator in complex function graphs 
to implement the multiple representations knowledge, the 
students need to know characteristics of features on the 
graphing calculator. They have to have some use of 
skills and good experience on the machine, not just 
skills of thinking and skills of knowing the concept.  

There is considerable evidence in this study that 
students who had low experience on the graphing 
calculator did not give adequate attention to critical 
analysis of the tasks. That is, because of the limited 
knowledge on features of the graphing calculator, 
primary use of the calculator for students with low 
experience was to graph the functions (by only using 

Y= and GRAPH); without finding the critical points of 
the graph, or exploring  other points that made the 
graphs complex and complicated.  Thus, it is quite 
critical for teachers to allow students to use the graphing 
calculator in class environment. Teachers also must be 
ready to help students learn how to use the graphing 
calculator with its full complexity and potential. 
Moreover, teachers should consider students with 
different abilities and experience with the graphing 
calculator and try to minimize these gaps among 
students. 

Some low experience students did not prefer to 
use the calculator in the tasks since they were not sure 
what the tasks meant for them. Moreover, some 
students who did not use the graphing calculator 
indicated that they already knew the task. Therefore, 
teachers must give proper attention to mathematical 
methods they use when graphing calculators are used in 
the class. It is crucial for teachers to recheck how the 
subject is taught when the graphing calculator is used. 
There is a clear indication in the interviews that mere 
availability of the graphing calculator in the task solving 
process does not affect or change students’ task solving 
strategies. Rather, the kind of understanding and 
knowledge students have of the task (students’ 
experience with the tasks) shapes students’ approach to 
tasks. There was a common belief among students that 
the graphing calculator does not help teach a new 
concept; but everything must be done on the paper to 
show that they understood the problem. Thus, teachers 
should clearly indicate how much graphing calculator 
use is required and how much written work is needed 
for the task. Students must get clear direction on how to 
integrate the use the graphing calculator in the 
classroom and with the written work required. Students 
need instruction in how one representation relates to 
and inform the other.  

From this study, it is not possible to say that using 
the graphing calculator enhanced students’ 
understanding of graphing ability in given high level 
tasks.  Some students were able to get the correct 
answers (graphs) although they did not understand the 
task entirely. It did not mean that the use of the 
graphing calculator gave a flexible understanding of the 
task; it just gave a quick and prepared answer for the 
student. Regarding introduction of complex function 
graphs early, only students with high experience and 
positive attitude seemed successful. Other than that, 
there is no clear indication that the use of the graphing 
calculator improved students’ understanding as students 
move from well simple knowledge to complex 
knowledge. This study suggests that to introduce 
domain complexity early can be problematic for the 
students, combining with the lack of experience on the 
problem with the lack of experience on the graphing 
calculator. Some interviews clearly showed that 
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students, sometimes, struggled with the technical details 
of the graphing calculator (etc. using the parenthesis 
incorrectly, setting up WINDOW feature incorrectly 
when different question was given, wrong use of 
ZOOM and TRACE features while trying to get better 
picture of the graph, little knowledge about CALC and 
MATH feature).  

Some research assumes that using the graphing 
calculator will automatically improve students’ 
understanding of the mathematics. It is the major 
problem in the literature. Rather, research should focus 
on the ways to better understand how effective use of 
the graphing calculator can be established in high level 
of mathematics. Research must focus on broad 
generalization of the cases by looking across schools 
and content areas as well as school districts and 
different grades. There is a need to look and identify 
cases in broad surveys and interviews, which can help to 
interpret specific cases. 
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There are diverse ways to construct instructional activities that teachers can use to foster 
their students’ development of mathematical thinking. It is argued that the use of 
computational tools offers teachers the possibility of designing and exploring 
mathematical tasks from distinct perspectives that might lead their students to the 
reconstruction of mathematical relations. In particular, a task that involves the 
construction of a simple dynamic configuration is used to introduce an inquisitive 
approach to identify mathematical conjectures or relations and ways to explore and 
support them. In this process, a hypothetical instructional route is sketched where visual, 
numeric, geometric, and algebraic approaches are utilized to validate those conjectures.   
 
Keywords: Problem Solving, Computational Tools, Teachers’ Knowledge, Instructional 
Trajectories. 
 
INTRODUCTION 

The significant development and availability of 
several digital tools have opened up diverse 
opportunities for teachers and students to approach and 
construct mathematical knowledge and to develop 
problem-solving strategies. How does the use of 
particular digital technologies help teachers promote 
their students’ development of problem solving 
activities? What types of opportunities can the use of 
the tools offer the learners to engage in mathematical 
thinking?  To what extent does the use of digital 
technologies become relevant for teachers to trace and 
explore potential instructional routes to guide their 
students learning experiences?  I utilize the construct 
“instructional trajectories” to explore and discuss ways 
in which the systematic use of computational 
technologies can help teachers trace and examine 
potential instructional routes to frame and guide their  

 

instructional practices.  It is argued that the use of the 
tools becomes important for teachers and students to be 
engaged in an inquiring or inquisitive approach to 
reconstruct or develop mathematical relations and 
enhance problem solving approaches. The hypothetical 
instructional trajectories that result from examining 
mathematical task with the use of computational tools 
are used to guide and promote the students’ actual 
development of their own learning trajectories. In this 
context, an overarching principle that distinguishes the 
use of the tools is to conceptualize the tasks in terms of 
dilemmas or questions that need to be represented and 
explored through the use of mathematical resources and 
problem solving strategies. In this context, an inquisitive 
approach to work on the tasks becomes relevant to 
illustrate that the use of the computational tools can 
help teachers develop and employ a set of heuristics 
(Polya, 1945) that includes a dynamic representation of 
the task, finding loci, exploring partial goals, using the 
Cartesian system, quantifying relations, etc. In addition, 
it is shown that the construction of instructional 
trajectories can be a teachers’ means to review their own 
mathematical knowledge and problem solving 
approaches and to openly discuss the paths or routes to 
approach and solve the tasks in their actual practice.  
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Instructional Trajectories and Teachers’ 
Mathematical Knowledge 

What mathematical, technological, and pedagogical 
knowledge should the education of high school 
mathematics teachers include? Who should participate 
in the designs of educational programs to prepare and 
upgrade mathematics teachers? What should be the role 
of mathematics departments or the faculty of education 
in preparing prospective and practicing teachers? In 
what types of educational programs should practicing 
teachers participate in order to revise and extend their 
mathematical knowledge and to incorporate research 
results from mathematics education into their practices? 
Traditional ways to prepare high school teachers 
normally involve the participation of both mathematics 
departments and the faculty of education. Mathematics 
departments offer courses in mathematics while the 
faculty of education provides the didactical or 
pedagogical courses. This model of preparing teachers 
has not clearly provided them solid basis to exhibit the 
needed mathematical sophistication to interpret and 
efficiently guide their students in the construction or 
development of mathematical knowledge. As a 
consequence, teachers fail to organize and implement 
meaningful learning activities that foster their students’ 
development of mathematical thinking. Indeed, it is 
common to read that university instructors complain 
that their first year university students lack not only 
fundamental mathematical knowledge; but also 
strategies or resources to solve problems that require 
more than the use of rules or formulae (Artigue, 1999, 
Selden & Selden, 2001).  

Many practicing teachers, for different reasons, have 
not learned some of the content they are now required 
to teach, or they have not learned it in ways that enable 
them to teach what is now required. …Teachers need 
support if the goal of mathematical proficiency for all is 
to be reached. The demands this makes on teacher 
educators and the enterprise of teacher education are 
substantial, and often under-appreciated (Adler, et al., 
2005, p. 361). 

Davis and Simmt (2006) suggest that teachers’ 
preparation programs should focus more on teachers’ 
construction of mathematical ideas or relations to 
appreciate their connections, interpretations, and the use 
of various types of arguments to validate and support 
those relations, rather than the study of formal 
mathematics courses. Thus, the context to build up the 
teachers’ mathematical knowledge should be related to 
the needs associated with their instructional practices. 
“…[mathematical knowledge] needed for teaching is not 
a watered version of formal mathematics, but a serious 
and demanding area of mathematical work” (Davis & 
Simmt, 2006, p. 295). In this perspective, we argue that 
teachers’ mathematical knowledge can be revised and 

enhanced within an interacting intellectual community 
that fosters an inquisitive approach to develop 
mathematical ideas and to promote problem-solving 
activities. The core of this community should include 
the participation of mathematicians, mathematics 
educators, and practicing teachers. This community 
should promote collaborative work to construct 
potential instructional trajectories to guide or orient the 
teachers’ instructional practices. Teachers need to be 
interacting within a community that supports and 
provides them with collegial input and the opportunity 
to share and discuss their ideas in order to enrich their 
mathematical knowledge and problem solving strategies. 
Regarding the use of computational tools, Bransford, 
Brown, and Cocking (Eds.) (1999) state that:  

New tools of technology have the potential of 
enhancing learning in many ways. The tools of 
technology are creating new learning environments, 
which need to be assessed carefully, including how their 
use can facilitate learning, the types of assistance that 
teachers need in order to incorporate the tools into their 
classroom practices, the changes in classroom 
organization that are necessary for using technologies, 
and the cognitive, social, and learning consequences of 
using these new tools (p. 235). 

In this context, we illustrate the importance of using 
computational tools to represent and explore various 
ways of approaching mathematical tasks. The task 
discussion leads us to show that the use of diverse 
computational tools offers teachers the possibility of 
working on mathematical tasks from perspectives that 
involve visual, numeric, geometric and formal 
approaches. And as a consequence, they can appreciate 
or value the advantages associated with the use of the 
tools and trace potential instructional routes that can 
guide and foster their students’ development of 
mathematical thinking and problem solving approaches. 

Hypothetical Instructional Trajectories and 
Computational Tools 

Problem solving activities that promote the use of 
digital tools represent an opportunity for practicing and 
prospective teachers to revise and extend their 
mathematical competences. What task representations 
are favored with the use of computational tools? To 
what extent does the use of computational tools become 
relevant in identifying and exploring conjectures or 
mathematical relations? To what extent does the use of 
particular tools shape a students’ way of thinking about 
tasks and problems? These questions help explore ways 
of reasoning that can emerge or be developed in 
problem solving approaches that promote the use of 
computational tools.  

It is argued that the development and availability of 
computational tools offers teachers and students the 
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possibility of enhancing their repertoire of heuristic 
strategies to solve mathematical problems and to 
formulate or reconstruct some mathematical relations. 
“…guided reinvention [of mathematical knowledge] 
offers a way out of the generally perceived dilemma of 
how to bridge the gap between informal knowledge and 
formal mathematics” (Gravemeijer & Doorman, 1999). 
It is also important to recognize that different tools may 
offer distinct opportunities for students to represent and 
approach mathematical problems. Thus, it becomes 
relevant to show and discuss not only the potential 
associated with the use of diverse tools but also ways in 
which the distinct approaches to the tasks or problems 
can be related or complemented. For example, with the 
use of dynamic software, such as Cabri-Geometry or 
Sketchpad, some tasks can be represented dynamically 
as a means to identify and explore diverse mathematical 
relations or conjectures. Later, with the use of a hand-
held graphing calculator those conjectures can also be 
analyzed graphically and algebraically. In this 
perspective, an underlying principle in any problem 
solving approach to learn mathematics is to look for 
distinct ways to represent and explore mathematical 
tasks and to contrast or discuss mathematical 
approaches that emerge from the use of diverse tools 
including the use of paper and pencil (Santos-Trigo, 
2007). Thus, the problems or tasks are seen as 
opportunities to pose and pursue relevant questions that 
can lead to identify and explore mathematical relations  
(Schoenfeld, 1998). We identify and document the types 
of heuristic strategies that appear in problem solving 
approaches that promote the use of computational 
tools. In particular, the analysis and discussion of the 
strategies which emerge as result of constructing and 
exploring dynamic representations of problems.  

Tasks are the key ingredients in promoting and 
tracing the students’ development of problem solving 
strategies. Here, teachers first need to identify potential 
or theoretical instructional trajectories (Simon & Tzur, 
2004) to frame and then discuss the distinct routes that 
their students can follow to approach the tasks. 

…[A]n overarching research goal in the field of 
learning trajectories is to generate knowledge of 
learning and teaching. Therefore, scientific processes 
(e.g., documenting decisions, rationales, and 
conditions; hypothesizing mechanisms; predicting 
events; and checking those predictions) must be 
carefully followed and recorded (Clements & Sarama, 
2004, p.85).  

The identification of potential instructional 
trajectories involves working on the tasks in detail and 
exploring various ways to represent and examine the 
tasks using computational tools. Working on these tasks 
requires that teachers recognize ways in which 
mathematics knowledge is connected, and a discussion 
of what constitutes a valid argument to support 

mathematical relations. Zbiek, Heid, & Blume, (2007, p. 
1170) suggest that in experimental mathematics, 
computational tools can be used for: 

(a) gaining insight and intuition, (b) discovering new 
patterns and relationships, (c) graphing to expose 
mathematical principles, (d) testing and especially 
falsifying conjectures, (e) exploring a possible result to 
see whether it merits formal proof, (f) suggesting 
approaches for formal proof, (g) replacing lengthy 
hand derivations with tool computations, and (h) 
confirming analytically derived results. 

In this context, we illustrate the ways in which the 
use of Cabri-Geometry software and hand-held 
graphing calculators can help teachers represent and 
apply a set of heuristics to approach and solve the tasks. 
The solution process is presented around problem 
solving episodes where relevant questions guide the task 
solution process. The episodes are part of an inquiry 
framework that identifies instructional trajectories that 
teachers can use to structure and to guide the 
development of their lessons (Santos-Trigo & 
Camacho-Machín, in press). The task is representative 
of a set of problems that were used in a problem-solving 
seminar in which high school teachers used Cabri-
Geometry software to identify and discuss potential 
learning trajectories.  

The task involves the construction of a dynamic 
configuration that leads to relate a tangent circle to the 
study of two conic sections: The parabola and the 
hyperbola. Here, the use of two tools, the dynamic 
software and a hand-held calculator, becomes relevant 
to complement and relate ways of reasoning that 
involve visual, numeric, geometric, and algebraic 
approaches. The task is a variant of what Gravemeijer & 
Doorman (1999) call context problems since the 
problem solver has the opportunity to reconstruct a set 
of mathematical relations as a result of representing and 
examining mathematical objects dynamically.  

An example: On the Construction of Possible 
Instructional Routes 

An overall principle associated with the construction 
of potential instructional trajectories is that all problem 
representations should be constantly examined and 
interpreted in terms of responding questions that 
involve the use of mathematical resources or problem 
solving strategies. Thus, the formulation of questions 
and the search for diverse ways to respond to those 
questions are crucial activities that shape the 
development of potential routes of instruction. The next 
example illustrates ways in which the use of a tool 
(Cabri-Geometry software) can offer teachers the 
opportunity of reconstructing a set of mathematical 
relations that involves contents associated with the 
study of the conic sections. The problem solving 
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episodes emerge within a community in which high 
school teachers together with mathematicians and 
mathematics educators worked on series of tasks to 
identify potential instructional routes and to discuss the 
strengths and limitations of using several computational 
tools. Thus, the goal is to characterize the community or 
group’s problem solving approaches that emerged 
during the development of the sessions rather than 
analyzing in detail the individual contribution or 
performances of the participants.    

The initial task. Given a line L and a point P not 
on the line (Figure 1) construct a dynamic 
configuration1 that involves other mathematical objects 
and identify properties or mathematical relations that 
result from moving particular elements within the 
configuration. 

This is an open activity where the construction of a 
geometric configuration might involve various initial 
routes. Thus, some departure attempts may include, for 
example: (i) Placing a point Q on line L and 
constructing an equilateral triangle with side PQ (Figure 
2a) and add other objects and start moving some of 
them to identify invariants or changes produced as a 
result of that motion on other objects within 
configuration; or (ii) Situating also point Q on line L 
and drawing a circle that passes through point P and is 
tangent to line L at point Q (Figure 2b). In the latter, 
the initial goal can be to identify mathematical relations 
around the construction of a circle tangent to line L that 
passes through point P (Figure 2b). Thus, to draw a 
tangent circle to line L that passes through point P is the 
point of departure to identify and explore mathematical 
relations. 

First episode: Dynamic representation and 
partial goals. An important strategy that is used often 
in problems or tasks that can be represented 
dynamically is to identify and analyze loci that result 
when some components (points, segments, lines, etc.) of 
the problem representation are moved along well 
defined paths.  Thus, the construction of a dynamic 
representation of problems, whenever possible, is a 
heuristic that need to be considered in problem solving 
approaches. The use of the software for the 
construction of a dynamic representation is based on 
conceptualizing the problem in terms of relevant 
mathematical properties.  What does it mean to draw a 
circle that passes through a point and is tangent to a 
given line? In this task, a heuristic, that involves 
focusing on a partial goal of drawing a circle with center 
point C situated on a perpendicular to line L and radius 

                                                 
1 A dynamic configuration consists of simple mathematical 
objects (points, segments, lines, triangles, squares, circles, 
etc.) arranged in such a way that one can move a particular 
element within the configuration and observe what happens 
to others elements as a result of that movement. 

L

P

Figure 1. Construct a dynamic configuration 
that includes a given line L and a point P out 
of the line 

L

P

Q

 
Figure 2a. Drawing an equilateral triangle 
with side PQ 

 

L

P

Q

 
Figure 2b. Drawing a circle that passes 
through point P and is tangent to line L 

 

L

L1 P

Q

C

Q'

 
Figure 3. The center of the circle must lie on 
the perpendicular line to L
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segment CP (Figure 3), is pursued to identify ways to 
construct a tangent circle.  

A visual approach. The circle (Figure 3) satisfies the 
condition that passes through point P but it is clear that 
it is not tangent to line L. However, when either point C 
or point Q are moved along lines L1 or L respectively, 
there will be visually a position for the circle in which it 
is tangent to line L (Figure 4a and 4b). This visual 
solution is useful to make explicit a set of properties 
associated with the construction of the tangent circle. 

Second episode: Identification of geometric 
properties, a bisector approach. What geometric 
properties does the tangent circle satisfy? Is there any 
particular relation between the center of the tangent 
circle and the tangency point and point P? The visual 
approach becomes important to identify relevant 
properties embedded in the representation. It is 
observed that when the circle is tangent to line L 
(Figures 4a and 4b), then d(C,Q) must be equal to 
d(C,P). Based on this fact, the center of the tangent 
circle must be the intersection of the perpendicular 
bisector of segment QP and L1 (perpendicular line to L 
that passes through Q) (Figure 5). 

The above solution involves an Euclidean 
construction since it can be drawn with straightedge and 
a compass. With the use of the software it is possible to 
identify and examine the path left by particular points 
when other points are moved within the representation. 
What is the locus of point C’ (center of the tangent 
circle) when point Q is moved along line L? (Figure 6). 
The locus of point C’ when point Q is moved along line 
L seems to be a parabola; however, it is important to 
prove that the locus satisfies the definition of this conic 
section.  

Third Episode: The use of empirical and formal 
arguments. To verify empirically that the locus is a 
parabola, we choose a point R on the locus and assume 
that point P is the focus and L is the directrix of the 
parabola. We calculate the distance from R to P and 
from R to line L and notice that for distinct positions of 
point R both distances are equal. Figure 7 shows two 
positions of point R. In this example, another heuristic 
method appears: To measure attributes (lengths, 
distances, areas, perimeters, angles, slopes, etc) 
associated with particular objects in order to identify 
invariants. In this case, the use of the software helped us 
to measure and compare distances from a point on the 
locus to line L and from the point to the center of the 
tangent circle. 

L

L1 P

Q

C

 
Figure 4a. Moving point C along line L1 to 
visually identify the tangent circle to line L 

L

L 1 P

Q

C

 
Figure 4b. Moving point Q along line L to 
visually identify the circle tangent to line L 

 

L

L1

P

Q

C

C'

 
Figure 5. The center of the tangent circle is the 
intersection of the perpendicular bisector of PQ 
and the perpendicular line to L that passes 
through point Q 

L

L1

P

Q

C

C'

 
Figure 6. The locus of point C’ when point Q is 
moved along line L is a parabola. 
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A geometric argument to show that the locus is a 
parabola is based on observing that point C’, which 
generates the locus, is on the perpendicular bisector of 

segment QP (Figure 8). Therefore, the distance from 
point C’ to point P is equal to the distance from point 
C’ to line L (the definition of perpendicular bisector). 
Therefore, the locus of point C’ when point Q is moved 
along line L is a parabola.  

Fourth episode: Connections. On figure 3 it is 
observed that the circle intersects the perpendicular line 
to L at Q’ and when point Q is moved along line L, 
then point Q’ describes a unique path. What is the locus 
of point Q’ when point Q is moved along line L?  Again 
the software helps us identify this locus (Figure 9).  

When point Q moves along line L there are two 
positions, the intersection points of the locus and line L, 
in which the circle is tangent to line L. Thus, the center 
of each tangent circle will be the intersection points (C’ 
and C’’) of the perpendicular lines to line L drawn from 
the intersection points of the locus and line L and the 
perpendicular line to L1 that passes by point C 
respectively (Figure 10). 

  With the use of the conic command from the 
software, we select five points on the locus and draw the 
corresponding conic section (Figure 10). In this case the 
conic section is a hyperbola.  To show that the locus 
satisfies the definition of hyperbola, we draw a 
perpendicular line to L that passes through point P. This 
line intersects the locus at point P’ and point M is the 
midpoint of segment PP’. We draw the perpendicular 
line to line PP’ that passes through point M and a circle 
with center at point M and radius MP. This circle 
intersects that perpendicular at point K. We draw a 
perpendicular to line MK that passes through point K 
and a perpendicular to line PP’ that passes through 
point P, these lines get intersected at point K’. We draw 
a circle with center point M and radius MK’. This circle 
intersects line PP’ at points F1and F2. F1 and F2 are the 
foci of the hyperbola (Figure 11). This geometric 
construction can be validated through an algebraic 
approach (Santos-Trigo, et, al., 2006).  

Again to show empirically that the definition of 
hyperbola is satisfied, we take a point S on the locus and 
calculate the absolute value of the difference between 
the distances from that point to each focus. It is 
observed that for different positions of point S the 
difference is a constant (Figure 12). 

It is also observed from figure 10 that the loci of 
points C’ and C’’ (centers of the tangent circles), when 
point C is moved along line L1, is a parabola (Figure 13). 

The argument used to show that the locus is a 
parabola is based on the fact that points P and R are on 
the circle with centre C’, therefore, d(C’,P) = d(C’,R). 
That is, the focus of the parabola is point P and its 
directrix is line L.  
A triangle approach.  Another way to draw the tangent 
circle to line L that passes through point P involves 
drawing Q on line L, a circle with center point Q and 
radius QP, and a parallel line L’ to line L that passes  
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Figure 7: Verifying the definition of parabola 
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Figure 8: Using the definition of perpendicular 
bisector to show that the locus satisfies the 
definition of the parabola 
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Figure 9. the locus of point Q’ when point Q is 
moved along line L. 
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Figure 10. Drawing the tangent circles to line L 
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Figure 11. The locus satisfies the definition of hyperbola 
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Figure 12. For distinct positions of point S on the locus the definition of hyperbola is satisfied 
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Figure 13. The path left by points C’ and C’’ when point C is moved along line L1 is a parabola 
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through point P (Figure 14). Thus, the tangent circle to 
line L that passes though point P is the circle that 
inscribes triangle PQR. The center of the tangent circle 
is then the intersection of the perpendicular bisectors of 
the sides of triangle PQR (Figure 14a). 

 It is observed that when point Q is moved along 
line L, a family of triangles and circles tangents to L 
appeared. At what position of Q does triangle PQR 
become equilateral? To respond to this question, we 
identify the intersection of the heights of sides PQ and 
QR (orthocenter) and observe that the loci of point C 
and O when point Q is moved along line L are two 
parabolas (Figure 15). Thus, at the intersection point of 
those parabolas is the position where points C and O 
(the circumcenter and orthocenter) coincided. There the 
triangle PQR is equilateral (Figure, 15a). 

A pattern approach. Yet, another approach to draw 
tangent circles to line L that pass through point P 
involves a construction pattern. The pattern is based on 
constructing initially a perpendicular line to L that 
passes through point P. This perpendicular line 
intersects line L at point Q. Thus, the midpoint of 
segment PQ is the center of the tangent circle to line L 
that passes through point P (Figure 16). 

The grid on Figure 16a was constructed by drawing a 
perpendicular line to line PQ that passes through point 
C. This perpendicular intersects the circle with center C 
at point R. From point R a perpendicular to line L is 
drawn. By using the command Reflection, all the other 
lines are constructed. It is also observed that if line L 
and line PQ are the axis of a coordinates system, then 
the centers of the tangent circles to line L are given as 
C(0, 1); D(2, 2); E(4, 5), etc. This sequence leads us to 
observe that sequence of the first entries (0, 2, 4, 6, etc.) 
has constant difference of 2; while the second difference 
of the second entries (1, 2, 5, 10, 17, 26, etc.) was also of 
2. Here, if segment QC is taken as one unit, then the 
equation of the curve that passes through the centers of  

the tangent circle to L is 
y =

x 2

4
+ 1

 which 
represents a parabola equation.  

It is observed that a simple task that involves 
drawing a tangent circle brings into the discussion not 
only the use of diverse mathematical concepts but also 
the application of distinct mathematical processes and 
problem solving strategies to formulate and pursue 
relevant questions. 

An algebraic approach. The initial task can also be 
represented algebraically. A heuristic here will be to set 
the Cartesian system in such a way that the algebraic 
calculations can be made easy. Thus, we choose the x-
axis as the line L and the y-axis to be the perpendicular 
line to L on which the centre of the tangent circle is 
located. On Figure 17 line L is the x-axis and the 

perpendicular line to x-axis that passes through point Q 
is the y-axis, point P has coordinates (x1, y1) and M is  
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Figure 14. Drawing a circle with centre at Q and 
radius QP 
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Figure 14a. The intersection point of the 
perpendicular bisectors of segment PQ and QR 
is the center of the circle tangent to L 
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Figure 15. When triangle PQR does become 
equilateral? 
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Figure 15a. Triangle PQR is equilateral when 
the circumcenter and orthocentre get 
intersected 
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the midpoint of segment QP and has coordinates 
x1

2
,
y1

2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
.   

Based on this information, the slope of line QP is 

m =
y1

x1  and the slope of the perpendicular bisector of 

segment PQ is
m1 = −

x1

y1 . Therefore, the equation of 
the perpendicular bisector of PQ can be expressed as: 

y −
y1

2
= −

x1

y1

(x −
x1

2
)
, and we take x = 0 

then
y =

x1
2

2y1

+
y1

2 . Thus, the centre of the tangent 

circle will be 
0,

x1
2

2y1

+
y1

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
. A simpler approach can 

also be applied by recognizing that the point P needs to 
satisfy that d(Q, C) = d(C, P). That is, if C(y, 0) and P 

(x1 y1) then we have that  y = x1
2 + (y1 − y)2

 which 

implies that 
y =

x1
2

2y1

+
y1

2  
Commentary: The dynamic representation of 

mathematical objects or problems is a heuristic that can 
guide the problem solver in the search of mathematical 
relations. The partial goal of drawing a circle with its 
center on a perpendicular to line L and radius the 
distance from the center to the given point (P) becomes 
relevant to visualize and examine properties of the 
solution. Based on those properties the tangent circle 
was constructed. In addition, the dynamic configuration 
is used to relate the problem to other mathematical 
objects (parabola and hyperbola). The problem solver 
must show and justify that the objects that are visualized 
through the loci satisfy the corresponding definitions. 
To accomplish this task, an important heuristic that 
gives an empirical verification is to measure distances 
between objects in order to observe invariants when 
particular objects are moved along specific paths. In this 
case, the process of measuring and comparing distances 
was a relevant strategy to verify empirically the 
definition of both conic sections. In addition, the 
dynamic representation of the tasks becomes a 
departure point to identify and examine a set of 
relations that emerge as a result of moving mathematical 
objects within the same configuration. The use of the 
software not only can help teachers and students 
identify important mathematical relations; but also to 
provide a route to support or prove them. In this task, 
the route involves ways to first visualize a relation, later 
to verify it empirically and finally to use geometric and 
algebraic arguments to prove it. 

Schoenfeld (1985; 1992) reports that in general 
students tend to copy or redraw figures that appear in 
the statement of the problems and use them to make 
conjectures or to identify relations.  With the use of 
paper and pencil the sketches or representations drawn 
not necessarily capture the objects’ precision and 
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Figure 16. Drawing a tangent circle to line L that 
passes through point P 
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Figure 16a. Drawing other tangent circles based 
on a symmetry pattern of the initial construction 
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Figure 17. Approaching the task algebraically 
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students often assume or perceive false conjectures or 
statements.  However, the use of the software allows us 
to accurately represent and draw mathematical objects. 
Also these representations can facilitate the process of 
looking for mathematical relations and the visual 
exploration of their plausibility. In addition, with the use 
of the software it is easy to change size or positions of 
the original objects to explore whether invariants or 
conjectures are maintained for a family of those objects. 
For example, in the task, the position of point P can 
change and the way to construct and generate the conic 
sections is preserved.  As a consequence, with the use of 
computational tools, the problem solver or students 
might develop a method of thinking of how to 
represent and approach a family of isomorphic 
problems. 

CONCLUDING REMARKS 

I use the construct “hypothetical instructional 
trajectory” to identify and examine potential routes that 
teachers can initially trace with the use of computational 
technology. How can an instructional route be 
constructed? Who can participate in such construction? 
And what is the role of the use of computational tools 
in constructing them? The initial task is used as a 
departure point to construct a dynamic configuration 
that leads us to constantly formulate and explore 
questions from diverse angles or perspectives. In this 
process, there is an attempt to identify crucial themes 
and ideas that teachers and researchers could relate and 
consider in their practice and research agendas: 

Inquiry Process.  There is ample evidence that the 
use of the tool offers the problem solver the 
opportunity of becoming engaged into an inquiry 
process that guides him/her to look for mathematical 
relations and means to support them (Santos-Trigo, et, 
al., 2007). Thus, learning mathematics and problem 
solving are processes in which students constantly pose 
or formulate questions to identify, examine, and support 
conjectures or mathematical relations. In the task 
discussed, there is no initial given question or problem 
to solve, instead the problem solver begins by 
assembling or putting together a geometric 
configuration which becomes the source to be engaged 
into an inquiry process in order to develop or 
reconstruct a set of mathematical relations. The use of 
the tools provides, in general, instantaneous response to 
the problem solver’ s queries and as a consequence it 
can foster the discussion of results within the learning 
community. Thus, such community should not only 
value or pay attention to the emerging relations or 
results; but also to the search for arguments to support 
them.      

Heuristic Strategies. An important heuristic 
associated with the use of the tools is to think of the 

tasks or problems in terms of mathematical properties. 
If the problem solver is to represent the problem 
dynamically it is necessary to identify relevant 
mathematical properties to guide the construction of 
that representation. What does it mean to draw a circle 
that is tangent to a given line? Is there a relation 
between the tangency point and the center of that 
circle? These are examples of questions that helped 
problem solvers to represent the task with the use of the 
tools. In addition, other heuristics such as identifying 
and exploring partial goals, assuming the task solved, or 
finding loci of particular objects are easy to implement 
with the use of the tools and are useful to explore and 
generate mathematical relations. 

The Use of Various Computational Tools. The 
efficient use of a tool to represent and explore 
mathematical problems is a process in which the 
problem solver identifies and recognizes the power and 
advantages to think of a given problem in terms of the 
software commands. The use of the tool also shapes the 
way students or problem solvers think of the problem 
(Kaput, Lesh, Hegedus, 2007). Since each tool offers 
particular advantages to deal with each problem, then it 
is relevant to utilize more than one tool to enhance the 
teachers or students’ ways to approach and solve 
problems (Santos-Trigo, et, al., 2006). For example, the 
use of dynamic software facilitates the construction of 
dynamic representations of objects while the use of 
hand-calculator offers certain advantages to represent 
and deal with the problem algebraically. Thus, it is 
important for the problem solver to utilize various 
computational tools to search for and complement 
different approaches to the problem. 

Curriculum Fundamentals. The task presented in 
this paper was discussed during two problem-solving 
sessions of three hours each. Some of the approaches 
emerged during the development of the session; but 
other ideas and task extensions emerged out of the 
sessions’ work where the participants continued 
commenting, exchanging, and testing other task ideas. 
Here, the participants pointed out that to promote their 
students work along the lines that appeared while 
approaching the task, it is necessary to reduce the 
curriculum contents that teachers are asked to cover in 
their regular courses. In this perspective, the participants 
suggested that the contents to be studied need to be 
structured and organized around fundamental 
mathematical ideas and problem solving processes that 
are relevant for students to construct and develop in 
depth (NCTM, 2000). It is also recognized that the use 
of the tools can help students to foster strategies and 
ways to formulate and pursue questions and eventually 
identify a set of mathematical relations.    

Teachers’ Use of the Tools and Mathematical 
Knowledge. How should in-service teachers 
incorporate the use of computational tools in their 
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instructional practices? There is evidence that the 
construction of potential instructional trajectories is a 
problem solving activity in which the teachers have the 
opportunity of recognizing the potentials and limitations 
associated with the use of the tools to represent and 
explore mathematical relations (Santos-Trigo, 2006). In 
addition, the use of the tools seems to promote the 
discussion of mathematical contents in terms of 
identifying potential routes for students to comprehend 
and apply the acquired knowledge. For example, in the 
initial task, the appearance of the conic sections while 
drawing a tangent circle not only promoted the 
discussion of the properties of those figures; but also 
the consideration of instructional paths in which the 
study of the conic sections could be structured or 
organized for students. Thus, a clear hypothetical route 
that emerges while approaching the task might focus on 
guiding the students to initially construct a dynamic 
representation of the problem to comprehend and make 
sense of relevant information associated with the 
problem situation. Later, the configuration becomes a 
source or instance to identify visually a set of relations 
or conjectures whose plausibility and validity can be 
validated empirically (quantification of those relations). 
Further, the use of tools not only facilitates the 
visualization and exploration of mathematical relations, 
but also provides important information to represent 
and analyze the relations in terms of geometric 
properties or algebraically. 

The use of computational tools offers teachers the 
possibility of guiding their students to develop an 
inquiry approach to interact with mathematical ideas or 
problems. In this process, problem solving and 
constructing mathematical ideas require more than 
responding particular questions, they demand that the 
students become engaged into a reflection activity to 
search for multiples ways to solve problems or to 
explain mathematical ideas, and to look for possible 
connections and means to communicate results. 
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The purpose of this research is to compare American and Albanian students’ achievement 
in Algebra 1 and to identify the educational practices that influence students’ achievement 
in each country.  The study compared algebraic solving abilities of 242 ninth-grade 
American students in Grand Forks (U.S.) and 219 students in Durres (Albania). The data 
collection instrument consisted of a Texas publicly-released standardized test and a 
student questionnaire. The test focused on the Algebra 1 knowledge covered during the 
academic year 2006-2007, whereas the questionnaire attempted to measure students’ 
perceptions of educational practices exerted in their classrooms and communities. The 
results showed that Albanian students outperformed American students in both overall 
achievement and algebraic representation skills. The first difference was significant at .05 
level whereas the second difference was not significant. Albanian students seem more 
involved than their American peers in practices, such as studying textbooks for 
understanding and test-taking, reading for enjoyment, and learning for the next day. 
Compared to Americans, Albanian students seem more satisfied with being in school and 
learning mathematics, and view mathematics as conducive to entering a college or 
university. American students, on the other hand, seem more concerned than Albanians 
about using and requiring calculators, spending out-of-school time with friends, sport 
activities, and electronic games. For them studying mathematics is about understanding 
other classes of high school curriculum Algebraic achievement of Albanian and American 
students seem to be affected by four and six educational practices, respectively. 
 
Keywords: Students’ Achievement, Educational Practices, Instruction. 
 
INTRODUCTION 

After a rich experience with teaching algebra in his 
home country, Albania, the author of this study had the 
opportunity to tutor, observe, and teach this discipline 
in the U.S. A number of differences related to 
educational practices, exercised in school and out-of-
school environments of both countries were observed. 
These differences led in generating the following 
questions: Do these differences result in algebra 
achievement differences? Are there other differences in 
cultural educational practices, which also affect 
achievement of students in both countries? This study 
provides an endeavor of answering these questions. 

Many previous studies have focused on cultural 
educational practices that are associated with students’ 
learning.  Their authors have pointed out that a 
classification of cultural practices into instruction-
related and non instructional-related educational factors 
produce a better understanding of the effect of cultural 
experience in mediating learning. The proposed 
suggestion has been useful in designing both 
international and multinational large-scale studies. This 
study was designed to make a contribution to this field 
by comparing Algebra achievement of ninth grade 
students in the U.S. and Albania, as well as by 
identifying the educational practices within each culture 
that may affect student learning.  

The topic of this study was Algebra 1 because this 
mathematics course is considered a gateway to further 
mathematical preparation of almost all high school 
students in every country. American and Albanian 
students’ achievement in Algebra 1 was measured by 
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using a standardized test, commonly used in the U.S. 
The examination of educational practices was 
determined by obtaining students’ perceptions about 
educational practices. In the student’ questionnaire 
items were divided into two categories, instructional and 
noninstructional. The first category included students’ 
perceptions of teacher strategies, use of textbooks and 
use of calculators. The second category included 
students’ believes about the organization of their 
school-days, students’ attitudes toward school and 
mathematics, and their feelings about home 
environment. 

The results of  this study will allows teachers of both 
countries to compare best practices and to further 
develop their own improvements, ones appropriate for 
their school systems. 

Purpose of the Study 

The first purpose of this study was to compare 
algebraic achievement of students in the U.S and 
Albania. This comparison was made at two levels: 
1. Students’ mastering of the overall algebraic 

achievement. 
2. Students’ mastering of algebraic representation 

skills. 
The second purpose was to compare the 

instructional and noninstructional practices of the two 
countries, as well as to identify educational practices 
which contribute toward overall algebraic achievement 
of students in each country. 

LITERATURE REVIEW 

Algebraic achievement 

The overall algebraic achievement 

TIMSS International Studies show that Japanese and 
Singaporean students outperform US students (Beaton 
et al., 1996). TIMSS students from some European 
countries, such as Germany, Belgium and Holland also 
display higher levels of achievement compared with that 
of the U.S. students (Lemke & Gonzales, 2006; Stigler 
&  Hiebert, 1999).  In 2003, the U.S. achievement in 
mathematics literacy and problem solving was lower 
than the average achievement for most industrialized 
(OECD) countries. The United States also performed 
below the OECD average on each mathematics literacy 
subscale representing a specific content area (NCES, 
2004).  

A review of research indicates that there is a lack of 
information with regard to Albanian students’ 
participation in international competitions or 
comparisons. The most recent information is related to 
Albania’s participation in PISA 2000, where Albanian 

students scored second worst in the international 
assessments of student learning outcomes in reading, 
mathematics and science literacy (OECD, 2001).  

Students’ Preference of Representation Models 

National Assessment of Educational Progress 
showed that most seventeen-year-olds in the U.S. could 
perform basic arithmetic operations, but nearly all of 
them failed to solve multi-step problems that require 
symbolic algebra (Dossesy et al., 1988). Healy & Hoyles 
(2000) found also that using algebraic means in order to 
justify and explain problem-solving procedures is really 
hard for high school students. In their attempts to solve 
algebra word problems many American secondary 
students prefer to justify and explain mathematical 
solutions in a verbal mode (Cai, 2004).   

The Institute of Pedagogical Studies in Albania 
recently conducted a study to examine, among other 
things, students’ work with algebra word problems 
given on the National Leaving Examinations. The 
findings showed that the vast majority of Albanian 
students preferred a numerical mode of representation; 
more specifically, 37 percent of answers were in verbal 
and diagram mode, and only 11 percent were 
represented in an algebraic mode (Lulja, 2003).  

Instructional and Noninstructional Factors that  

Affect Algebra1 Achievement 

A review of previous research was conducted in an 
attempt to examine the differences between educational 
practices used in the two cultures as well as the role of 
these practices on student achievement.  

Instructional Factors 

Several studies have examined the relationship 
between students’ academic achievement and students’ 
beliefs about instructional factors, such as instructional 
strategies, use of textbooks, and use of calculators. 

Instructional strategies: Students’ perceptions of what 
kind of instructional strategy their teachers employ in 
classroom have an important influence on their 
responses to school. Studies have shown that American 
algebra teachers vary substantially in terms of the 
content they teach and the cognitive approach they 
pursue (Farrell & Farmer, 1998).Thus, Stigler and 
Hiebert (1999) underline three main characteristics of 
American teaching of high school algebra. First, 
American teachers use a variety of teaching strategies. 
Students may work together as a class or break off into 
small groups. Second, American teachers spend nearly 
87 of the class time by working with their students and 
much of it is spent with individual students or small 
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groups, rather than with the class as a whole. Third, 
most teachers in the U.S. use visual devices to focus 
students’ attention. As they finish each part of their oral 
presentation, they often erased that part of the written 
material and moved to the next item. 

In Albania, when teachers grade individual students, 
often they call students on the board for completing an 
exercise; the rest of the class observes (Musai & Boce, 
2003). Other research on the teaching of algebra 
provide data, which show that Albanian teachers tend to 
spend a lot of instructional time on examining algebraic 
reasoning of  eighth and ninth graders (Lambiri, 2004; 
Musai & Boce, 2003). 

Textbooks. Between 67 and 90 percent of all 
classroom instruction in any subject and at any level 
consists solely of textbook applications (Muth and 
Alvermann, 1992). Schmidt et al. (2001) found that 
American ninth graders do not devote adequate time to 
studying their textbooks, and this attitude is negatively 
correlated to their achievement. On the other hand, 
Albanian researchers (e.g., Llambiri, 2004) have 
documented a strong influence of textbooks on 
mathematics attainment of Albanian students. 

Calculators. A comprehensive review of the research 
on handheld graphing calculators in secondary 
mathematics instruction indicated positive correlations 
between use of calculators and mathematics 
achievement. For example, Telese (2000) found that 
students in the U.S. who more frequently used 
calculators during mathematics lessons showed higher 
algebra test scores. Other authors indicated that there is 
improved student conceptual understanding when 
students use graphing calculators with curricula 
specifically designed to take advantage of the technology 
(Burrill et al., 2002; Ruthven, 1990). The Heller and 
Paulukonis’ study (2000) reached the same conclusion 
on the domain of Algebra.  

Albanian teachers do not seem to rely on the 
calculators when they develop their lessons. 
Furthermore, they do not encourage their students to 
use calculators on tests (Llambiri, 2004).  

Noninstructional Factors. 

Stigler and Hiebert (1999) assert that, besides 
instructional factors, there are other noninstructional 
factors, such as school day organization, students’ 
attitude towards school, students’ attitude towards 
learning mathematics, and home environment, which 
tend to affect students’ leaning outcomes.  

School-day organization. Research in cognition (e.g., 
Martin et al., 1995; Stevenson & Lee, 1990), has shown 
that American out-of-school students’ experiences have 
a substantial effect on their learning. With respect to 
students’ management of free time, in about half the 
TIMSS 1995 countries, including the U.S., the highest 

mathematics achievement was associated with watching 
from one to two hours of television per day. This was 
the most common response, reflecting from 33 percent 
to 54 percent of the students for all countries (Martin et 
al., 1995).  

Two recent studies (Mita, 2001; Rrapo, 2006) have 
examined the school day organization of ninth graders 
in Albania. Based on PISA 2000 study results, for 
Albanian students, watching television less than one 
hour per day, generally was associated with lower 
average mathematics achievement than watching one to 
two hours (Mita, 2001). In another study, Rrapo (2006) 
attempted to examine the association of high school 
students’ achievement with the noninstructional time, 
spent on learning. He found a significant positive 
relationship between these variables. The relationship 
was found to be even stronger when the time was spent 
on doing written homework. 

Students’ attitude to school. Students’ attitude toward 
going to school has been given various labels, such as, 
students’ sense of belonging at school, social aspect of 
schooling, etc. Consideration of students’ sense of 
belonging at school has been shown as an effective way 
for measuring the relationship between students’ 
attitude toward school and student achievement. 
Following this approach, PISA 2003 study showed that 
higher scores in the variable of “belonging at school” 
were associated with higher scores on OECD students’ 
achievement (Nohara, 2001). In addition, results of 
TIMSS 1995 study showed that the American “student’s 
aspirations for future education” was one of the 
strongest school-level predictors of achievement (Martin 
et al., 1995). Sociologists have found that students in the 
United States focus more on the social aspects of school 
than the academic ones; for them school is about 
friends (Coleman, 1988; Goodlad, 1982).  

PISA 2000 results show that Albania is among the 
four countries, which scored lowest on students’ sense 
of enjoying school. More specifically, students’ sense of 
belonging to school in programs designed to provide 
direct access to the labor market, tends to be lower than 
in academically oriented programs (Mita, 2001). The 
social aspect of schooling is important for Albanian 
students as well. But, many students who enter high 
school level seem more focused on the academic aspect 
of schooling. They want to complete it successfully in 
order to enter a college or university. Their ultimate goal 
is to find a good job that will lead to a higher standard 
of living (The World Bank, 2005).  

Students’ attitude to learning mathematics. Ma (1999) has 
demonstrated that primary among the variables that 
determine achievement in mathematics (AIM) is attitude 
toward mathematics (ATM). The research literature, 
however, has failed to provide consistent findings 
regarding the relationship between ATM and AIM. 
Thus, a number of researchers have demonstrated that, 
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in the samples of the U.S students, the ATM-AIM 
correlation is quite low, ranging from zero to 0.25 in 
absolute value, concluding that the ATM-AIM 
relationship is not of practical significance (Wolf & 
Blixt, 1981).  

Results of PISA 2000 study show that Albanian 
students with greater interest in and enjoyment of 
mathematics tend to achieve better results than those 
with less interest in and enjoyment of mathematics 
(Mita, 2001). 

Home environment. Numerous sociological studies have 
found that the home environment has an impact on 
achievement in the United States (Riordan, 2004, 
Kutner, 1996). Referring to the TIMSS 1995 results, 
Martin et al. (1995) point out, that the parental academic 
pressure was found to be significant in the U.S., with 
higher pressure generally being found in the higher-
achieving schools. In addition, these authors report a 
positive relationship between achievement and the 
presence of academic aids, such as computers, study 
desks, and dictionaries, at American students’ homes. 

That most of Albanian high school students seem 
more focused on the academic aspect of school 
probably has much to do with the involvement of 
parents in children’s education. Albanian parents regard 
doing well in school as the single most important task 
facing their children. This attitude is expressed, for 
example, on the complete participation of parents in 
teacher-parent conferences, scheduled on the last 
Thursday of every school month (Musai & Boce, 2003). 
What makes these conferences unique in Albanian 
culture is that they are used by parents to both receive 
the necessary feedback about children’s academic 
progress and provide support for teachers as they try to 
do their job (The World Bank, 2005). 

METHOD AND INSTRUMENTS 

Locations  

Durres. The region of Durres was chosen for the 
study of Albanian high school students primarily 
because its schools are populated not only by the native 
families of this city, but also by children of families that 
a decade ago used to live all over Albania. In 
consultation with the regions’ education authorities, a 
representative sample of high schools was selected. This 
sample included one of the city’s most outstanding 
schools, two average schools in rural area of the city, 
and one school in the countryside. Of four chosen 
schools, three were comprehensive and one was 
vocational. The subjects included all Algebra 1 students 
present on the first and second hour period on the day 
each of the four schools were visited and included 219 
students. 

Grand Forks. The sample of American students was 
chosen from Grand Forks county, state of North 
Dakota, which is the researcher’s living area. The data 
available from the National Assessment of Educational 
Progress (NAEP) indicates that ND appears to be 
among the top states for its high scores in mathematics 
of grade 8 (NCES, 2005). Located in the Northern 
Plains of the U.S. Grand Forks county is somewhat 
homogeneous in terms of population and economic 
status. Schools were selected in consultation with 
education authorities to represent the full range of the 
county’s high schools.  

All ninth graders in attendance of four schools 
visited during the first two hours of the test days were 
included in the sample. The total number of students 
included in the Grand Forks sample was 242. April and 
May 2007 were the periods of data collection in Grand 
Forks and Durres, respectively. Children in both 
countries begin compulsory education at age 6 so that 
there is no difference in age of students at the same 
grade level. In addition, the statistical data made 
available from the Ministry of Education in Albania 
indicates that 80 percent of eight graders enrolled in the 
academic year 2005-2006, continued to the upper 
secondary school. This percentage is similar to the 
enrollment rate of students in Grand Forks, given that 
not all ninth graders attend Algebra 1. Part of them is 
enrolled in faster or slower paths than Algebra 1 subject 
matter. 

Measures  

Instrument. The instrument consisted from a student 
questionnaire and an Algebra 1 achievement test. The 
student questionnaire was used to collect information 
about cultural practices in both countries. More 
specifically, the questionnaire included questions about 
teacher practices, use of textbooks, homework 
assignments, calculator usage, the school day 
organization, attitude towards school and learning, 
attitude towards mathematics and home environment 
(see Appendix A). Students’ responses were measured in 
a 4-point scale. Only two questions related to “home 
environment” factor were measured in a dichotomous 
scale. Questions were analyzed to identify predictors of 
student scores on the algebra test. 

A Texas publicly-released standardized test was 
administered to Algebra 1 students in four schools of 
Grand Forks and four schools of Durres (see Appendix 
B). The test was based on the careful analysis of the 
content of Algebra 1 (Mathematics 1.1, in Albania) and 
the respective syllabi. Mathematics teachers in each 
country checked each type of problem concerning its 
inclusion in the respective curricula. In the process of 
test design, attention was paid to selecting those items 
that fulfill the following conditions: 
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1. Items belong to the Algebra 1 content. 
2. Items belong to the topics that are studied in all 

participating classrooms. 
3. Items involve simple arithmetic computations 

with relatively small integers. 
The test contained 15 problems. The first nine 

problems were multiple-choice questions and the last six 
problems were response-constructed questions. 
Students’ answers on the 9 first questions were 
measured using 0-1 system: 0, for the wrong answer and 
1, for the right answer. Students’ responses on the last 6 
questions were measured twice; they were checked for 
both the correct answer on 0-1 system and for the 
written representation approach on a 6-point scale. 
Thus, students’ achievement was examined twice. The 
wrong-right system was used to assess the overall 
algebraic achievement, while the 6-point scale was used 
to measure the use of algebraic representations of 
solutions.  Regardless of an answer being correct 
or not correct, the solution representation was measured 
as follows: 0-no solution at all, 1-use of arithmetic 
manipulations, 2-use of words or verbal representation, 
3-use of charts, tables or any graphical representations, 
4-use of language, such as algebraic symbols, equations, 
inequalities, and 5-use of combination of algebraic 
methods with other computational methods 

Despite the frequent use of calculators, many 
teachers in Grand Forks and Durres do not allow their 
students to use calculators in test. Thus, some classes of 
both countries used calculators in this test and some did 
not. Because the test items did involve simple 
computations, the calculator usage was thought to have 
little impact on the overall performance.  

Skilled, bilingual professionals translated the test and 
questionnaire from the original version in English into 
Albanian. The questionnaire and the test were included 
in the same booklet. Forty-five minutes were allowed 
for students of both countries to answer the questions 
of the questionnaire first, and then complete the test. 

Initially, the instrument, first, was piloted in a class 
of the city of Grand Forks in order to check its 
reliability. The internal reliability of the test was high; 
Cronbach alpha coefficient for the test was .83. The 
Cronbach alpha for the items in the questionnaire 
ranged from .69 to .97.  

RESULTS  

Achievement test 

The analysis showed that Albanian students in the 
overall test outperformed the American students; this 
difference was statistically significant at 0.05 level. The 
average score for the American students was 6.67 (SD = 
2.99) and for the Albanian students it was 7.36 (SD = 
3.19), [F (1, 459) = 5.7], p = 0.0173. The advantage of 

the Albanian students was also evident in the 
constructed response part of the test, which examined 
algebraic representation skills. In this domain the 
average score for American students was 8.4 (SD = 5.6), 
whereas for Albanian students it was 8.9 (SD = 7.5) (see 
Figure 1). But this difference, unlike the previous one, 
was not significant (p > 0.39)  

Questionnaire 

The perceptions of students in the two countries 
were compared in an attempt to clarify their possible 
relation to the Algebra 1 scores. Below is presented the 
instructional category, which included questions related 
to teacher practices, students’ use of their textbooks and 
calculators. 

Teacher practices. When students were asked about 
grading in front of the class, Albanian students 
responded with an average score of 1.8, whereas the 
average for American students was 1.1. [F (1, 462) = 
98.9], p < .001. Lecturing from the board was scored 
higher from Albanian students. On a 4-point scale it was 
2.5, whereas the American average score was 1.9. [F (1, 
464) = 51], p < .001. Albanian teachers tend to ask for 
students’ explanations and justifications more than 
American teachers do.  Thus, the average score of 
Albanian students for this type of instruction was 2.5 
whereas for American students it was 1.8. [F (1, 459) = 
60.5], p < .001. More drastic was the difference of 
scores given by students when they were asked about 
beginning homework in class (see Table 1).   

Use of textbooks. In Table 2 we see that not only 
Albanian students, compared with their American peers, 
are more dependable on their textbooks, but also that 
American students use relatively little their textbooks. 
The biggest difference in average scores is related to 
studying for exam. On the 4-point scale American 
students scored .96 whereas Albanian students 2.6 [F (1, 
464) = 536.7], p < .001. 

Use of calculators. Although some teachers involved in 
the study did not allow calculators during the test, 
students are always allowed or encouraged to use their 
calculators in mathematics classrooms. When students 
were asked about how much they use calculators in 
classroom, American students responded by an average 
score of 2.5, whereas Albanian students, 1.2, [F (1, 462) 
= 165, p < .001   Likewise, American students were 
more relied on their calculators. On a 4-point scale, they 

Table1. The comparison of average scores on the 
overall achievement and algebraic skills 

Country Albania US 

Overall achievement 7,36 6,67 
Representation skills 8,9 8,4 
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scored 1.7 as opposed to Albanian students who scored 
1.2. [F (1, 462) = 44, p < .001. 

Noninstructional factors included items related to school day 
organization, students’ attitude toward school and mathematics, 
and home environment.  

Organization of the school day. When students were 
asked to rate themselves in terms of spending a daytime 
in non-school related activities, in most of these 
activities American students gave themselves higher 
ratings than did the Albanian students. The respective 

average ratings for the U.S and Albanian students on I 
watch TV, videos, use Internet or play with computer games  
were 2.3 (SD=1.0) and 1.9 (0.9) [F (1,464)=18.9], p < 
.001.  The item I Read a book for enjoyment was rated 
higher by Albanian students than by American students. 
In addition, Albanian students spent more time in 
preparing classes for the next day than did the American 
students, which is a clear indication that American 
students gave less emphasis to effort than did the 
Albanian students. Students of the two countries did not 

Table 2. Teacher Practices 

    AL (N=217) US (N=242)    
   M SD M SD F-value 
Our teacher grades solutions we present on the 
board 1,8 0,8 1,1 1 74 
We explain or answer the question “why?” 2,4 0,7 1,8 0,9 60,5 
We copy lecture notes from the board 2,5 0,7 1,9 1,1 0 
We begin our homework in class 0,5 0,6 2,5 0,7 991 

Note: All items are rated on a 4-point scale (see Appendix 2). df (1, 458-464). All Ps < .001 
 

Table 3. Use of Textbooks 

    AL (N=217) US (N=242)    
   M SD M SD F-value 
I use my textbook:          
To carefully read for understanding   2,6 0,6 1,2 0,9 342 
To look at examples   1,9 0,9 1,6 0,9 9,8 
To study for the exam   2,6 0,6 1 0,9 536,7 

Note: All items are rated on a 4-point scale (see Table 1). df (1, 461-464). All  Ps < .001 
 

Table 4. Organization of school days 

  AL (N=217)  US (N=242)    
  M SD M SD F-value 
I watch TV, videos, use Internet or play with 
computer 1,9 0,9 2,3 1 18,9 
I spend time with my friends 1,6 1 2,6 2,9 20,6 
I work at a paid job 0,3 0,9 0,8 3 7,1 
I play sports 1,1 0,9 1,8 1,3 42 
I read a book for enjoyment 1,7 1 0,5 0,9 188 
I prepare for all classes of the next day 3,5 0,8 0,8 0,6 1312 
Tutoring out of your regular class 0,7 1,1 0,5 1,6 11,6 

 

Table 5. Attitude toward Mathematics 

    AL (N=217) US (N=242)   
   M SD M SD F-value 
I usually do well in mathematics   2,1 0,6 2 0,6 0,27 
I enjoy learning mathematics   2,4 0,6 1,7 0,7 127 
I need mathematics to learn other school 
subjects   2 0,8 2 0,6 0 
I need to study hard in math to get into the university 2,6 0,7 2,2 0,6 22,7 

Note: All items are rated on a 4-point scale (see Appendix 2). df (1, 458-464). All Ps < .001 
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differ in amount of time they devoted to tutoring (See 
Table 3). 

Students’ attitude toward mathematics. Albanian students 
expressed more satisfaction with learning algebra than 
did the American students. The average score of 2.4 for 
Albanian students was higher than the average score of 
1.7 for American students [F (1,463) = 127], p < .001. 
In terms of satisfaction with performance in Algebra 1, 
Albanian and American scores did not differ 
significantly. The differences of scores were also not 
significant in the question that addressed the need of 
learning math in order to study other disciplines (see 
Table 4). 

Attitude toward school. As it can be seen from Table 5, 
Albanians are more satisfied than Americans with being 
in school. Albanians’ average score of 2.9 is higher than 
Americans’ average score of 1.75. While being in school, 

Americans score higher the friendship aspect of school, 
whereas Albanians scored higher the aspect of learning 
new things. 

Home environment. Students were asked whether they 
had at their homes a place designed for their study. On 
a two-point scale, American average score of .6 was 
lower than that of Albanian score of .9 [F (1,462) = 
98.9], p < .001. The other question was related to 
parents concern about their children’s success in school. 
In this case the difference of average scores was not 
significant and for both countries was high. 

Relations between Students’ Perceptions and 
Attitudes, and Achievement 

One of the main purposes of the study was to find 
instructional and noninstructional factors that affect 
Algebra 1 achievement. After separating data for the 

Table 6. Attitude toward School 

  AL (N=217)  US (N=242)   
  M SD M SD F-value 
I like being in school 2,9 0,4 1,75 0,7 401 
I think that the most important thing of going         
to school  is learning new things 2,7 0,5 2 0,6 185 
I think that most important thing of going to         
school is making new friends 1,4 0,7 1,9 0,7 59,7 

Note: All items are rated on a 4-point scale (see Table 1). df (1, 461-464). All Ps <.001 
  
Table 7. Factors that are significantly correlated with algebra achievement 

  US AL 
I spend time with my friends -0,16689 -0,2045 

0,0093 0,0025 
242 217 

I play sports   -0,14486 
0,0334 
216 

I prepare for all classes of the next day   0,24274 
0,0003 
218 

I usually do well in mathematics 0,30931 0,2442 
0,0001 0,0003 
242 215 

I enjoy learning mathematics  0,17296   
0,007 
242 

I need mathematics to learn other school subjects 0,22106   
0,0005 
242 

We copy lecture notes from the board  -0,16673   
0,0094 
242 

I need calculator to do math -0,17447   
0,0065 
242 
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American and Albanian students, all possible 
correlations of variables within each sample were 
computed. Only significant correlations were sorted out 
and are presented in Table 7. 

In the case of American students, of six significant 
correlations, only three variables had significant positive 
correlations with math achievement: I Usually Do Well in 
Mathematics, I Enjoy Learning mathematics, and  I Need 
Mathematics to Learn Other School Subjects. The three other 
variables: I Spend Time with my Friends, We Copy Lecture 
Notes from the Board, and I need Calculator to Do Math had 
negative correlations with math achievement. For 
Albanian students, two variables, namely, I Prepare for All 
Classes of the Next Day and I Usually Do Well in 
Mathematics had positive significant correlation with the 
math achievement, whereas the two others, I Spend time 
with my Friends and I Play Sports were related negatively 
with achievement. 

Two variables, I Spend Time with my Friends and I 
usually do Well in Math, were significant predictors for 
both samples. The most influential predictor for the 
American students was I Usually Do Well in Mathematics 
and for Albanian students it was I Prepare for All Classes 
of the Next Day. 

DISCUSSION 

The examination of students’ performance on 
particular items of the achievement test shows that 
students of both countries have difficulties with learning 
algebra. On average they answered less than 50 percent 
of test questions correctly. Results related to the first 
item of the test (computing the value of an algebraic 
expression) show that approximately 35 percent of 
American students lack the skills needed to perform 
arithmetic operations with simple integers. On this item, 
many students chose the answers less than one, thus 
demonstrating the lack of basic estimation skills that 
would allow them to mentally distinguish between 
fractional values that are greater than 1 versus those that 
are less than 1. Likewise, results related to question 15 
of the test (solving a linear inequality with absolute 
value) show that American classrooms are lack top 
students capable of correctly solving challenging 
problems. 

Regarding the ability of students to use the algebraic 
language for solving response constructed problems 
nearly two thirds of ninth graders participating in this 
study demonstrated the use of nonalgebraic methods to 
solve algebra word problems. In addition, the majority 
of Albanian students, who are dictated by mathematics 
1.1 curriculum to use only algebra for solving word 
problems, are not able to translate the relation part into 
an algebraic equation (taking for granted that this 
relational part has been identified from them). However, 

Albanian students, compared with their American peers, 
demonstrated more use of algebra. 

Findings of this study show that instructional and 
noninstructional factors, expressed through students’ 
perceptions, attitudes and beliefs, influence students’ 
performance. Lower ratings given to blackboard-based 
lecturing are associated with low scores for American 
students. Likewise, high ratings given by American 
students to reliance on their calculators lead to lower 
test scores for them in Algebra 1 test. In contrast, the 
high rates given by Albanian students to such teaching 
practices as grading students at the blackboard or asking 
them to justify their answers, lead to higher test scores 
for them.  

Noninstructional cultural factors appear to be also 
important in terms of affecting students’ performance. 
This study, for example, underscores the consistence of 
the American students’ self-concept of “doing well in 
mathematics” with their overall achievement. For 
Albanian students the need for studying hard to get into 
the universities lead to higher scores in the achievement 
test. In addition, Albanian math achievement was also 
predicted by their satisfaction with school and learning 
math.  

Spending time for reading and learning is another 
factor that significantly influences students’ 
achievement. When the after-school time is spent for 
playing and socializing with friends, a factor that is rated 
high by American students, then their achievement test 
scores tend to decrease; by contrast, when the time is 
spent for the academic preparation for the next day or 
reading in general, a factor that is rated high by Albanian 
students, then their test scores tend to increase. This 
conclusion for Albanian students is aligned with their 
beliefs that school is for learning, rather than for making 
new friends. 

This study represents a first attempt of exploring 
differences and similarities between cultural factors in 
the U.S. and Albania that affect students’ achievement 
in Algebra 1. More carefully designed comparative 
studies, involving bigger samples and especially 
qualitative methods, are needed to help deepen our 
understanding of how cultural factors exercised in both 
countries influence students’ learning. 
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APPENDICES 
 
APPENDIX A 
Student Questionnaire (English Version) 
 
Part ONE: Questions intended to measure cultural factors 
 For each item mark one option only 
I. Organization of the school days 
 
1. On a normal school day, how much time (on average) do 
you spend before or after school doing each of these things? 
 
a) I watch TV, videos, use Internet or play with computer 

games    
___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
b) I spend time with my friends 
___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
c) I work at a paid job 
 ___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
d) I play sports  
___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
e) I read a book for enjoyment 
___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
f) I prepare for all classes of the next day? 
___0 h;  ___1 h;   ___2 h;  ___3 
h;  ___4 or more hours. 
 
2. During this school year, how often have you had tutoring 
or extra lessons in Algebra 1 that are not part of your regular 
class? 
 
______Every day or almost every day 
 
______Once or twice a week 
 
______Once or twice a month 
 
______Sometimes 
 
______Never or almost never 
 
II. Students’ attitude towards learning mathematics 
  
3. How much do you agree with these statements about 
learning mathematics? 
a) I usually do well in mathematics 
 ___Strongly agree  ____Agree   
____Disagree    ___Strongly disagree  
 
b) I enjoy learning mathematics   
___Strongly agree  ____Agree   ____Disagree  
___Strongly disagree  

 
c) I need mathematics to learn other school subjects  
___Strongly agree  ____Agree   ____Disagree 
___Strongly disagree  
 
d) I need to study hard in math to get into the university or 
college of my choice   
___Strongly agree  ____Agree   ____Disagree  
___Strongly disagree  
 
III. Students’ attitude towards going to school 
 
4. How much do you agree with these statements about the 
school  
 
a) I like being in school  
___Strongly agree  ____Agree   ____Disagree 
___Strongly disagree  
 
b) I think that the most important thing of going to school is 
learning new things. 
___Strongly agree  ____Agree   ____Disagree  
___Strongly disagree  
 

c) I think that most important thing of going to school is 
making friends 
___Strongly agree  ____Agree   ____Disagree  
___Strongly disagree  
 
IV. Home environment 
 
5. In your home, is there a place designed for you to study? 
______Yes  ____No 
 
6. Are your parents concerned about your success in school? 
______Yes _____No  
 
 
Part TWO: Questions intended to measure instructional 
factors 
 

I. Teacher practices 
 

1. Our teacher: 
a) Grades solutions we present on the board 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
Reteaches the same topic on the next day when this topic is 
not understood by students: 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
How often do you do these things in class?  
 
We explain or answer the question “why?”  
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
We copy lecture notes from the board   
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
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We begin our homework in class  
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
d) We have quiz  
    
____Every day or almost every day  
   
____Once or twice a week   
 
 ____Once or twice a month  
 
 ____Sometimes   
 
 ____Never 
 
3. How often do you take these types of tests? 
 
a) We take multiple-choice tests 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
b) We take response question tests 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
c) We take a combination of the two above tests 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
II. Students’ use of textbooks 
 
4. I use my textbook 
 
To carefully read for understanding 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
To look at examples 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
To study for the exam 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
 
III. Calculator usage 
 
5. We use calculators during math classes  
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
6. We are allowed to use calculators on tests  
 ___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
7. I need calculator to do math 
___Always or almost always  ___Most times 
___Some times ___Never or almost never 
 
 

APPENDIX B 
The Standardized Achievement Test (English Version) 
 
Part I: MULTIPLE-CHOICE QUESTIONS 
Use the blank spaces surrounding the given questions or 
the backs of these sheets as a place for your scratch 
notes 
 
Read each question. Then mark or circle the letter for the 
answer you have chosen. 

1. What is the value of  if x is 2?  

abovetheofNonee

d

c

b

a

...)
2
1)

4
1)

6
1)

8
1)

 
 
2. Which function includes all of the ordered pairs in the 

table?  
 
x -2 -1 0 1 2 
y 9 3 1 3 9 

  3)()
2)()

12)()
1)()

4)()

2

2

2

+−=
+−=

+=

+=

+=

xxfe
xxfd
xxfc

xxfb
xxfa

 
 
3. At which point does the graph of  f(x)=x2+3x-18 

intersects the x-axis? 

)0,9()0,2)(
)0,6()0,3)(
)0,3()0,6)(

)0,3()0,6)(
)0,2()0,9)(

ande
andd
andc
andb
anda

−
−
−

−−
−

 
 
4. What is the value of x in the following equation? 
3x-4(x+1)+10=0 

14)
11)
10)
6)
2)

e
d
c
b
a
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5. W

)

)
)
)

)

=

=
=

=

=

ye

yd
yc
yb

ya

 
6. Lo

sh
we
W
sh

ye
yd
yc

yb

ya

)
)
)

)

)

=
=
=

=

=

 
7. A 

on
eq

5)
4)
3)
2)
1)

−
−
−
−
−

e
d
c
b
a

 

ro 

Which function 

1
2
1

1
2
1

2

+

−

−

x

x
x

x

x

 

ola keeps a rec
he studied a tot
eek she studied

Which equation
he would read 

x
x
x

x

x

75.12
5.8
5.1

3
2
17
2
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were the same length. What was the length of the longest 
piece of wire? 

 
12. Yesterday, a total of 24 students were present in Alfred’s 

class. There were 3 fewer girls than twice the number of 
boys. Find the number of girls and boys who were 
present in Alfred’s class. 

 
13. Ms. Ann has saved $325 for a new refrigerator. She plans 

to save an additional $50 per month. What is the least 
number of months she will need to save money in order 
to have enough to buy a refrigerator that costs $760, 
including tax. 

 
14. Draw by hand a coordinate plane and shade the part that 

represents the graph of 2x-3y ≤ 18. 
 
15. Solve the inequality: │3x-5│+1 ≥ 8 and graph the 

solutions on the number line. 
 
 
 
 

 



 

 

 



Eurasia Journal of Mathematics, Science & Technology Education, 2008, 4(4), 373-380 

Copyright © 2008 by EURASIA 
E-ISSN: 1305-8223 
 
 

 
 

Students’ Perceptions of Sense of 
Community in Abstract Algebra: 
Contributing Factors and Benefits  
 
Hortensia Soto-Johnson, Nissa Yestness, and Casey Dalton 
University of Northern Colorado, Greeley, Colorado, USA 
 
 
Received 20 November 2007; accepted 19 August 2008 
 
 
In this phenomenological study, we explore how multiple assessments contribute to 
creating a sense of community (SOC) in an undergraduate abstract algebra course. Strike 
(2004) describes community as a process rather than a feeling and outlines four 
characteristics of community: coherence, cohesion, care, and contact. In this report, we 
describe contributing factors to and perceived benefits of SOC that students provided in 
an open-ended interview. Our findings indicate students viewed the teacher and the 
classroom environment as the primary sources for creating a SOC. Our findings also 
suggest students believed the SOC of the classroom increased classroom interaction and 
opened the doors of communication between students and with the instructor. The 
contributing factors align with Strike’s and McMillan and Chavis’(1986) definitions of 
community, support social cognitive theory, and serve as a model for building a SOC in 
the classroom.  
 
Keywords: Abstract Algebra, Multiple Assessments, Mathematics Classroom, Sense of 
Community 
 
INTRODUCTION 

 In this qualitative study, we explore how multiple 
assessments contribute to creating a sense of 
community (SOC) in an undergraduate two-semester 
sequence abstract algebra course. Steen (1999) offers six 
guidelines to follow regarding undergraduate 
assessments in Assessment Practices in Undergraduate 
Mathematics. He claims assessment should (1) be a 
continuous cycle, (2) be an open process, (3) promote 
valid inferences, (4) employ multiple measures of 
performance, (5) measure what is worth learning, and 
(6) support every student’s opportunity to learn 
important mathematics. With this in mind, 
mathematicians and mathematics educators began 
implementing a number of diverse assessments into 
their undergraduate mathematics courses including: 

collaborative assessments (Rouoviere, 1999), writing 
assignments (Blum, 1999), portfolios (Knoerr & 
McDonald, 1999), e-mail (Fried, 1999), and oral 
components through interviews or presentations (Heid, 
1999). Although the literature pertaining to 
implementation of diverse assessments in undergraduate 
mathematics is plentiful, there is little research on the 
impact of various assessments implemented 
simultaneously into the same undergraduate 
mathematics course. In this report, we describe how 
multiple assessments meet other educational goals. 
Specifically we discuss how assessments contribute to 
the sense of community of the mathematics classroom. 
Our research questions are: 

1. How do assessments contribute to a SOC in the 
mathematics classroom?  

2. What are the benefits of creating a SOC in the 
mathematics classroom? 

 McMillan and Chavis (1986) define SOC as a 
perception where one feels (1) a sense of belonging, (2) 
influential, (3) nurtured, and (4) an emotional 
connection to the group. Hill (1996) suggests SOC goes 
beyond individual relationships and fluctuates from 
setting to setting, such as in a classroom. Strike (2004) 
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further portrays community as a process rather than a 
feeling and outlines four characteristics of community: 
coherence, cohesion, care, and contact. Coherence 
refers to a shared vision; cohesion is the unity, which 
results from the shared vision; care is a necessity to 
initiate one into the vision, and contact refers to 
structural features of the community. 

Much of the research related to SOC focuses 
primarily on adolescents (Pretty, Andrewes, & Collett, 
1994; Sanchez, Colon, & Esparza, 2005; Strahan & 
Layell, 2006; Strike, 2004; Wighting, 2006). Pretty et al. 
argue SOC is significantly related to adolescent’s 
loneliness. Sanchez et al. discuss the role of sense of 
belonging and academic outcomes of urban, Latino 
adolescents. Their results indicate a sense of school 
belonging is a good predictor for academic motivation, 
effort, and absenteeism. Strahan and Layell describe 
how struggling middle school students are able to 
progress in reading and mathematics under the tutelage 
of supportive teachers who provide an environment 
centered on the learner. Wighting shows how the use of 
computers in teaching may contribute to SOC and 
suggests SOC can be associated with academic success. 
Pretty and McCarthy (1991) ascertain the length of time 
a person spends in a setting and SOC do not have a 
consistent relationship. This suggests it is possible to 
create a SOC within a short- or long-term frame; our 
study supports this assertion.  

More recently, researchers investigated the impact of 
SOC with college students, albeit the research is 
minimal. Jacobs and Dodd (2003) establish how 
burnout among undergraduate students can be 
predicted by factors such as social support, especially 
from friends. Students who feel a sense of nurturing 
from friends are less likely to experience burnout. 
Lounsbury and Loveland’s (2003) research infers a 
psychological SOC is significantly related to 
extraversion, agreeableness, conscientiousness, and 
neuroticism in undergraduates enrolled in a lower-
division psychology course. Thus, students who do not 
feel a SOC are less likely to interact with their peers. 
These results are crucial given collaborative work is the 
foundation of reform efforts (National Council of 
Teachers of Mathematics, 2000). 

There is also research that addresses how graduate 
students build a community (Austin, 2002; Ferrer de 
Valero, 2001). Some of these inquiries focus specifically 
on mathematics graduate students (Carlson, 1999; 
Grevholm, Persson, & Wall, 2005; Herzig, 2002). 
Although the above-mentioned researchers do not use 
the term SOC, their results clearly indicate graduate 
students believe SOC is necessary for success in 
graduate programs. Austin describes the role of peer 
and faculty support in completing or continuing a 
graduate program. She also stresses the need for 
appropriate feedback and mentoring. Carlson 

characterizes good mentors as those who pose good 
questions, are non-intimidating, provide assistance in 
completing challenging problems, engage students in 
regular practice, and encourage students to discuss 
problems. Herzig emphasizes the importance of formal 
and informal interaction with faculty and the 
significance graduate students place on being viewed as 
junior colleagues. Research related to SOC and 
mathematics graduate students is scarce, and it is more 
limited at the undergraduate level. In this report, we add 
to the research knowledge of SOC in the undergraduate 
mathematics classroom.  

Theoretical Perspective 

This qualitative study is a phenomenological inquiry 
(Patton, 2002) because we explored students’ lived 
experiences in a class with multiple assessments. 
Through the students’ beliefs about, experiences with, 
and descriptions of the assessments, we uncovered how 
these assessments contributed to SOC. In an effort to 
implement assessments relevant to the literature and in 
line with Steen’s (1999) criteria, we evaluated student’s 
understanding of the content through homework, 
exams, oral interviews, projects, worksheets, and 
presentations. We attempted to promote valid 
inferences, allow for multiple measures of performance, 
measure what is worth learning, and support every 
student’s opportunity to learn important mathematics 
through a variety of assessments. Social cognitive theory 
(Schunk, 2004) guided our implementation structure of 
the assessments since we believe social interaction 
influences what a student understands. This theory 
advocates the construction of knowledge, rules, skills, 
beliefs, and attitudes by observing others. The instructor 
made use of this theory by encouraging students to 
work together on all assessments except the exams. 
Since a majority of the students enrolled in the course 
were preservice secondary mathematics teachers, the 
course instructor valued the opportunity to model 
multiple assessments. 

METHODOLOGY 

The Course and Participants  

The first-named author, who was the instructor of 
both courses, used the text Abstract Algebra: A First 
Undergraduate Course, by Hillman and Alexanderson 
(1994). The first semester centered on group theory and 
the second semester focused on rings and fields. 
Students successfully completed calculus I, II, and III, 
discrete mathematics, and linear algebra, before 
enrolling in the first semester course. Successful 
completion of the first course was a requirement for the 
second semester course. Eight male and twelve female 
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students (N = 20) who completed the abstract algebra 
sequence participated in this study. The students were 
primarily preservice secondary teachers; three students 
intended to pursue graduate school. 

Assessments Implemented 

Below we provide a brief description of the 
assessments; a rich description of the assessments can 
be found in Soto-Johnson, Dalton and Yestness (in 
press). The teacher graded all assessments for 
correctness and clarity. Homework was assigned daily, 
collected and graded on a weekly basis, and returned the 
class period after it was collected. The instructor 
encouraged students to work together on homework 
and provided solutions to the required exercises in the 
hope students would assess their own work. Frequently, 
the distributed solutions encompassed student work, 
which allowed students to examine their peers’ proofs. 

The primary purpose of the exams was to assess 
students’ mastery of the content in a timed setting. The 
exams included in-class, take-home, and oral interview 
components. The teacher did not permit students to 
work together on take-home components; this was one 
of the few assessments where the teacher prohibited 
collaboration. The oral assessments served as an 
opportunity for students to individually express their 
knowledge orally.  

The instructor designed the projects to assist 
students with discovering abstract algebra ideas, 
connecting abstract algebra and the high school 
mathematics they will teach in the future, and studying 
abstract algebra applications. Worksheets served as a 
method to connect several complex abstract algebra 
concepts through in-class group work. In the second 
semester, presentations served as a channel for students 
to communicate mathematics orally and to learn 
presentation and proof techniques from one another. 

Research Instruments and Data Analysis 

Our data came from semi-structured, audio-taped 
interviews (Patton, 2002) with each of the 20 students 
(see Appendix I). It is important to note the SOC 
questions (Questions 15 and 16) came at the end of the 
interview, but some students volunteered the idea of 
community in the classroom earlier in the interview, 
(e.g. questions one and nine). In order to best capture 
and summarize the students’ perceptions about 
contributing factors of SOC and perceived benefits, we 
employed a pattern, theme, and content analysis 
(Patton) of the transcribed interviews. Two researchers 
performed the transcribing, coding and theme 
searching. This contributed to the validity of the 
research and improved the quality of research since it 
allowed for open discussion of findings. Our analysis 

allowed us to identify the contributing factors and 
benefits of SOC as perceived by the students.   

RESULTS 

Through our analysis, we found students mentioned 
teacher and environment as the primary contributors to 
SOC. Figure 1 displays these categories and their 
subcategories. The subcategories for teacher include 
teacher characteristics and teacher imposed structure of 
the classroom including assessments. The environment 
subcategories consist of the classroom setting and the 
students enrolled in the course. Below we elaborate on 
the characteristics and use student quotes to support 
our claims. All names are pseudonyms.  

Contributors to SOC  

Teacher. Fifteen of the twenty students remarked how 
the teacher’s social and receptive aspects contributed to 
creating a SOC. Students shared how the example set by 
the teacher, the teacher’s caring personality, and her 
flexibility contributed to SOC. Sarah stresses the 
importance of the teacher setting expectations and 
modeling those expectations. 

Sarah: I think it’s not only the people that we 
have in there but the attitude that you set for us. Like 
you set the example and everybody follows, and then 
everybody becomes comfortable with the example you 
set.   

The teacher-imposed structure of the classroom 
refers to how the teacher set up the class especially how 
she implemented classroom activities. Assessments 
primarily contributed to a SOC through group work, as 
acknowledged by 17 of the 20 students. One student 
mentioned how the difficulty of tests pushed him and 
other students to work together to study for the tests. 
This supports the importance of social support as 
described by Jacobs and Dodd (2003). The difficulty of 
homework also allowed for both peer interaction and 
student interaction with the teacher. Students 
specifically noted how the difficulty of the projects 
required collaboration. The mini-presentations, while 
not considered group work, also required student 
interaction in the classroom. Students, such as Agustin, 
reported feeling supported by one another and a sense 
of respect from peers during their presentations.  

Agustin I definitely liked it as a presenter 
because I felt like I had to write something good 
because it was going to be in front of my class. …They 
were always really supportive. … They provided helpful 
comments.  

Environment. Students perceived the classroom setting 
made up of tables in the first semester and a smaller 
class size as well as smaller classroom in the second 
semester contributed to SOC. These observations were 
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commonly situated in a comment about growth of SOC 
from the first to the second semester, which eight 
students brought up during the interview. Half the 
students mentioned the two-semester sequence and 
common major as contributors to SOC. The fact the 
students were all mathematics majors is an example of 
coherence as described by Strike (2004); it translates, at 
least in this classroom, to a shared vision. The following 
statement by Melissa refers to the shared vision 
described by McMillan and Chavis (1986). 

Melissa: Our class, I feel like we always run into each 
other. We’re also all math majors, so most likely we’ve 
had other classes with each other. So with that, we can 
use each other as resources. I think that that’s a huge 
part of our community, because we all have something 
in common.   

Other students described an existing feeling of 
cohesion resulting from the SOC created in the first 
semester. Although Pretty and McCarthy’s (1991) 
research suggests the length of time a person spends in 
a setting does not influence SOC, our students believe 
otherwise. It appears coherence and a sense of 
belonging to this classroom began in the first semester 
course and was strengthened in the second semester 
(Strike, 2004; McMillian & Chavis 1986). For some 
students, such as Bruno, the challenging assessments 
contributed to creating a SOC.  

Bruno: For a lot of people it is the first time 
they are struggling in math and so if other people are 
also struggling in math it just automatically builds 
camaraderie. 

Bruno’s comment supports the literature (Jacobs & 
Dodd, 2003) related to SOC in graduate school; 
challenging assignments bring students together, to 
collaborate on the assignment. The assessments were 
designed to be challenging and required collaboration. 

Benefits of SOC 

We expanded our SOC model, which only included 
contributing factors to   include benefits of SOC as 
shown in the bottom portion of Figure 1. Through the 
coding process, we unveiled two important benefits of 
SOC as perceived by the students. Students believed a 
SOC improved collaboration and created an atmosphere 
where students felt comfortable asking questions. These 
benefits stem from an environment that endorses 
learning through increased comfort level among the 
students and between the students and the professor as 
illustrated by George. 

George: We are totally different people and 
never would have become friends or associate if it 
wasn’t for classes… The whole class, we can all discuss 
and ask each other question. It’s a comfortable 
atmosphere.   

Students reported they were more prone to ask 
questions in class and work with other students both in 
and out of class compared to other math classes.  

Jayden: I think there was a group dynamic. I got to 
the point where I could even ask people that I wouldn’t 
have talked to before how to solve a problem or work 
through things.  

More importantly, the students described how SOC 
helped their learning. Students felt their grades reflected 
their involvement in the classroom community. For 
example, Melissa comments on how her lack of 
involvement in the community the second semester 
affected her grade and her confidence to work with the 
material. 

Melissa: When we work outside of your office, I 
don’t have time to do that anymore. People I used to 
converse with, I don’t really talk to as much anymore. 
So it’s a little different this semester. I think it has 
impacted my learning. Feeling not necessarily as big a 
part of the community as I was. I think it’s made me 
less confident in the class, and with that obviously my 
grades are not nearly as good as they were last semester.  

DISCUSSION 

The model’s two main categories emerged from the 
original research question regarding how assessment 
contributed to the SOC in the classroom. We 
broadened the assessments category to include teacher 
characteristics and named it Teacher since the teacher is 
responsible for the assessments. We also found students 
credited their physical setting as well as each other as 
contributors to the SOC. However, by studying the 
model it is evident both the teacher and environment 
categories have a human aspect, the teacher and the 
students. Studying the model through this lens helps us 
situate our results within the literature; see Table 1 
below. The two subcategories, teacher characteristics 

  Teacher Environment 

Sense of 
Community 

 
Assessments 

 
Characteristics 

 
Students 

 
Setting 

Improved 
Collaboration 

Asked More 
Questions 

 
Figure 1. Benefits of SOC 
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(from teacher) and students (from environment), align 
with care and coherence from Strike (2004) as well as 
feeling a sense of belonging, nurturing and influential 
from McMillan and Chavis (1986). The assessments and 
setting subcategories from teacher and environment 
align more closely with contact from Strike. 

Studying our model in relation to the literature 
indicates we can extend the human and environment 
aspects to Bandura’s model of social cognitive theory.  
Bandura describes his model as “Human functioning is 
explained in terms of a model of triadic reciprocity in 
which behavior, cognitive and other personal factors 
and environmental events all operate as interacting 
determinants of each other” (as cited in Schunk 2004, 
p.84). The environment node includes the classroom 
setting as well as similarities among the student. Further, 
the teacher can constitute part of the environment 
because of the manner in which she implemented 
activities. Thus, the environment is composed of 
students, teachers and physical attributes of the 
classroom. Both the teacher and the students represent 
the behavior and the personal components of Bandura’s 
model. 

Furthermore, the teacher's behavior or the example 
she sets impacts how students interact with one another 
and creates an environment conducive for questions to 
the teacher and to other students. Thus, her behavior 
motivates the personal category as described by Carlson 
(1999). The teacher's personal qualities (or 
characteristics) influence the behavior in the classroom 
as described by students. Similarly, the students' 
behavior can sway the teacher’s behavior. When 
students ask questions and engage in classroom 
activities the teacher may reflect on this and stimulate 
positive energy in the classroom. The students' personal 
interactions influence the behavior of the teacher and 
that of the entire classroom. 

The results suggest creating a SOC in the classroom 
and the factors contributing to the SOC have some 
classroom implications. Our model and student 
comments illustrate transferable components as well as 

other components a teacher of any course can replicate. 
Some of the contributors such as teacher and student 
characteristics are not transferable. On the other hand, 
contributors such as teacher-imposed structure of the 
classroom and classroom setting are easily transferable 
into the classroom. The variety of assessments and their 
challenging nature provide a setting in which a class can 
experience a SOC. 

Some students commented how the difficulty of 
some assignments influenced them to work with other 
people when in previous classes they worked by 
themselves because they did not feel the need to 
collaborate with other students. Multiple group 
assignments provided the opportunity for students to 
work with one another. Students referenced the 
emphasis on group work in the classroom and group 
assignments as a major contributor to the building of 
SOC. Other transferable contributors include 
environmental factors such as tables, small class size, 
small classroom, and a yearlong two-semester sequence. 

We found facilitating a course that promotes 
interaction creates a SOC.  Engaging students inside and 
outside the classroom through challenging assignments 
can enhance this learning perspective. We encouraged 
this collaboration outside the classroom with 
challenging assignments with the intention that students 
would seek the support of their classmates and 
collaborate outside the classroom. Miguel describes this 
for us from the perspective of a student. 

Miguel: Especially because it’s gone on all year. 
We’ve all taken this really, really hard class, or at least 
everyone says it’s really hard, but maybe it’s not that 
bad. We all had a chance to work with each other on at 
least something. I’ve worked with nearly everybody. It’s 
a good community.  

Limitations and Implications for Future 
Research 

One limitation of this investigation is the instructor 
is the primary researcher and interviewer, thus the 
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research lacked anonymity. Although this can influence 
students to say what they believe the instructor wants to 
hear, the students did not hesitate to state pros and cons 
of the assessments. We also acknowledge that our data 
sources are limited, but our data is rich in description. 

We have seen an increased amount of classroom 
collaboration in mathematics classrooms since the 
beginning of calculus reform. Many researchers have 
demonstrated how collaboration assists with learning 
mathematics. Social cognitive theory (Schunk, 2004) 
certainly champions this belief. However, we are not 
aware of the full impact of collaboration on other 
educational goals. Our students’ perceptions 
demonstrate multiple assessments, which require 
collaboration can contribute to building a SOC, which is 
important to learning.  

More research is needed to validate the findings of 
this study as well as to continue to discover and 
document benefits of collaborative work and alternative 
assessments. It is clear that in this course, the 
collaboration was effective and students learned not 
only from the teacher but also from one another. The 
impact of effective facilitation of collaborative work is 
of great value. This research can be expanded by 
investigating the influence that courses with multiple 
assessments have on pre-service teachers. Specifically, 
how do these courses impact their teaching and 
assessment styles?  
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Appendix 

Interview Questions 

1. Did you learn from the presentations? Why or 
why not? Discuss from the standpoint of a 
presenter and evaluator. 

2. Did you learn from the projects? Discuss in 
terms of the presentations and presenting? 

3. What were the advantages of working on a 
project as a exam? 

4. What were the disadvantages of working on a 
project as a exam? 

5. Do you feel that it was valuable to try to read 
mathematics on your own as part of the exam 
#3 project? Why or why not? 

6. What assessments do you feel reflected your 
knowledge of the material best? Why? 

7. What assessments do you feel do not reflect 
your knowledge of abstract algebra? Why do 
you feel this way? 

8. What assessments did you feel were the most 
challenging? Why? 

9. What assessments did you enjoy the most? 
Why? 

10. Did you enjoy having a practice midterm oral? 
Why or why not? 

11. How do you feel about having an oral 
component to the final? Explain. 

12. Have your feeling towards the oral component 
changed from last semester? If so, how? If not, 
why not? 

13. Do you feel that your proof –writing skills have 
improved over the last two semesters? What do 
you attribute this too? 

14. Is there anything that you would like to share 
with me about the assessments that have been 
used in the abstract algebra class? 

15. Did you feel that there was a sense of 
community during this and last semester? Why 
or why not? 

16. What do you feel contributed to this? 
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In this paper, an attempt is made to determine if peer collaboration increases student 
achievement in teaching elementary mathematics. Empirical evidence and philosophical 
problems with constructivist epistemology are considered. Two things are argued: first, it 
is reasonable to think, for elementary mathematics, peers collaboration is useful (especially 
in heterogeneous groups). Peer collaboration is an appendage to instruction, not a 
replacement for the didactics of an expert, or individual problem solving (which occurs 
both at its inception, when mathematics is discovered as well as advanced levels). There is 
reciprocity between individual and social settings in learning mathematics. Second, for the 
teaching of mathematics an adequate epistemology will guide, to some extent, a successful 
pedagogy.  
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INTRODUCTION 

Pedagogical constructivism entails three principles: 
encouraging collaboration, primitive activity and exploration, 
respecting multiple points of view and emphasizing 
authentic problem solving (Solomon, 2000, p. 328).  
Pedagogical constructivism (henceforth 
“constructivism”) is also sometimes taken to be a full 
blown philosophical position about the nature of 
knowledge; namely, we make knowledge up like the 
rules of chess. I argue that the value of peer 
collaboration is contingent upon the context and limited 
by our epistemological stand in specific ways that is little 
noticed by constructivists.  

I proceed by first considering the conditions under 
which peer collaboration in mathematics is appropriate. 
Second, I consider the claim that in order make 
constructivism generally plausible, we must separate  

 

epistemological and pedagogical variants. Finally, I argue 
however, that employing peer collaboration in 
mathematics must be determined in relation to the 
student, teacher, nature of the subject matter, and is 
likely to be guided by our epistemological stance.   

Peer collaboration could be studied independently of 
constructivism. Considering peer collaboration and 
constructivism together is justified: to jettison peer 
collaboration requires revising constructivism. It is 
reasonable to think that the debate over peer 
collaboration in mathematics must be resolved by 
empirical studies, however (Fawcett & Gourton, 2005). 
I am not conducting an empirical study, and, rather, 
offer a philosophical comment on the debate over 
constructivism and peer collaboration. Further, I shall 
use examples from science and advanced mathematics 
because the sources I use do so. Finally, when I discern 
the relationship of our epistemology to our pedagogy 
(Figure 1), some possible adherents of several views 
related to them are inferred for the purpose of 
illustration alone. Scholars of individual thinkers 
referred to may attempt to amend their place in the 
picture I sketch, which would yield debates that will 
transcend the purpose of this paper. 
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Peer Collaboration 

According to Fosnot, Professor of Education,  
Director of Mathematics in the City, New York, and 
Dolk, researcher at the a the Freudenthal Institute in the 
Netherlands, mathematics is either about transmitting 
knowledge (didactic learning) or constructing meaning, 
but not both (Fosnot & Dolk, 2005). Fosnot, also editor 
of Constructivism, Theory, Perspectives, and Practice, offers the 
following definition: 

Constructivism is a theory about knowledge and 
learning. It describes knowledge not as truths to be 
transmitted or discovered, but as emergent, 
developmental, nonobjective, viable constructed 
explanations by humans engaged in meaning making in 
cultural and social communities of discourse. Learning 
from this perspective is viewed as a self-regulatory 
process of struggling with the conflict between existing 
personal models of the world and discrepant new 
insights constructing new representations and models of 
reality as a human meaning-making 
venture…([Emphaisis mine]. Fosnot, 2005, p. ix)  

Fosnot concluded, “Major restructuring is needed in 
the schools if we are to take constructivism seriously” 
(Fosnot, 2005, p. xi). Philips, editor of a volume 
published by the National Society for the Study of 
Education, dedicated to the theory, remarked, 
“Constructivism is currently a fashionable magic word 
in the Western intellectual firmament… (Philips, 2000a, 
p. 1).  Ernest von Glaserfeld, the first social 
constructivist, puts it this way: 

The key idea that sets constructivism apart from 
other theories of cognition was launched about 60 years 
ago by Jean Piaget. It was the idea that what we call 
knowledge does not and cannot have the purpose of 
producing representations of an independent 
reality…(Glaserfeld, 2005, p. 3) 

Putting aside the constructivist appropriation to 
Piaget, it is at least clear many have tried to develop it in 
relation to Vygotsky in order to emphasize peer 
collaboration.  Pichat and Ricco (2001), psychologists at 
the University Paris 8, noted that there are three poles in 
the classroom: the student, teacher and knowledge. For 
Vygotsky, upon whom they rely, cognitive mediation 
(contractual expectations) is the main factor in 
understanding (Piachat & Ricco, 2001).  Mastery of 
mathematics, according to Pichat and Graciel, is more 
than knowledge of procedures, but knowing when to 
employ them, which requires the guidance of the 
teacher in the Vygotskian zone of proximal 
development (ZPD). 

In “Small-group Searches for Mathematical Proofs 
and Individual Reconstructions of Mathematical 
Concepts”, Vidakovick and Martin agreed that 
constructivist theory provides the basis for co-operative 

and collaborative learning (Vidakovic & Martin, 2004).  
Discussion, they claimed, leads to deeper understanding.  

According to Vidakovick and Martin, we internalize 
culture and externalize it by passing it on. By missing an 
opportunity for externalization, we limit internalization; 
that is to say, if we do not have a chance to explain our 
thought to someone else we fail to solidify learning 
(Vidakovic & Martin, 2004).  They emphasized that in 
the mid-20th century two theories have dominated 
mathematics education research, Piaget’s information 
processing model and Vygosky’s social-constructivism.  
Vidakovic and Martin advocated co-constructivism that 
reconciles both the individual and social aspects of 
Piaget and Vygotsky (Vidakovic & Martin, 2004). 
Viadaok and Martin concluded that mathematics 
learning can be enhanced by peer-collaboration in small 
groups, provided there are some common 
understandings of what counts as a proof.    

Lillian M. Fawcett and Alison F. Gourton, in “The 
Effects of Peer Collaboration on Children’s Problem-
Solving Ability”, pointed out that group work, according 
to constructivists, enhances learning through 
participation, makes transition to the wider community 
easier, and maximizes use of limited resources (Fawcett 
& Gourton, 2005). For Vygotsky cognitive change is 
linked to collaborative interaction. For Piaget, learning 
results from peer interaction, which provides conflict: 
cognitive development depends on a conflict between 
what is known and not, creating disequilibrium (Fawcett 
& Gourton, 2005). For Vygotsky, the notion of a 
community of learners supports the idea of group work 
(Fawcett & Gourton, 2005).   

 According to Fawcett and Gourton, peer 
collaboration increases student achievement, though 
depends on complex factors like age, ability level, 
partners, motivation, confidence, gender and task. 
Further, there are more cognitive benefits when 
participants listened and reflected on logical consistency 
and precision (Fawcett & Gourton, 2005).   

There must be exposure to a higher level of 
reasoning, active participation (active reasoning and the 
exchange of ideas), and communication (Fawcett & 
Gourton, 2005; Vidakovic & Martin, 2004). Different 
skill levels lead to the conflict necessary for conflict (in 
ZPD and for Piaget).  Active participation and verbal 
interaction are necessary for internal reorganization, as 
well as cognitive change.  

Philosophical Quandaries 

Philosophical problems with constructivism clarify 
what would make peer collaboration desirable, and we 
can begin with the critics. Sriraman, in a recent article in 
Mathematical Behavior, has pointed out that deduction or 
induction from particular cases (i.e., generalizing 
activity) requires working over an extended period of 
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time (Sriraman, 2004). Slezak (2000), director of the 
program in cognitive science at New South Wales, 
worried, “On these [constructivist] views education 
becomes indoctrination, pedagogy is propaganda, and 
ideas are merely conventional conformity to social 
consensus” (p. 93). Constructivism leads to relativism, 
which is at its “heart” (Slezak, 2000, p. 93). 

Matthews (2000), in “Appraising Constructivism in 
Science and Mathematics Education”, agreed with 
Fosnot, for instance, that constructivism is not just a 
theory about learning but also “our culture’s greatest 
and most enduring achievement, namely science” (p. 
162).  Constructivism, as Matthews pointed out, could 
also be a theory of cognition, learning, teaching, 
education, personal knowledge, scientific knowledge, 
educational ethics, politics, and a worldview (Matthews, 
2000, p. 163). According to him, the semantic and 
epistemological domains are often confused.  

Matthews disagreed that constructivism must entail 
idealism (Matthews, 2000, p. 163). Social constructivism, 
as held by Glaserfled, leads to paradoxes, like that of 
self-refutation (i.e., the theory itself is constructed) 
(Matthews, 2000, p. 167).  Matthews separated 
educational, philosophical, and sociological 
constructivism.   

Matthews wrote, “Language, especially scientific and 
mathematical language needs to be mastered and, at the 
end of the day, transmitted” (Matthews, 2000, p. 171).  
Definitions need to be taught, and are not always made 
up by learners: 

One might reasonably ask, at this point, whether 
learning theory  

or ideology, is simply getting in the way of good 
teaching. Why must learners construct for themselves 
ideas of potential energy, mutation, linear inertia, 
photosynthesis, valiancy and so on? (Matthews, 2000, p. 
180) 

Several commentators suggested separating 
epistemological issues from pedagogical ones 
(Matthews, 2000; Burbules, 2000).  Burbules (2000), in 
“Bridging the Impasse”, wrote, “Focus on trying to 
understand the practices and procedures by which 
constructions come to be created, adjudicated and 
commonly shared” (Burbules, 2000, p. 326).   

Burbules concluded that teachers need different 
tools, and that constructivism may be one of them 
(Burbules, 2000). Constructivism, after all, has the virtue 
of attempting to produce the kinds of conditions that 
drive scientific [and mathematic] exploration in the first 
place (Burbules, 2000; Ball & Bass, 2000).  If peer 
collaboration in mathematics has value, it will be 
because pedagogy requires and accepts it.  

The Reciprocity between Practice and Epistemology 
When longitudinal studies are wanting, ethnographic 

ones intimate a solution. James W. Stigler and Harold 
W. Stevenson, who have conducted ethnographic 

studies of mathematic education, attempted to explain 
the “startling” higher achievement of Asian students in 
mathematics, compared to their American counterparts 
(Stigler & Stevenson 1999, 66).  Stigler and Stevenson 
claim that the Asian class is “constructivist”, yet also 
involves less peer collaboration and more instructional time with 
the teacher (Stigler & Stevenson, 1999, pp. 69, 71).  Stigler 
and Stevenson contend that we need to question if 
individualized or group learning is better than whole-
class instruction (Stigler & Stevenson, 1999).   

The value of peer-collaboration can only be 
determined perhaps for a specific subject, class, and 
lesson. To be sure, the fruitfulness of peer collaboration 
will also depend on the teacher and culture of the 
students.  

Looking at matters from a neurological perspective, 
Kong and associates, publishing in Cognitive Brain 
Research, have showed that the parts of the brain used to 
carry out addition operations are also used for 
subtraction, which is useful in breaking the stranglehold 
between pro- and anti-constructivists.  Kong and 
associates conjectured: 

Children usually start learning arithmetic with simple 
addition, then subtraction. They later learn the more 
complicated aspects of addition and subtraction like 
carrying. This developing order may be reflected in the 
neural circuitry of mental calculation and may explain 
why the neural network of simple addition is the basis 
of other calculation types. (Kong et al., 2005, p. 407) 

In mathematics we move from simplicity to 
complexity, reflecting the nature of the subject matter.   

Furthermore, the factory model of education is the 
setting in which constructivists implement peer 
collaboration. Long before populations were committed 
to mass education, we learned in a master-disciple 
relationship. The apprenticeship system was universal: 
the blacksmith, carpenter, musician and mathematician, 
trained the apprentice. In the apprenticeship system, 
collaboration is between someone who has vast 
experience with solving problems in the given field.  

An important point is revealed about peer 
collaboration from the apprenticeship system: it is 
useful when one of the participants is knowledgeable 
enough to guide others. Also, it is still reasonable to 
think that peer collaboration is generally useful.   

Confirming previous work, Schliemann and Carraher 
(2002), in “The Evolution of Mathematical Reasoning: 
Everyday versus Idealized Understandings” noted that 
mathematics involves personal discovery, as well as 
conventional symbols and contexts (Schiemann & 
Carraher, 2002, p. 242).  

Mathematics relies upon specific representations and 
tools, which play a role in the structure and role of 
mathematical thinking (Schiemann & Carraher, 2002, p. 
244). Constructivists, they emphasized, must realize that 
some notions are more useful in the long run (even if at 
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odds with individual ways of doing things).  “17 – 6 = 
11” is more useful that working with a fish bowl 
(Schiemann & Carraher, 2002). 

We can distinguish between the common and deep 
contexts. The common context is grade 5, mathematics 
students, at Coronation Public School, in Windsor, 
Ontario, Canada. There is also the deep context (or 
culture) which includes previous experiences and 
assumptions of the class. We return to complexity: in 
the relationship between the student, teacher, and 
subject matter, there is a balance to be had. To resolve 
the debate, I propose we consider both philosophical 
foundations of peer collaboration and the implications 
for pedagogical practice. 

Epistemology and Group Work 

Philosophers since at least Frege (1884/1953) have 
scrutinized the relationship between what has come to 
be known as the context of discovery from that of the 
context of justification. We may wish to recall that Frege 
separated how we discover something from how we 
justify it. Yet considering group work in elementary 
mathematics prompts us to add the context of learning.  
We can distinguish, in different ways that have been 
held by various scholars, between how knowledge is 
discovered (e.g., when it first was discovered), justified 
(e.g., proved), and learned (i.e., how we teach accepted 
knowledge).  The following chart (table 1) depicts the 
relations between the three contexts of discovery, 
justification, and learning.  

For metaphysical realists the contexts of discover 
and justification must be separated, in principle, yet 
there is disagreement about the consequences for 
learning. For the metaphysical realist-1, there is 
knowledge to be discovered that we may never reach 
and learning is modeled on practices of inquiry in the 
relevant field. For the metaphysical realist-2, like Frege, 
there is knowledge to be discovered that we may never 

obtain and learning need not be modeled on current 
practices in the relevant field.  

As is well known, naturalists blur Frege’s distinction: 
how knowledge is acquired is how it must be justified. 
Yet, like metaphysical realists, may disagree with the 
consequences for pedagogical practice. The naturalist-1 
holds that their epistemology provides the ground of a 
pedagogical practice. Conversely, the naturalist-2 agrees 
with Frege only in this: our epistemology need not 
reflect our pedagogy.    

 The global skeptic suspends judgment about the 
possibility of knowledge, its justification, and it is 
reasonable to think, must make learning an arbitrary 
matter: there cannot be any science of teaching anymore 
than anything else. At best, we can obtain solidarity. 

  Philosophical constructivists attempted to avoid 
skepticism by rejecting the recognition transcendence of 
truth and by inextricably tying it to our methods of 
justification. The radical constructivist-1, like von 
Glasserfeld, denied that knowledge is mind-
independent: all truth is constructed within modes of 
justification. The radical constructivist-1 holds that 
knowledge should be taught the way we justify it.  The 
radical constructivist-2, like it is reasonable to 
conjecture, Hilbert formalist thought of the 1920s, are 
not wedded to a pedagogy modeled on the way 
knowledge is produced.  

It is apparent from the two species of metaphysical 
realism, naturalism, and radical constructivism discussed 
that whatever view we have of knowledge does not 
entail a pedagogical program. At the same time, it is 
reasonable to think that the first species of metaphysical 
realism, naturalism, and the radical constructivist, where 
there is some connection between the contexts of 
discovery or justification and learning could be the basis 
of compelling arguments in that direction. That is, if the 
naturalist-1 is right we would have one reason to teach 
in a way that models how we actually discover and 
justify knowledge, as much as is feasible. If the radical 
constructivist-1 is right, we would have a reason to 
emphasize mathematics as a social game where we 
attempt to master the rules of symbol manipulation. 

Without straying too much further into 
epistemological debates, suffice it to say that the realist 
has an edge: mathematical truth is eternal and 
unchanging, guiding even constructivist pedagogy. We 
are directed in terms of content: there is one and only 
one mathematics. Conventional notation and methods, 
further, are guided by both biology and mathematics.  
“159 – 7 = 152” is easier to solve than “CLix – vii = 
CLii”, which is why in fact we use Arabic numerals not 
Roman ones. Some cultures do not count numbers 
greater than identified body parts. A number system, 
like our Arabic-Indian one (the ten base number system 
with a “0”), is necessary for calculations involving high 
cardinalities, since we first need to conceive of those 

Table 1. Some relations of the contexts of discovery, 
justification, and learning (explained in detail 
below). 

View Context 
of 

Discovery 

Context  
of 

Justification 

Context 
of Learning 

Metaphysical 
realist-1 

+ - + 

Metaphysical 
realist-2 

 
+ 

 
- 

 
- 

Naturalist-1 + + + 
Naturalist-2 + + - 
Skeptic - - - 
Radical 
Constructivist-1 

- + + 

Radical 
Constructivist-2 

- + - 
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numbers (or have a procedure for constructing them).   
In mathematics, social constructions are circumscribed. 

Practice and Group Work 

We can consider the implications for practice by 
reflecting on the suggestions of constructivists emphasis 
upon group work, which is consistent with their 
epistemological assumptions about the social nature of 
knowledge.  Nelson (1996), a biology professor at 
Indiana University who has won awards for excellence 
in teaching, outlined what he dubbed “the myths of 
rigor” in traditional pedagogy (e.g., tough courses, 
thwarting grade inflation, lecturing, focusing on content, 
emphasizing student responsibility, and handing in work 
on time). He argued, however, that didactic pedagogy 
favors the upper-middle class and supports 
discrimination against non-traditional students.  

Nelson, reviewing the relevant literature, noted that 
those from upper middle class backgrounds 
automatically formed collaborative groups to get 
through calculus, increasing their “status” for helping 
others, whereas underprivileged children think that 
“only weak students study together” (1996, p. 166). He 
observed from studies and his experience that 
modifying traditional pedagogy with active learning, 
discussion, and peer collaboration, benefits all students 
and the weakest segments of the population the most. 

Nelson concluded that traditional didactic ways of 
teaching are comparatively ineffective and bias. He 
contended that the reason faculty members continue 
with ineffective teaching practices is self-serving, relies 
upon erroneous attribution schemes (blame the victim), 
and dysfunctional illusions of rigor. 

It is altogether reasonable to think that we learn best 
when we have to interact and communicate with others. 
Building upon the social dimensions of learning will 
increase student achievement, by boosting interrelated 
factors, such as meta-cognition, memory retention, 
motivation, and the understanding that comes with 
having to explain what we think to others. It is a 
platitude but worth reciting: we are social creatures.  

One reason group work is sometimes effective is 
because it increases motivation. We are more motivated 
to excel in a discipline when it is considered a value, 
culturally or in our interpersonal groups, which we 
internalize. Group work can change the value of 
mathematics for disadvantaged groups (where 
mathematics has little value), for both constructivist and 
naturalist theorists (e.g., behaviorists). 

Prospects for Group Work 

Group work, in fact, functions as part of a carefully 
considered pedagogical strategy, which though not 
entailed, may be at the very least consistent with our 

overall philosophical view of knowledge. I argued two 
things: first, for mathematics, it is reasonable to think, 
peer collaboration is an appendage to instruction, not a 
replacement for the didactics of an expert or individual 
problem solving. I can only conjecture that peer 
collaboration is useful at the elementary as well as some 
advanced settings (in heterogeneous groups that 
facilitate instruction). There is a knowledge we need to 
transmit. In addition, if we are to follow the system of 
apprenticeship, mathematics is done individually or in 
dyads (insofar as we spend time practicing), both at its 
inception, when discoveries are made, and at advanced 
levels. A great deal of practice is required to develop the 
skills and the appropriate neural networks, to excel in 
any discipline. At least some of the practice must be 
done alone, which is consistent with what we know of 
those who have excelled, across disciplines. Though 
pedagogy cannot, it is reasonable to think, cannot fully 
mimic the way knowledge is discovered, it is desirable to 
move in that direction because it is more likely to 
produce an authentic context for learning.    

In fact second, for the teaching of mathematics an 
adequate epistemology can usefully reflect a successful 
pedagogy, its principles, which take into account the 
student, teacher, and subject matter. Pedagogy, at the 
very least, must reflect the fact that epistemic 
discoveries are made by individuals that rely upon a 
social store of previously accumulated knowledge. There 
is reciprocity between individual and social settings in 
learning mathematics.  The pedagogue must keep the 
entire repertoire of heuristics at her disposal, both what 
follows her assumed epistemology and what departs 
from it. 

Some constructivists, however, not only reject all 
dialectic methods but do not realize when they rely 
upon rote learning, a reward system, and independent 
study. My aim has not been to argue that peer 
collaboration has no place, but rather to critically reflect 
on how we adjudge its worth. Our epistemology is one 
landmark in guiding our choice of heuristic. It is 
important to keep in mind, however, that both naturalist 
and constructivist epistemologists can embrace the same 
pedagogy of active learning where group work is 
prominent. Group work has a place and does not entail 
a knockdown argument against naturalists.  On the 
contrary, naturalists need to detail the implications of 
their epistemological stand is for scholarship of teaching 
and learning. 
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The purpose of the study was to investigate the effects of inquiry-based computer 
simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based 
computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning 
(SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian 
Smart Schools. The study further investigated the effects of the HACL and FCL methods 
on performance in scientific reasoning and conceptual understanding among students of 
two reasoning ability levels, namely empirical-inductive (EI) and hypothetical-deductive 
(HD). A quasi-experimental method that employed the 3 x 2 Factorial Design was applied 
in the study. The sample consisted of 301 Form Four students from 12 pure science 
classes in four Smart Schools which were all randomly selected and assigned to treatment 
(HACL & FCL) and control (TG) groups. The results showed that students in the HACL 
group significantly outperformed their counterparts in the FCL group who, in turn, 
significantly outperformed their counterparts in the TG group in scientific thinking and 
conceptual understanding. The findings of this study suggest that the inquiry-based 
computer simulation with heterogeneous-ability cooperative learning method is effective 
in enhancing scientific reasoning and conceptual understanding for students of all 
reasoning abilities, and for maximum effectiveness, cooperative learning groups should be 
composed of students of heterogeneous abilities. 
 
Keywords: Science Education, Biotechnology, Attitudes, University Students. 
 
INTRODUCTION 

The development of thinking ability in individuals 
has always been recognized to be of great importance to 
enable them to make decisions wisely and to solve a 
problem efficiently. Acclaiming the importance of the 

development of thinking ability in students, Malaysian 
Curriculum Development Centre introduced thinking 
skills as one of the major skills to be inculcated in the 
Secondary School Revised Science Curriculum that was 
implemented in 2003 (KPM, 2002, p.20). Thinking skills 
refer to a set of mental capabilities or patterns of 
thought which are rational or logical in nature. For the 
purpose of this study, thinking skills also include 
scientific thinking or higher reasoning abilities that 
involve what Piaget has termed formal operational 
thought (Piaget, 1964), or renamed by Lawson (1995) as 
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hypothetical-deductive (HD) thinking patterns which 
include identifying and controlling of variables, 
proportional thinking, probabilistic thinking, 
combinatorial thinking and correlational thinking. 
Mastery of scientific thinking skills is one of the aspects 
given emphasis in the Smart Schools science curriculum 
(Poh, 2003). The Smart Schools were introduced in 
1999 by the Government with the objectives of 
promoting a knowledge-based culture as well as 
producing caring students with critical and creative 
thinking skills (Multimedia Development Corporation, 
2000).  

Physics is a field that involves the study of physical 
phenomena, and students are continuously required to 
identify the hidden concepts, define adequate quantities 
and explain underlying laws and theories using high 
level reasoning skills (Nivalainen, Asikainen, & 
Hirvonen, 2003). In other words, students are involved 
in the process of constructing qualitative models that 
help them understand the relationships and differences 
among the concepts. A number of studies have found 
that students who lack reasoning skills do more poorly 
on measures of conceptual understanding than their 
more skilled peers (Cavallo, 1996; Lawson et al., 2000; 
Shayer & Adey, 1993). For example, the concrete 
operational students or empirical-inductive (EI) 
reasoners, whose thinking are largely limited to direct 
observation were found unable to understand the 
formal concepts (Lawson, 1975). The difficulties that 
students have with formal concepts relate to their 
inability to apply scientific reasoning skills that are 
necessary for explaining the concepts. Gas Law, for 
example, is a topic that was found to be difficult for 
both high school and college students to understand 
because it requires the understanding of the behaviors 
of particles at the microscopic level (Nurrenbern & 
Pickering, 1987; Nakhleh, 1993; Chiu, 2001) and 
involves the use of direct and inverse ratios which 
require proportional reasoning, the ability to identify 
and control variables, and probabilistic thinking. These 
reasoning skills are essential for understanding the 
concepts involved because gas laws can only be defined 
in terms of other concepts (temperature, pressure, and 
volume), abstract properties, and mathematical 
relationships. Recent study, however, found that 
Malaysian students in Form Two performed very poorly 
in science items that relate to physics which involve 
scientific reasoning skills (Kementerian Pelajaran 
Malaysia, 2000; Martin et. al., 2000). For example, on a 
question for the top 10% benchmark that requires an 
ability to interpret data given in a table, compute the 
appropriate ratio, and explain their results, Malaysian 
students performed lower than their peers in 29 nations, 
and score much lower than international average of 38 
nations (Martin et. al., 2000). Thus, methods of 
instruction in physics must emphasize the development 

of scientific reasoning skills as these skills are required 
for conceptual understanding.  

Research studies have indicated that visualization of 
phenomena through computer simulations can 
contribute to student’s understanding of physics 
concepts at the molecular level by attaching mental 
images to these concepts (Cadmus, 1990). According to 
Escalada & Zollman (1997), computer simulations 
provide opportunities for students not only to develop 
their understanding and reinforcement of physics 
concepts, but also to develop their skills in scientific 
investigation and inquiry. Inquiry-based science 
experiences conducted in relevant, meaningful contexts 
have been shown to develop higher order thinking skills 
in students (Roth & Roychoudhury, 1993). This is 
further supported by Cakir and Tirez’s (2006) study that 
found inquiry-based science teaching and learning, with 
the support of computer simulation and collaborative 
contexts help learners to develop critical thinking and 
inquiry skills. Lawson (1995) cites literature indicating 
that the Learning Cycle approach that consists of 
Exploration, Concept Introduction, and Concept 
Application phases is an inquiry-based teaching model 
which has proven effective at helping students construct 
concepts as well as develop more effective reasoning 
patterns. Several studies involving adolescents in 
learning cycle science courses claim that the use of this 
instructional method in science classroom increased 
student understanding of science concepts and 
improved student reasoning abilities (Purser & Renner, 
1983; Saunders & Shepardson, 1987; Schneider & 
Renner, 1980).  

According to Vygotsky, a less skillful individual is 
better able to develop a more complex level of 
understanding and skill than he/she could 
independently through collaboration, direction, or help 
of an expert or a more capable peer. Scaffolding has 
been found to be an excellent method of developing 
students’ higher level thinking skills (Rosenshine & 
Meister, 1992). Vygotsky's theories of scaffolding 
knowledge through peer discussion and interaction has 
been applied systematically under the rubric of 
“cooperative learning”. Cooperative learning is an 
instructional technique in which students work together 
in structured small groups in order to accomplish shared 
goals (Johnson & Johnson, 1989). Research studies have 
clearly indicated the effectiveness of cooperative 
learning methods over either competitive or individual 
learning methods in the development of higher-order 
thinking skills as well as the achievement of greater 
learning outcomes (Johnson & Johnson, 1986). This 
suggests that with the help of sufficient scaffolding, or 
dynamic group support in cooperative environments, 
provided by inquiry-based computer simulations, an 
instructor, a more skilled partner, or a more capable 
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peer, will enable concrete operational students to 
enhance their reasoning skills toward formal thought. 

The meta-analysis study done by Lou et al. (1996) 
indicates that low-ability students gain most from being 
placed in heterogeneous ability groups because they 
receive individual guidance and assistance from their 
more able peers. Hooper and Hannafin’s (1988) study 
also give evidence that low ability students improved 
their performance more than 50% when grouped 
heterogeneously. However, the low ability students have 
a higher risk of being excluded from group activities 
because they are seen by high ability students as being 
less competent (Whicker, Bol, & Nunnery, 1997). 
Alternately, low ability students may be motivated to 
learn by the effects of social cohesion inherent in 
friendship groups (Lou el at., 1996). Advocates of social 
cohesion perspective (Johnson & Johnson, 1994; 
Cohen, 1986; Sharan & Sharan, 1976) argue that the 
extent to which cooperative learning has an effect on 
student achievement will be mediated strongly by the 
cohesiveness of the group. This study, therefore, tested 

the ‘diversity of intellectual abilities’ hypothesis against 
‘group cohesiveness’ hypothesis by placing students in 
heterogeneous ability grouping and friendship grouping, 
to investigate how much, if any, these groupings 
facilitated student’s scientific thinking and conceptual 
understanding of gas laws within inquiry-based 
computer simulation and cooperative learning 
environment. In addition, the study explored the extent 
to which heterogeneous ability and friendship grouping 
affected learning for EI and HD students compared to 
their counterparts in traditional group work groups. 
Thus, three instructional methods were employed in this 
study: inquiry-based computer simulation with 
heterogeneous-ability cooperative learning (HACL), 
inquiry-based computer simulation with friendship 
cooperative learning (FCL) and inquiry-based computer 
simulation with traditional group work (TG).  

PURPOSE OF THE STUDY 

The purpose of this study was threefold. Firstly, it 

 
Figure 1: Theoretical Model of the study 
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was to investigate if there were any significant 
differences in student’s scientific reasoning (SR) and 
conceptual understanding (CU) between learners who 
were taught in three different instructional methods. 
Secondly, it was to investigate the effects of these 
instructional methods on EI students and HD students 
in SR and CU. Thirdly, it was to investigate the 
interactions between the instructional methods and 
student’s reasoning level on performance in SR and CU.  

THEORETICAL FRAMEWORK 

The theoretical framework of this study is based on 
Piagetian cognitive theory and Vygotsky's theory. Piaget 
(1952) believed that the cognitive development of 
students toward formal thought could be facilitated 
through three cognitive processes: assimilation, 
accommodation and reorganization. Vygotsky (1978), 
on the other hand believed that students are capable of 
performing at higher intellectual levels when asked to 
work in collaborative situations than when asked to 
work individually. He hypothesized that the social 
interaction extended the student's zone of proximal 
development, the difference between a student's 
understanding and potential to understand more 
difficult concepts. Based on these two theories, a 
theoretical model of the study was presented in Figure 
1.  

For this model, students might be exposed to 
inconsistencies and conflicts in their attempt to 
understand new information. Specifically, when the new 
information raises questions or complexities that an 
individual could not resolve with their accustomed 
patterns of reasoning. The desire to resolve 
incongruities between prior understanding and new 
information is accompanied by a feeling of imbalance or 
disequilibrium or cognitive conflict. As a result, students 
are required to resolve their cognitive conflict through 
visualization of physical phenomena via dynamic 
computer simulation and peer support in cooperative 
learning group. This will make them to recognize in 
what ways their current thinking fall short and 
reorganize their personal beliefs, as well as to go beyond 
their current thinking capability. 

Students’ active participation in collecting and 
analyzing data via computer simulation in cooperative 
learning group is designated as Exploration phase. This 
involves the interpretation of events in terms of existing 
cognitive structure or referred as assimilation. The Term 
Introduction phase promotes a new state of 
understanding or equilibrium or self-regulation when 
new concepts and principles are derived from the 
exploration experiences. Through the process of self-
regulation, existing knowledge, or schema will be altered 
to allow accommodation to occur. The Concept 
Application phase provides additional experience that 

may aid students to discover further application of 
newly developed concept and principles, providing 
opportunities for re-organization to occur. Other new 
and related principles are discovered by the students 
through extension activity in the subsequent open-
inquiry experiment. This provides additional time and 
experiences to further encourage self-regulation and for 
stabilization of new principles. Via this process 
knowledge is constructed by individuals and 
accordingly, peers interaction may present different 
perspectives that may lead students to reconceptualise 
their own thinking.  

Through the three phases of Lawson’s (1995) 
learning cycle, students’ thinking is expected to progress 
from concrete thinking about physics concepts to being 
able to deal with those concepts on a formal, abstract 
level.  Consequently, the present study was set up to 
investigate the extent to which the integration of the 
Learning Cycle approach to computer-based simulations 
and cooperative learning would result in improved 
performance of concrete operational students in 
scientific reasoning and conceptual understanding of gas 
laws.  

HYPOTHESES 

On the basis of theory and evidence of related 
research and theoretical framework of the study, the 
following hypotheses were postulated and computed at 
the 0.05 level of significance.  

Hypothesis 1: Students taught via inquiry-based 
computer simulation with heterogeneous-ability 
cooperative learning (HACL) method will perform 
significantly higher than students taught via inquiry-
based computer simulation with friendship cooperative 
learning (FCL) method who in turn will perform 
significantly higher than students taught via inquiry-
based computer simulation with traditional group work 
(TG) method in (a) scientific reasoning, and (b) 
conceptual understanding of gas laws. 

Hypothesis 2: The HD students taught via HACL 
method will perform significantly higher than HD 
students taught via FCL method who in turn will 
perform significantly higher than HD students taught 
via TG method in (a) scientific reasoning, and (b) 
conceptual understanding of gas laws. 

Hypothesis 3: The EI students taught via HACL 
approach will perform significantly higher than EI 
students taught via FCL method who in turn will 
perform significantly higher than EI students taught via 
TG method in (a) scientific reasoning, and (b) 
conceptual understanding of gas laws. 

Hypothesis4: There are significant interactions 
between the instructional methods and student’s 
reasoning ability level in performance in (a) scientific 
reasoning, and (b) conceptual understanding of gas laws. 
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RESEARCH METHODOLOGY 

Research Design  

The study employed a quasi-experimental pre-test-
post test / control group design. The 3x2 factorial 
design was employed to examine the effect of three 
different instructional methods on EI student and HD 
student’s performance in scientific thinking and 
conceptual understanding. The independent variable 
was the three instructional methods: HACL method and 
FCL method (experimental group), and TG method 
(control group). The dependent variables were the 
learner’s scientific reasoning ability and conceptual 
understanding. The second dependent variable, i.e., 
conceptual understanding was the degree to which a 
student’s understanding of the concept at the particulate 
level of Gas laws corresponds to the scientifically 
accepted explanation of the concept. The moderator 
variable was the learners’ scientific reasoning ability 
which was designated EI and HD levels.  

Research instruments 

The effects of the experimental treatments were 
assessed using four instruments. All the instruments 
used in this study were translated from English version 
into Malay language using “Back Translation Method” 
so that the respondents do not have problems in 
understanding due to language.  

The Lawson’s revised Classroom Test of Scientific 
Reasoning Skills, CTSR (Lawson, 2000) and 
Roadrangka’s Group Assessment of Logical Thinking, 
GALT (Roadrangka, Yeany, & Padila, 1983) were used 
to measure the learners’ level of reasoning ability. Each 
instrument consisted of 12 items measuring 
conservation of weight, volume displacement, 
proportional thinking, identification and control of 
variables, probabilistic thinking, combinatorial thinking, 
and correlational thinking posed in multiple choice 
formats.  

The Gas Laws Performance Test (GLPT) was 
developed to assess learners’ conceptual understanding. 
The test consisted of 10 items requiring students to give 
a brief answer to the question, and a reason for why that 
answer was given, while others required students to 
provide explanation to the phenomenon presented in 
the questions.  

The Cooperative Learning Survey Questionnaire 
(CLSQ) was constructed to survey the perceptions of 
participants toward their performance measures on four 
elements of Kagan’s cooperative learning structures. It 
consisted of 16 items grouped into four categories: 
Positive interdependence, Individual Accountability, 
Equal Participation, and Simultaneous Interaction. Each 
item was constructed on a 5-point, Likert-type scale 

ranging from 1 (Strongly Disagree) to 5 (Strongly 
Agree).  

All instruments were tested for reliability in a pilot 
study by determining the Cronbach coefficient alpha. 
The Cronbach alpha reliability coefficients of GALT 
(Pre-test) and CTSR (Post-test) were 0.6095 and of 
0.6785 respectively. The Pearson's correlation 
coefficient among CTSR and GALT was 0.536. The 
GLPT test was administered as pre-test and post test to 
each HACL, FCL and TG group. The Cronbach alpha 
reliability coefficient of GLPT Test was 0.8445. The 
overall alpha reliability coefficient for the CLSQ was 
0.8256 and the internal consistency estimate of each 
component in the questionnaire ranged from 0.4869 to 
0.6814.  

The EI and HD levels of learners’ reasoning level 
was measured using GALT. Students with scores of 0 to 
6 were considered to be concrete operational (EI 
students). Students who accumulated scores from 7 to 
12 points were classified as formal operational (HD 
students). In order to account for possible pre-existing 
differences in overall ability between the treatment 
groups, the pre-test scores of GALT and GLPT were 
used as covariate measures.  

Research Sample 

The samples consisted of 301 Form Four pure 
science students (mean age 16.4 years old) from four 
different Smart Schools in Kedah and Penang. The 
study employed three classes or approximately 90 
students from each of four randomly selected Smart 
Schools. They studied “Gas Laws”, one of the topics in 
the syllabus of Form Four Physics. The participating 
students in each school were randomly assigned to one 
of the three conditions – HACL method, FCL method, 
or TG method as intact groups.  

The HACL group was assigned by the teacher so 
that it comprised of two HD students and two EI 
students based on their individual test scores in GALT. 
The students in FCL group were assigned to four-
member cooperative groups by having them choose 
randomly four members of their class with whom they 
most preferred or desired to work together. The FCL 
groups were found homogeneous in terms of reasoning 
ability as evidenced by the student’s pre-test scores in 
scientific reasoning. To determine whether FCL groups 
whose members chose to work together were perceived 
as cohesive, all students completed a nine-item Group 
Cohesiveness Questionnaire (Hinkle, Taylor & Fox-
Cardamone, 1989) at post test. Overall, the FCL groups 
were found fairly high cohesive (M= 4.3038, SD= 
0.5707) on a five-point Likert scale. The traditional 
group work group (TG) served as a control group. The 
students in this group were given the choices to select 
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their own group members and to determine their group 
size.  

Instruction with instructional materials 

In this study, all groups received identical 
instructional packages: Gas Laws Simulation package 
(Figure 2). The Gas Laws Simulation Package consisted 
of a) Gas laws simulation; b) Molecular Laboratory 
Experiments (MoLE) Gas Laws Worksheet; and c) 
Learning Guide on creating a graph using MS Excel 
Spreadsheet, all of which were presented in a CD 
provided. The adopted gas laws simulation, categorized 
as iterative simulation, was a dynamic computer-
generated graphic representation of molecular processes 
produced with Java Applet by Gelder, Haines and 
Abraham (2002). The simulation was embedded into the 
Gas Laws Simulation Package which was accessed as an 
Authorware package running on the CD.  

The student was given step by step instructions on 
how to use the gas laws simulation and asked to explore 
the different parts of the simulation. A set of controls 
on Control Bar Region provided the student with the 
ability to vary the input parameters for the simulation. 
Students had to decide which variables to vary and 
which to keep constant before running the simulation 
and to make necessary observations. Each group of 
students then performed a set of experiments using 
predescribed instructions provided on Gas Laws 
Worksheet. The students were expected to discover 
mathematical relationships of gas laws from the graph 
created using Microsoft Excel Spreadsheets. 

The implementation of learning group 

The four key elements of Kagan's cooperative 
learning, i.e. Positive Interdependence, Individual 
Accountability, Equal Participation and Simultaneous 
Interaction were embedded into the structure of Gas 
Laws activities for HACL and FCL groups. To promote 
positive interdependence in gas laws activity, the task 
was structured using Roundtable, Think-Pair-Square, 
and Read–Think–Discuss–Write, so that every student 
must contribute for the assigned task and team 
members were obliged to rely positively on one another 
to make the task successful. For structuring a task to 
include individual accountability, each student was made 
accountable to the group for her/his portion of a task, 
such as graphing group’s data and presenting group’s 
result to other groups. Additionally, students were 
structured to take personal responsibility to understand 
the group solution to a problem and how that solution 
was obtained. Consequently, Numbered Heads 
Together was adopted with which individual student 
was randomly called on to present their group’s answer 
during subsequent class discussions.  

To ensure that the students participated equally, each 
student a) was assigned a different and important role in 
the group, such as reporter, recorder, checker, and team 
leader; and b) was expected to contribute to the 
discussion when his/her turn came by engaging in the 
tasks structured using Round Robin and Rally Robin. 
The tasks were also structured so that interaction 
occurred simultaneously both within and among teams. 
For example, using ‘One stay, the rest stray’ and ‘Rally–
Robin’ structures for sharing information among teams 
and within pairs, active participation and feedback could 
occur for all students at a time. In order to ensure that 
each student committed to the assigned role, a learning 
contract was developed to be filled out by each group 
member. 

The TG group experienced the same reactive effects 
of an inquiry-based computer simulation and group 
work as the HACL and FCL groups, but without the 
four key elements of Kagan's (1994) cooperative 
learning.  

Administering the Study Sessions 

The gas laws simulation activities sessions were 
administered in four separate sessions in different week, 
with 70-80 minutes for each session. The teachers of all 
instructional groups were provided a detailed lesson 
plan to conduct the learning activities. Prior to the start 
of first section, the teacher was requested to explain the 
specific requirement and procedure for the learning 
task. The first exploration phase of MoLE gas laws 
activity required approximately 40-60 minutes for 
students to complete. Prior to the investigations 
conducted in the study, the students had reviewed the 
concepts of gas pressure, and the basic principles of the 
Kinetic Molecular Theory of gases. A printed Gas Laws 
Worksheet was provided to guide the learners through 

 
Figure 2. Part of the Gas Laws Simulation Package 
interface window
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the exploration phase which was primary intended to 
get the learners to experience the concept of Gas Laws 
to be developed and search for pattern of regularity 
from the graph created using Microsoft Excel 
Spreadsheets.  

The students, in their group then carried on their 
second exploration phase and follow-up investigation in 
the following class lesson. The students in HACL, FCL 
and TG condition were expected to discover 
mathematical relationships of gas laws and explain 
phenomena in the gas laws simulation in their own 
group, with little help of the teacher. The teachers acted 
as a facilitator, monitored groups and intervened to 
provide task assistance if needed. Only after the 
students had thoroughly investigated, discussed, and 
attempted to logically explain the phenomenon, the 
teacher offered the students a more in-depth or 
scientifically accepted explanation and new terms. The 
students then engaged in a hands-on activity on ‘Balloon 
in a bottle’. These experiences aided students in finding 
answers to questions that they had generated during 
demonstration prior to the beginning of gas laws 
activities. The teacher then posed a new situation or 
problem which can be solved on the basis of the 
previous exploration experiences and term introduction. 

At the end of the teaching session four in each 
school, the entire class in all groups’ condition was 
asked to complete the Gas Laws Performance test. The 
cooperative learning survey questionnaire and 
Classroom Test of Scientific Reasoning Skills were 
administered immediately after the students completed 
the Gas Laws Performance test. The students in the 
FCL groups were also asked to fill out a Group 
Cohesiveness Questionnaire. 

RESEARCH FINDINGS 

The data was compiled and analyzed using SPSS for 
Windows (version 11.5). Alpha was set at 0.05 level of 
significance.  

The pre-Experimental Study Results  

Initial screening tests indicated adequate conformity 
to all univariate and multivariate assumptions of 
MANOVA/MANCOVA for multivariate normal 
distribution in each group, homogeneity of DV 
variance/covariance matrices across groups in the 
population, the linear relationship between the 
covariates and the dependent variables, and linear 
relationship among dependent variables. A Chi-Square 
analysis revealed that the difference in group sizes were 
not statistically significant (r = 4.76, p = 0.093), thus the 
Pillai’s trace was used to evaluate the multivariate 
differences. The groups were tested for equality and the 
results of MANOVA (Table 1) indicated that the HD 

and EI participants across the three groups were 
equivalent in scientific reasoning and conceptual 
understanding of gas laws.  

The Experimental Study Results  

Performed Post hoc pairwise comparison using the 
/lmatrix command (Table 2) showed that students in 
the HACL group significantly outperformed their 
counterparts in the FCL group (p = .001 and p = .000 
respectively) who, in turn, significantly outperformed 
other students in the TG group (p = .000 and p = .000 
respectively) in scientific thinking and conceptual 
understanding. Therefore Hypothesis 1 was supported. 
Also, HD students in the HACL group significantly 
outperformed their counterparts in the FCL and the TG 
groups in conceptual understanding (p = .008 and p = 
.000 respectively). Further, HD students in the HACL 
group significantly outperformed their counterparts in 
the TG group in scientific reasoning (p = .004), but did 
not significantly outperform their counterparts in the 
FCL group (p = .107). However, there were no 
significant differences between the performance of HD 
students in the FCL group and the TG group in 
scientific reasoning and conceptual understanding (p = 
.224 and p = .219 respectively). Therefore Hypothesis 2 
was partially supported.  

The results also showed that EI students in the 
HACL group significantly outperformed their 
counterparts in the FCL group (p = .004 and p = .002 
respectively) and in the TG group (p = .000 and p = 
.000 respectively) in scientific reasoning and conceptual 
understanding. The EI students in the FCL group in 
turn significantly outperformed their counterparts in the 
TG group in scientific reasoning and conceptual 
understanding (p = .018 and p = .005 respectively). 
Therefore Hypothesis 3 was supported. An effect size in 
the eighties for comparing HACL and TG group 
indicates that the HACL method is an effective 
instructional method for promoting scientific reasoning 
and conceptual understanding. Overall, the HACL 
group outperformed FCL group with a relatively 
moderate difference on performance in scientific 
reasoning and conceptual understanding. 

Finally, the results of MANCOVA showed that there 
was no significant interaction effect between 
instructional method and student reasoning ability level, 
as they related to scientific thinking and conceptual 
understanding of gas laws (F(4, 586) = 0.74, p =.990). 
This suggests that the effect of instructional groups did 
not depend significantly on the level of student’s 
reasoning ability in both scientific thinking and 
conceptual understanding.  Hence, hypothesis 4 was 
rejected. 
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DISCUSSION 

The results of this study found that students who 
worked in HACL method outperformed those who 
worked in FCL and TG methods in conceptual 
understanding of Gas Laws. The results are consistent 
with cognitive elaboration theory which holds that 
explaining the material to someone else is the most 
effective means of learning (Slavin, 1987). The HD 
students in HACL group who held accountable to 
provide explanation to group members could examine 
their comprehension in detail, and this has been shown 
to lead to an awareness of inadequacies in their existing 
schemas (Collins & Stevens, 1982). When students gave 

the explanations, they needed to digest, connect, and 
combine the understood and newly developed concept 
they learned. According to Piaget (1952), this interaction 
with group members enable HD students to discover 
further application of newly developed concept, thus 
providing opportunities for cognitive restructuring to 
occur. On the other hand, EI students benefited from 
the immediate feedback and individual guidance that 
HD students provided, consequently helped them to 
clarify their own mental models and foster better 
understanding of gas laws. For example, the gas laws 
simulation engaged EI students to ask help from their 
HD group members to decide the best way of 
representing and interpreting the quantitative data. 

Table 1. Summary of multivariate analysis of variance (MANOVA) results and follow-up analysis of 
variance (ANOVA) results on pre-SR and pre-CU. 

Level MANOVA Effect and 
Dependent Variables 

Multivariate F 
 

Univariate F 
 

HD  Group Effect 
 
Pre-Scientific Reasoning  
(pre-SR) 
Pre-conceptual understanding of 
gas laws (Pre-CU) 

Pillai's Trace  
1.104 ( p =.375), df = 4, 150 
 
 
 

df = 2, 75 
 
2.105  
(p = .129) 
.140   
( p = .870) 

EI 

 

Group Effect 

Pre-Scientific Reasoning 
(pre-SR) 
Pre-conceptual understanding of 
gas laws (Pre-CU) 

Pillai's Trace  
1.772 ( p =.133), df = 4, 440 

  

df = 2, 220 

1.210  ( p = .300) 
 
2.505  ( p = .084) 

 
Table 2. Summary of post hoc pairwise comparison 

 Dependent Variable 
 Scientific Reasoning (SR) Conceptual Understanding of Gas Laws (CU) 

Comparison Group Mean 
Difference 

Sig Effect 
size 

Mean Difference Sig Effect 
size 

Between Instructional Groups 
HACL vs. FCL 6.099 .001 0.399 7.011 .000 0.514 
HACL vs. TG 10.961 .000 0.766 12.436 .000 0.965 

FCL vs. TG 4.861 .009 0.361 5.425 .002 0.417 
Between HD students across the three groups 
HACL vs. FCL 6.479 .107 0.464 8.458 .008 0.662 
HACL vs. TG 11.745 .004 0.808 12.730 .000 1.040 
FCL vs. TG 5.266 .224 0.398 4.271 .219 0.393 
Between EI students across the three groups 
HACL vs. FCL 6.120 .004 0.424 6.510 .002 0.643 
HACL vs. TG 10.961 .000 0.853 12.247 .000 0.939 
FCL vs. TG 4.841 .018 0.387 5.737 .005 0.446 

Note. The mean difference shown in this table is the subtraction of the second condition (on the lower line) from the first condition (on the upper line); 
for example, 6.120 (Mean Difference for SR) = HACL –FCL. 
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Thus, the opportunity of EI students to work 
cooperatively with HD students in HACL groups 
increased their ability to think in HD form. In contrast, 
the students with homogeneous ability grouping in the 
FCL group might suffer from a lack of appropriately 
role models to provide explanation, thus they did not 
create as good a stage as students in HACL group for 
elaborate thinking, or for explaining processes to take 
place. As a result, students in FCL groups did not 
develop a better conceptual understanding of gas laws 
than students who taught via the HACL groups. 

The results also showed that students who worked in 
HACL groups made significantly greater gains on the 
scientific reasoning test than those who worked in FCL 
and TG groups. The effectiveness of HACL method in 
promoting the scientific reasoning of students is 
consistent with cognition theories of Piaget and 
Vygotsky that social interaction is a force in mental 
development (Inhelder, et al., 1979; Vygotsky, 1978). In 
the present study, the HD students taught via HACL 
method acting as experts, developed or proposed 
methods and strategies that were successful in solving 
the given problems. The EI student was then given the 
opportunity to model these successful methods and 
strategies, while the HD students offering hints, 
scaffolding, and providing feedback to further develop 
the EI student's ability in hypothetical-deductive 
reasoning. Through the process of demonstrating 
appropriate strategies of approaching a problem, these 
HD students became more aware of the thinking 
processes they were using. At the same time, the EI 
students were given opportunities to compare - contrast 
their knowledge, reasoning in a specific domain with 
those of their HD peers. In this study, the Gas Laws 
Simulation provided interactive experience with physical 
phenomena that contradict students’ prior conceptions. 
For example, some of the students had the idea that the 
speed of the particles increase as the volume of the 
container decrease, thus increasing the temperature; 
simulations allowed them to observe that there was no 
change in the average kinetic energy when the volume 
changed, therefore the particles could not be moving 
faster and there was no change in temperature. When 
the results of an investigation contradicted with what 
students had expected or with their prior concepts, 
mental disequilibrium occurred. With exposure to 
evidence that they gathered from Gas Laws simulation 
and different perspectives presented by their HD peers, 
EI students were able to reconceptualise their own 
thinking. This form of peer-peer cooperative learning 
represents Piagetian theory that provided EI students 
with the opportunity to extend themselves to higher 
levels of reasoning. Consequently, HACL method 
helped students to reason scientifically better than those 
taught via the FCL and TG method.  

On one hand, the HD students in HACL group 
generally achieved at the same levels as did their 
counterparts in FCL group in scientific reasoning. The 
similar performances of HD students indicated that 
students had undergone brain growth plateau at age 16 
and 17 (mean age 16.42 years).  This could be explained 
by the view that improvements in scientific reasoning 
are a product of both neurological maturation and 
experience (physical and social) (Kwon and Lawson, 
2000). With regard to the development of adolescence 
and early adult thought, for example, Inhelder and 
Piaget (1958) stated: …this structure formation depends 
on three principal factors: maturation of nervous 
system, experience acquired in interaction with the 
physical environment, and the influence of the social 
milieu” (p.243). Therefore, the present study suggests 
that instructional methods in promoting scientific 
reasoning among HD students can be effective if it is 
timed to occur after the plateau period in brain 
maturation. 

The HD students taught via FCL instructional 
method did not perform significantly higher than their 
peers taught via TG instructional method in conceptual 
understanding and scientific reasoning. The results of 
this study are consistent with the results reported by 
Mullen & Cooper (1994) who found that, on average, 
correlational studies revealed a negative relationship 
between social cohesiveness and performance. Webb 
(1982) indicated that high ability students in 
homogenous groups might suppose that every one 
understands and then they reduce the interaction. In this 
regard, there was the potential that HD students in FCL 
groups who were cohesive became too confident about 
the ability of their group members to perform well and 
did not fully discuss the issues of importance or seek 
participation of all members to help them make 
decisions. Evans & Dion (1991) are also of the view that 
cohesiveness and productivity are negatively related as 
long as group norms discourage high productivity. A 
norm is a way of thinking, feeling, or behaving that is 
perceived by group members as appropriate (Asch, 
1952; Sherif, 1936). Consequently, the cohesiveness-
performance relationship is primary due to fact that the 
HD students of a FCL group developed norms that 
limited group member’s participation to share their 
ideas and opinion. As a result The HD students taught 
via FCL method did not perform significantly higher 
than their peers in TG group in conceptual 
understanding and scientific reasoning. 

The positive effects of FCL method on EI student’s 
performance in scientific reasoning and conceptual 
understanding can be related to social cohesion 
perspectives that posit that students help one another 
learn because they care about one another and want one 
another to succeed (Slavin, 1995). As each group 
members wanted to stay in the group, and worked well 
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together socially, they were dependent on one another, 
and hence promoted positive social interdependence 
among group members. This positive social 
interdependence, in turn, according to social 
interdependence theory, lead to promotive interaction 
as EI students within FCL group encouraged and 
facilitated each member’s learning and output (Johnson 
& Johnson, 1989). It follows that the group members 
engaged in active learning behaviors, and hence 
promoted each other’s success. As EI members of FCL 
groups engaged in frequent and open discussion, they 
increased their ability to develop more complex level of 
understanding and reasoning and therefore they 
outperformed their counterparts who taught via the TG 
method in scientific reasoning and conceptual 
understanding.  

The students taught via TG method had significantly 
lower mean scores than those in the HACL and FCL 
methods in scientific reasoning and conceptual 
understanding. In this study, students taught via TG 
group were assumed to know how to work together and 
to be interested in participating and learning. Responses 
on the cooperative learning questionnaire indicate that 
the students responded very negatively to the fact that 
they were given an equal opportunity to participate to 
the group’s task and that they were individually 
accountable for his or her contribution to the group 
work. The students taught via TG group were given a 
task to complete without the provision of structures that 
promoted the active and equal participation of all 
members. According to Kagan (1994), when the group 
did not structure for equal participation, the group 
discussion session could involve participation 
exclusively by the high achieving or extroverted 
students. When low achieving or introverted students 
saw their efforts as dispensable for the group’s success, 
they reduced their efforts (Kerr & Bruun, 1983; 
Sweeney, 1973). Emerging from this, the students 
taught via TG group were not responsible for the part 
of the task and did not become individually accountable 
to their partners for doing their share and therefore 
group work resulted in some students doing most or all 
the work while others engaged as free rider. In addition, 
the students taught via TG group were given a task with 
no structuring or roles, and consequently group work 
did not hold each individual accountable to the group 
for his/her contribution. When group work did not 
structure for individual accountability, the students did 
not engage in the behaviors that increase performance 
by helping each other and encouraging each other to put 
forth maximum effort (Slavin, 1995). It follows that the 
interaction behaviors, including giving and receiving 
help, discussing, and sharing were lacking in a TG 
group. Consequently students had limited opportunities 
to discuss and share their ideas, or resolve 
contradictions between their own and other students’ 

perspectives. As a result, students taught via TG group 
did not benefit much from group interaction than 
students did in HACL and FCL group.  

The results of the study showed that the student’s 
reasoning ability level did not significantly affect the 
performance of the instructional method. i.e., the EI 
and HD students benefited equally in SR and CU after 
learning in HACL or FCL or TG methods. Lawson & 
Bealer (1984) argued that successful qualitative 
reasoning arises as a consequence of the process of 
equilibration or self-regulation, that is an internal 
cognitive process whereby an individual’s mental 
structures and some confusing external experiences 
interact over a period of time to eventually allow for the 
modification of previously incomplete and inadequate 
mental structures and the satisfactory “internalization” 
of the experiences (p. 421). In this regard, the 
acquisition of concepts and reasoning skills which was 
initiated by specific short-term instruction, as 
introduced in this study, did not become internalized. In 
other words, for EI students to progress dramatically 
from what Vygotsky called their “actual developmental 
level” to their “level of potential development”, would 
require more long–term developmental processes. From 
the intellectual development viewpoint, the HD 
students have become increasingly capable of using a 
wide range of reasoning patterns (Lawson, 1995). Thus, 
despite working cooperatively and involved in self-
regulation, they did not benefit as much from the 
instructional methods in scientific reasoning and 
conceptual understanding.  

CONCLUSIONS AND IMPLICATIONS 

In conclusion, the present study has found support 
for the hypotheses that the inquiry-based computer 
simulation with heterogeneous-ability cooperative 
learning method (HACL) is an effective mean of 
promoting students’ scientific reasoning ability and 
conceptual understanding of gas laws in science 
classroom. The teachers should therefore manipulate 
the group’s membership heterogeneously, as well as 
constantly monitor that the four elements of Kagan 
cooperative learning are being adhered to by each group 
for maximum effectiveness. The FCL method had a 
positive effect on EI students but not HD students. The 
EI students adopted norms for more positive behavior 
by engaging them in Kagan’s cooperative learning 
structures than HD students did. The cohesiveness 
provided by EI membership in the FCL group 
promoted positive social interaction and promotive 
interaction that increased their ability to develop more 
complex level of understanding and reasoning than their 
peers in the TG group. Less effort in encouraging 
others from participating and not fully considering or 
responding to others’ contributions in group task, all 
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apparently interfered with the processes necessary for 
HD students to perform effectively in FCL group. The 
results of this study also indicated that learning groups 
need a clear cooperative goal structure if teachers wish 
to maximize performance on learning tasks when 
placing students in groups. 

The findings of this study suggest that the HACL 
method is effective in enhancing scientific reasoning 
and conceptual understanding of gas laws for students 
of both EI and HD reasoning level. Therefore, the 
teachers need to become adept at recognizing the 
cognitive levels of their students, as well as how they 
interact with each other. Cooperative groups that 
composed of students of heterogeneous abilities need to 
be carefully formed after the teacher has built up 
knowledge of students’ personalities, interests, skills and 
abilities before incorporating cooperative learning 
method into computer based instruction. In addition, 
teachers should provide EI students more opportunity 
and guide and assist them through HACL method. The 
EI students can perform almost as HD students as the 
findings of this study if they were lead appropriately. 
The teachers should engage students to think as 
scientists do as they analyze data and create theories and 
hypotheses. This could take the form of teaching 
thinking via web-based computer simulation which is 
available and easy to access. The instructional design 
should be refined in such a way as to push students to 
ask inquiry-based questions and create adequate 
alternative explanations for their findings that go 
beyond “our experiment didn’t work”.  
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FOREWORD 

Dana Zeidler is a professor of science education and 
the program coordinator for science education at the 
University of South Florida in Tampa, Florida. Dr. 
Zeidler received his Ph.D. in science education from 
Syracuse University, Syracuse, NY (1982); an M.S. in 
science education from Syracuse University, Syracuse, 
NY (1978); a B.S. in Education/Biology from State 
University of New York, College at Buffalo, NY (1976); 
and A.A.S. in Natural Sciences and Conservation, State 
University of New York, College at Alfred, N.Y. 

 Dr. Zeidler began his professional career in soil 
conservation. He made a shift in his career as he 
“preferred to work with people rather than test tubes, 
beakers, flasks and doing soil analyses.” This led him to 
pursue teacher licensure in biology and general science 

at the high school level. He continued on to complete 
his master’s degree in science education at the Syracuse 
University. He taught genetics, biology, evolution and 
science teaching methods as a graduate assistant during 
his enrollment in the master’s degree program (and 
ultimately in the Ph.D. program). As he was immersed 
in the university climate, he began to understand that 
there is a broader field of science education and that 
interested him greatly. It was at this time that he decided 
to pursue his Ph.D. in science education. He began his 
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teaching career as a middle school physical and chemical 
Science teacher at Altmar-Parish-Williamson Central 
School, NY.  After receiving his Ph.D. from Syracuse 
University, he began his university career as an assistant 
professor at Delaware State University where he gained 
tenure and associate professor rank.  Later (1989) he 
moved to the University of Massachusetts as an 
associate professor and senior faculty directly the 
science and mathematics education doctoral program. 
After seven years, he accepted a position at his current 
institution, University of South Florida (USF) where he 
obtained full professorship. At USF, he has been the 
program coordinator for science education (Doctoral, 
Masters and Undergraduate Science Education).   

Dr. Zeidler has delivered keynote addresses to 
several professional organizations including the 
International Conference of Trends and Issues in 
Science Curriculum Materials Research and 
Development, National Taiwan Normal University, 
Kung-Kuan Campus, Taipei, Taiwan; Linnaeus 
Tercentenary 2007 Symposium, Uppsala University, 
Uppsala Sweden; National Taichung University, 
Taichung Taiwan and National Chaiyi University 
Conference on Socioscientific Issues, Chaiyi, Taiwan. 
He has been a recipient of many awards including the 
recipient for the 2008 Association for Science Teacher 
Education Outstanding Mentor Award; recipient for the 
2006 Journal of Research in Science Teaching best article 
award (Troy D. Sadler & Dana L. Zeidler); recipient of 
the President’s Faculty Excellence Award (USF, 2003); 
Award for recognition of service to AETS (as Managing 
Editor of the Journal of Science Teacher Education); and 
recipient of 2002 and 1999 Outstanding Position Paper 
Award at the Southeastern Association for Science 
Teacher Education. Dr. Zeidler is renowned for his 
work in the science education community specifically 
focused on socioscientific issues (SSI). He has presented 
50 papers at international and national conferences, and 
published 33 refereed journal articles. He has authored 
one book, edited one book, and published 8 book 
chapters and two monographs (see Appendix). 

Dr. Zeidler has been an active member of several 
professional organizations in science education such as 
National Association for Research and Science Teaching 
(NARST), National Science Teachers Association 
(NSTA), American Educational Research (AERA), 
Association for Science Teacher Education (ASTE), and 
Southeastern Association for the Science Teacher 
Education (SASTE). He has served in many leadership 
positions throughout his career in these professional 
organizations. He was elected to the Executive Board of 
Directors for the National Association for Research in 
Science Teaching (2006-2009), was elected to the Board 
of Directors for ASTE (2008-2011) and was elected the 
President (2000-2001) of the Southeastern Association 
for Teachers in Science (SAETS). Additionally, he was 

nominated to be the Conference Chair for the 2007 
Annual Meeting of the Association for Science Teacher 
Education (ASTE), Clearwater Beach, Florida (2006) 
and to the Conference Coordination Committee (2006-
2008) to the Association for Science Teacher Education 
(ASTE). In addition, he was elected and reelected as 
Managing Editor (1990-1994) for the Journal of Science 
Teacher Education (JSTE) published by the Association 
for the Education of Teachers in Science (AETS). He 
also has served on the editorial Board of Reviewers 
(1997-2002), for Journal of Science Teacher Education (JSTE) 
published by the Association for the Education of 
Teachers in Science (AETS), served on the Editorial 
Board of Reviewers for Science Education (1996-2005) and 
served multiple years on the Review Board for the 
Journal of Research in Science Teaching. 

INTRODUCTION 

Our professional association with Dr. Zeidler at 
regional conferences such as SASTE has allowed us 
to establish a collegial and informal association.  As 
researchers and scholars in the southeastern part of 
the United States, we have had the opportunity to 
hear Dana Zeidler speak on a number of occasions.  
Our own research areas of inquiry in fields such as 
nature of science and equity issues intersect in a 
number of ways with Dr. Zeidler research interests 
in socioscientific issues (SSI).  At these regional 
meetings, we have encouraged our doctoral 
students to seek out scholars in the field, including 
Dr. Zeidler, and have informal conversations to 
facilitate their lines of inquiry.   

Recently, we came across the article in 
EURASIA Journal of Mathematics, Science & Technology 
Education that featured a conversation with Dr. 
Sandra Abell and her professional career.  This 
made us reflect upon the benefit of such narratives 
especially for junior scholars and doctoral students 
in science education.  Our Ph.D. students have 
shared their respect and admiration for the 
scholarly body of work and the ideas generated by 
Dr. Zeidler.  Thus we felt it will be beneficial to the 
science education community to showcase the 
professional career of Dr. Dana Zeidler.  In this 
professional narrative, we interviewed Dr. Zeidler 
at the 2008 International Conference of National 
Association of Research in Science Teaching 
(NARST) in Baltimore, Maryland.  In preparation 
for our interview, we reviewed Dr. Zeidler’s vita 
and found another interesting aspect. In addition to 
his work in the science education arena, Dr. Zeidler 
has also established two martial arts schools in 
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West Townsend Massachusetts and Land O’ Lakes, 
Florida in conjunction with Pasco County Parks 
and Recreation.  He is a Sensei (Chief) Instructor of 
the Zeidler’s Isshinryu Karate Club.  He noted in 
his vita that these schools are “not run as a 
business but for a love of the art stressing the 
fusion of mind, body, and spirit.”  He has studied 
Isshinryu Karate since 1982 and has been 
promoted to Roku Dan (6th Degree Black Belt, 
2004) and has trained with Grand Master Angi 
Uezu in Japan.  

Conversation Topics 

We used the following conversation topics to 
guide the readers in our conversation with Dana:  

• Dana Zeidler’s journey leading him to his 
present position in science education 

• Shaping of his professional career in science 
education 

• Reflections on research perspectives linking 
nature of science and socioscientific issues 

• Development of socioscientific issues as a 
line of inquiry in science education 

• Advise for junior scholars and doctoral 
students in science education 

 
In this section, we present a transcript of the 

audio-taped conversation and it is available on the 
journal’s webpage. We use the following acronyms 
to represent the participants in this interview: 

GV (Geeta Verma); DZ (Dana Zeidler); and 
LMH (Lisa Martin-Hansen) 

GV:  Tell us about your current position and 
what’s your role and responsibility at your current 
institution? 

DZ:  Right now I am a professor at The 
University of South Florida. I am also the program 
coordinator for the science education and I have 
been there, now, for about 11 years, doesn’t seem 
like that long but I am getting older and time is 
flying by.  

GV:  How did you begin your career in science 
education?   

DZ:  I began my career with a two-year degree 
in social and applied science and natural science’s in 
agronomy and soil conservation. It’s a two-year 
degree and [I] didn’t quite know what I wanted to 
do after that except that I knew that I’d rather work 
with people rather than test tubes and beakers and 
flasks and doing soil analyses -- it was interesting to 

find [out] what it was but I didn’t really want to 
think about doing that for the rest of my life. I 
went on for a Bachelor’s degree at a State 
University of New York, Buffalo and I went to 
State Teachers College, Buffalo State College (at 
that time), and I continued my work in biological 
sciences, minor in physical sciences and earth 
science, and began taking educational courses and 
did my internship -- my student teaching, up there.  

In New York State to be permanently certified, 
you need to get a masters degree within 5 years, so 
I thought that I would go right on to Syracuse 
University to accomplish that and something 
unplanned happened in Syracuse -- I was able to 
talk my way into an assistantship from day one of 
my Masters degree (and which is [something] they 
[had] never done before, usually its [only] PhD 
students only they hire for an assistantship) but, 
somehow, I got the right person at the right time 
and talked my way into a teaching assistantship in 
Syracuse University and taught courses in genetics 
and evolution, methods courses, as well as being a 
Master’s student.  

I had [a] large tiered lecture hall and [it was] 
pretty intimidating being a page ahead of the 
students at that time but it was a good training 
experience. At that point, I had an office similar to 
the doctoral candidates. I began to understand that 
there is a broader field of science education out 
there. At that time, I had only [an] inkling that there 
was only a field out there, to be honest with you. 
And once you are immersed in that kind of 
university environment with other PhD students, 
you begin to learn real fast that there is a whole 
network of relationships that go on in our own 
field. And [I] just stayed right on going to a PhD 
degree for science education.  

LMH: Who were some of the people that you 
worked with during that time? 

DZ:  My main mentor was a man named Larry 
Schaffer, who had a physics background and was 
the most creative teacher I have seen in terms of 
teaching methods. Even though he has done this 
[methods] course for years and years, he [would] sit 
down before the class and rethink how to present 
something in bit of a different way, and in a more 
nuanced way, and he was very creative so it was a 
good training working with him.  

I worked with Ann Howe, who is a former 
president of NARST and Marvin Druger to some 
extent, he wasn’t on my committee but obviously I 
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got to work with him and co-taught course with 
him -- a methods course. And at that time, 
probably my best friend and a fellow graduate 
student was Norm Lederman.  He came in a few 
years after I started the program or maybe a year 
after I started or so, we went through graduate 
school together so I probably [have] known him 
longer than anybody else from NARST . . . and I 
still talk to him! [GV: that’s a good sign.] He is an 
impressive figure and impressed me a lot... 
influenced a lot of my work, probably I’ll talk about 
that later. 

LMH: How about your dissertation? Where did 
you begin with your research? 

DZ:  Whenever I had an option to take an 
elective course even at the undergraduate level, I 
took a philosophy course or a psychology course, 
because I just had some affinity for it [as an] 
interest within me. And as I went on in graduate 
school, I began to see some underlying 
relationships between areas of developmental 
psychology and philosophy and things that I 
wanted to do with respect to getting kids engaged, 
reason, and learn to think. So I began taking a lot 
of courses in the Cultural Foundations Department 
which subsumed history, philosophy and sociology 
of education. And there is one gentlemen there 
who was the chair of the department by the name 
of Thomas F. Green, and now [is] the time to talk a 
little bit [about] him? ....I can do that … [Interviewers: 
Sure.]  

I respect a lot of people but I wouldn’t say I put 
people up on pedestals…people are just people. I 
made an exception in his case because he struck me 
as the exemplary case of an eminent scholar. And 
the seminars I had with him! I took every 
course...four or five different courses with him. 
Some of the courses [were] from [other] people in 
the Cultural Foundations department. The kind of 
the things that we were reading paralleled my 
interests with topics in moral education and moral 
philosophy. 

I became interested in Kohlberg’s work at that 
time as well too. Thomas F. Green ended up in my 
committee… but in order to really learn some of 
the presuppositions and the details of moral 
developmental theory, I convinced my chair 
person, who was pretty open about it, to send me 
to Harvard University for a part of the summer to 
take a long workshop with Larry Kohlberg, whose 
work is probably known for theories of moral 

development and [I] met some other post-doc 
students, [one] by the name of Marvin Berkowitz, 
one person who I’ll [talk] about later. And their 
work obviously influenced me and got me really 
thinking about how people progress and reason 
and learn and make decisions based on social 
justice. 

And I began to sort of apply that to science 
education, knowing that we have to do that kind of 
work with science education, as I said before, so I 
needed to find the bridge to science education and 
convince people [that] this [was] something of 
merit. At that time people would say “What does 
moral reasoning has to do with science education?”  
And my answer was “Fundamentally everything!” 
but I needed to convince people of that. So the 
foundation of my work began with looking at 
mediating factors of moral reasoning in science 
education 

GV: And this was during your doctoral degree? 
DZ: And that was in my doctoral degree. 
GV: So did you doctoral dissertation specifically 

looked at some of [these ideas]?  
DZ: That was the exact title.  
GV: That was the exact title? 
DZ: Right. I have a previous title but I changed 

it. I don’t know if this all off the record or on the 
record. The first title was “Why Are There So 
Many A****s in the World?” [Interviewers:☺]. But 
that wasn’t looked at [favorably] by the committee 
and so they asked me to modify that title to 
“Identifying Mediating Factors of Moral Reasoning 
in Science Education.” 

At that time, I looked at the capacity for people 
to reason both with formal reasoning ability and 
the differences between that and moral reasoning 
ability --- and there is a little gap or decalage 
between those two reasoning structures. And I 
tried to explain, in part, why that gap exists. And I 
would look at things like attitudes and 
comprehension of the area under consideration, 
people [making] judgments about that. 

GV: So at that time I think STS was in full 
swing, right? [In the] 80’s... around that time? 

DZ: It was… coming up on the horizon because 
I began my Master’s degree in 1976 and finished 
my doctoral degree by 1982, and STS was sort of 
coming on the horizon and would hit the same 
[time or] a little bit after that. 

GV: Because one of your pieces talked about 
providing the theoretical framework for STS and 
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that’s how you transitioned your work from STS to 
SSI? 

DZ: Right, if I can clarify. . . if I may [Interviewers: 
Sure.]. The STS movement didn’t really provide any 
kind [of] framework for my work. In fact, at that 
time, I swear that it seemed to be lacking some 
crucial elements that I felt were important based on 
the work that I had been doing, and that 
framework would eventually, 20 years later [or] so, 
would [be] known as socioscientific issues or SSI, 
but if you want me to jump ahead to explain [a] 
little bit about the differences [Interviewers: go 
ahead].  

I became interested in several aspects that I felt 
connected in some way to moral development and 
moral reasoning. I tried to find segues or portals in 
the science education [field] where it makes sense 
to look at that kind of work, and so I began doing 
some work in several areas. One included . . . some 
nature of science with Norm Lederman . . . another 
finger or branch was looking at argumentation and 
discourse and fallacious reasoning as well. Another 
work was that looking at developmental differences 
and moral judgment and cognitive abilities as well 
as . . . looking at also some sociological factors 
about the structures of society and how people 
think and reason in groups.  

Eventually, I realized that the STS movement 
really didn’t provide... in my opinion, a sound 
theoretical framework for its existence. To me, it 
seemed more like an ideology in search of a theory, 
than something [which] came from a theoretical 
base, and so I saw STS being a great advancement 
to begin thinking about connections among science 
and technology & society. Some individuals would 
begin to incorporate some elements of moral 
problems in that.  But at best I saw, STS only 
alluding or kind of pointing out possible moral 
[kinds] of conflicts or problems or ethical 
considerations, but it didn’t really compel people to 
seriously think and work in their way… to 
negotiate their way [through] these problems with 
respect to looking at character development, trying 
to see how people can progress through 
epistemological sophistication … different levels of 
epistemological reasoning. 

I suppose that the lack of a strong theoretical 
framework or structure enabled me to begin 
combining those areas that I was looking at in a 
way that I thought was a better theoretical 
underpinning for developmental thinking and 

consistent with what people do in character 
education for social justice. That’s why eventually I 
was able to,... many years later, kind of synthesize 
that work together and kind of incorporate that 
into the SSI or socioscience education framework.  

LMH: Now it sounds like this connection began 
quite early in your career. 

DZ:  It did. I remember writing a piece that was 
a paper that didn’t get into a published form but I 
presented it at an STS conference, the only one that 
I went to in Crystal City, Washington D.C., and the 
title of the paper had something to do with “STS 
and the Missing link in Science Education” and to 
me that missing link was the things that many years 
later came to unfold but I probably could not 
articulate it well and it wasn’t probably a very 
popular position to take. 

LMH: I was going to ask you how [was] the 
general reaction at that time . . . how did it go. 

DZ: Polite, you know nods and [then] “Next ...” 
[Interviewers:☺] “We have another presenter at this 
point…” And I, quite frankly, I don’t think my 
thoughts were well-developed at that point... 
looking back at them... I have that paper on my 
table and look at it and say “Naah . . . not going to 
convince anybody yet.” 

GV: What advice would you have for Doctoral 
students in terms of developing their own line of 
inquiry especially, let’s say, they’re trying to get into 
socioscientific issues and moral reasoning and these 
kinds of topics? 

DZ: You need to have a passion for what you 
are going to do because it’s your dissertation and I 
see so many students, not my students of course, 
but many other students [Interviewers:☺] that will 
take what’s easy and doable and will also tend to be 
the kind of dissertations that are “so what?” and 
“ho hum and nobody really cares!” And to my way 
of thinking . . . and for my personality, if you are 
going to immerse yourself for such a long period of 
time then you ought to really have some real vested 
interest in this topic to be personally motivated to 
really push the envelope. And so I would say, if you 
are going to choose a topic [choose] something 
that’s personally relevant to you-- but also you need 
to convince other people that it is relevant to the 
greater science education community. That’s the 
thing that I had to tackle with and grapple with 
when I was doing my dissertation.  

GV: Was that difficult? 
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DZ: Syracuse University was great at providing 
[and finding] us leeway to pursue our own interests 
whether they are coming from philosophy or 
sociology or psychology . . . as long as you can 
convince them and connect it [with] science 
education. As I just said, that nobody had really 
ever done the area that I worked with then. They 
were probably little skeptical at first but they gave 
me leeway to make the case. And evidently I 
successfully made that case for them. So that’s my 
advice – to pursue the things that really interest you 
as long as they are of interest to some part of the 
science education community. And be willing to 
take these kinds of risks to explore topics that you 
think are . . . need attention because there are a lot 
of things that we still don’t know about. 

GV: So what advice would you have for junior 
researches trying to get published and are not as 
articulate . . . not well thought out because they are 
. . . early in the career but they are trying to do this 
kind of work which is not your traditional science 
education kind of scholarship? 

DZ: Well like any sound research you need to do 
your homework. You need to see what’s been out 
there. First, you need to engage in a reading 
program and look at the literature, look at the 
journals and look at other fields as outside of 
science education. [It has] to makes sense with 
respect to connecting to your interests too. And so 
[if] I limited myself to the science education 
literature, I could never advance this research 
program. I [looked] outside to the character 
education and moral philosophy areas as well. 

And so my advice is to see what is out there and 
then see where the assumptions are that need to be 
explored a little bit further. See where the openings 
are for new ideas. [Where]  I think SSI research is 
right now is probably where NOS research was 20 
years ago. And this is my opinion – I think it’s 
beginning to really open up. We are just in the 
beginning stages of opening up by virtue [of] 
looking at the [research] program. [At] NARST, for 
example, looking at the articles and the journals and 
seeing how people are beginning to take this idea 
and look at different aspects of it. So, it’s a ripe area 
but you need to kind of see what the framework is 
first and go from there.  

[My] final suggestion is, don’t limit yourself to 
the American journals, and look at the international 
journals. I was guilty of that too; I was very 
ethnocentric in my thinking and didn’t realize until 

later in my career (I mean on one level of course I 
did) but did realize these contributions that people 
from over the world have made [to] science 
education from the European countries; from 
Australia; from South America; from the Pacific 
Rim. Now that I have been traveling the world a bit 
more and beginning to look at those journals more 
recently, there are some really interesting works 
that can inform your work. 

LMH: Now if we could travel back to time in 
Syracuse and then move on from there that was the 
beginning of your career in the academia. If you 
could continue on and tell us a little bit about 
where did you first began as an assistant professor 
and where was your research at that time and then 
just keep on going with us and lead us through your 
personal tour of where you have been with your 
research? 

DZ: My first higher education position was at 
Delaware State University, Dover, Delaware. It was 
a small historically black college (HBC). I was 
attached to a program called the Learning Center 
and in that they took students who were “at risk” 
and [provide] them [with help in] their study skills 
and reading skills, and math and science skills. Of 
course, that’s where I came in. And to develop a 
program that would try to position them better 
when they took their college level courses. [So] they 
wouldn’t be blown out of their water and they can 
be more successful. And so retention was an 
important issue. 

At that time, I really didn’t think about having a 
research program proper. I just did what interested 
me and I don’t know [if] that was wise or not. And 
maybe I was just a bit naïve to understand that “I 
need to have a research program.” But I simply 
[did] the kind of research that interested me at that 
time and that’s how I was looking at [it] . . . again 
some aspects of nature of science with Norm 
Lederman. And also looking at the differences 
between moral development and cognitive 
development. I didn’t know exactly where [it] was 
leading but I thought there was [a lot of] work to 
be done and [it] interested me to do that kind of 
work. 

So at Delaware I began teaching, I guess it’s a 
kind of general science course or remedial science. 
I also began teaching for their masters program, 
only [an] occasional courses in science education, 
methods courses – sometimes a geology course 
too. And I also began at one point, [to] sort of 
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work my way into taking over the research design 
and methodology course and the developmental 
psychology course, required by the masters 
students. 

From there, (I was there for 7 years), I went up 
to University of Massachusetts at Lowell. It was an 
opportunity to work at the Ph.D. level because 
Delaware, at that time, only had master’s degree 
programs. And I continued working . . . teaching 
strictly graduate courses and again, I taught the 
research design methodology course. I began 
teaching a qualitative inquiry course as well and 
then my specialty courses within science education 
and continued working. 

At that point of time, I began looking at 
argumentation and discourse, and fallacious 
reasoning as well, and eventually moved on to the 
University of South Florida where I have been for a 
longer period of time, where a lot of my ideas got 
pulled together, as I described to you before, and 
began as an associate professor there and worked 
my way up to professor. 

GV: How do your view changes in the field of 
science over the time that you’ve been involved in 
science education? What do you see in terms of big 
emphasis discoveries in the coming years?  

DZ: That’s a tough one because if I say the 
wrong thing, you are gonna come back at me and 
say “by the way you are wrong about this” 
[Interviewers☺]. I feel sort of safe in speaking in my 
own territories. As I mentioned before, I think 
socioscientific issues research because it branches 
out to epistemology, reflective judgment, moral 
reasoning, character development, and 
argumentation and discourse. I think SSI has the 
potential to be a really fruitful research program. 
And whether your SSI is the central core what you 
are doing, you could be working [on] any of those 
areas [and] will be able to connect to it. And the 
areas that I mentioned, I think, also [are] ripe for 
development . . . epistemological reasoning and 
reflective judgment.  

NOS research, to me at this point, in a lot of 
respects for a lot of individuals in our field, [seems] 
to be mopping up kind of operations as Thomas 
Kuhn would describe –  and has fewer people sort 
of taking risks to push it in really new directions. 
And again, I think, being able to create situations in 
the classrooms that where kids were practicing . . . 
real decision-making, going through evidence and 
seeing how people can support various positions 

based on [the] same evidence, has direct 
connections to nature of science research. So I 
think there is a kind of a new link that could be 
made with connecting nature science work with SSI 
and reflective judgment – that sort of thing. I 
hopefully have a paper coming out in JRST, if they 
like it well enough, that will tying a lot of those 
areas together – reflective judgment and nature of 
science within the context of socioscientific issues. 

GV: In your own preparation, to do this kind of 
work, you said you took a lot of courses in cultural 
foundations and everything, so for us to prepare 
new Ph.D. student to go through this or work in 
this area then . . . that means we are kind of asking 
us to move them little bit outside of science 
education. 

DZ: I think that’s a good idea assuming that you 
have your strong philosophy department or cultural 
foundations or equivalent sort of department or 
psychology department, you know within a 
institution that sometimes might be limited at that 
persons institution, but to the extent that people 
can see that other disciplines that inform the work 
that you do and makes sense, I think that’s a good 
thing.  

After all, Ph.D. is a doctorate of philosophy and 
somehow we sort of leave off that later part out of 
our preparation . . . things that I was reading in a 
graduate school started with the fundamentals. 
Nichomachian Ethics – Aristotle, and Pluto’s 
Republic and these were central to understand 
moral philosophy. I didn’t fully understand it at 
that time but in hindsight I see it –  working [my] 
way up through John Mills and other key 
philosophers. Eventually, I think those kind of your 
classic works provide a foundation where you can 
see links to present day ideas and provide a richer 
context for understanding the other theoretical 
work that you do. So . . . I am [often] moving 
people outside of certain boundaries and if 
sometimes [it] means taking a more than a 
minimum number of courses, what’s wrong with 
that?  Another semester or two in your total life – 
if it can really change your vision of the future. 

GV: So what do you have your Ph.D. students 
do, the ones that you are the major advisor at your 
institution? 

DZ: The same thing. There are certain courses 
in the science education that I am going to provide 
and offer. I have incorporated lot of things in my 
courses that I think they may not get in other 
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places. And so some of the other courses that I 
teach for the Ph.D. level would be . . . things like 
moral education & science education, a moral 
reasoning and moral development [course] and a 
course in cognition and epistemology of science. I 
am teaching another course in nature and 
philosophy of science and kind of general trends 
course, to kind of see what the current issues are. 

So, I probably [in]corporate a lot of things that 
are missing in other places in my courses-- but 
having said that, we have a lot of flexibility in our 
program for them to take course work in other 
areas too. So [if] somebody wants to really have a 
strong background in instructional technology, 
which is not my forte, they have the flexibility to do 
that as well and then hopefully they kind of bring 
their interest in science education into that area as 
well. So I try to encourage that. 

LMH: You have been invited a keynote speaker, 
a number of times. Can you tell us a little bit about 
what people invite you to speak about at 
conferences? 

DZ:  Lately I have had the honor of going to 
different universities. More specifically, some 
universities in Taiwan like National University of 
Taiwan and Uppsala University in Sweden – they 
are interested to hear about the research program 
mostly in socioscientific issues is . . . and they left it 
up to me to present what aspects I think are 
interesting or relevant to people who are kind of 
newer to this idea. 

And with respect, for example, to Uppsala 
University conference in Sweden, they wanted to 
see how socioscientific issues fit in with scientific 
literacy. And so I was I was trying to and (I have 
written on this topic before) . . .you know, make 
the case that scientific literacy wouldn’t be fulfilled 
or reached without attention to some of these 
things. It certainly [has] the other aspects of the 
scientific literacy, but making informed judgments 
that have implications for the environment and 
social justice, and those kind of moral 
considerations, certainly need to be [a] part of what 
we would think of as being an informed scientific 
literate individual. So I was asked to speak about 
those kinds of things. 

LMH: What kinds of questions did you have 
following those conferences? What were people 
curious about? 

DZ: I would be making it up if I could recall 
specific questions . . . I can tell you that there seems 

to be lot of interest generated when I talk, whether 
it’s the NARST conferences or the ASTE. The 
sessions were usually very well attended and 
afterwards, it’s usually a number of newer faculty 
and sometimes older faculty and Ph.D. students 
that just want to know a little bit more about my 
thoughts on X, Y, Z – and they are becoming 
interested in doing research and some aspects on 
this – and I just have those kind of personal 
conversations with the people. 

GV: What have been some of your greatest joys 
working in science education and struggles? 

DZ: The best part of the job is working with 
other individuals which can also be a struggle 
[Interviewers:☺] as [you may] know too. I look at the 
students that I work with and they’re all so bright 
and knowledgeable in areas I may not know about. 
And that always impresses me so I get better by my 
relationship with them. But working through the 
scholarship process, not just getting the dissertation 
–  but the scholarship behind what it means to get a 
Ph.D., again that’s meaningful in my mind, is the 
best part and when they begin to realize that I am 
[not] being obstinate or difficult for the sake of 
being obstinate or difficult that there is . . . you 
know . . . there’s genuine issues at-hand that will 
elevate their positions in the long-run for what they 
want to do. I think in hindsight they kind of 
appreciate that, see the light and… 

One of the best things that happened to me was 
a number of my graduate students, I have got about 
20 + doctoral students of my own, they got 
together and wrote letters to ASTE, which is the 
Association for Science Teacher Education – to put 
me up for the Mentor of the Year Award and 
apparently they contacted other individuals from 
other institutions that were either new faculty or 
doctoral students that I helped one time or another. 
I don’t know how they did this but they figured it 
out and so there was a really good array of letters 
that were written into the board on my behalf.  

I didn’t know this until they took me out at my 
birthday at a NARST conference in New Orleans 
last year, and we were eating together, about a 
dozen of us. I excused myself to leave the table for 
a few minutes. When I came back, no one was at 
the table! These students [were] playing a trick on 
me. On my plate was this folder and ribbons. 
Inside that folder contained all these wonderful 
letters that they had written – detailed letters – 
pages and pages . . . and then they came out from 
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their hiding places and congratulated me! And so 
they put me up for that award – I told them that 
even if I didn’t win that, the letters meant more 
than anything else. But in the long run, I did receive 
the Mentor of the Year Award. So that was really a 
satisfying experience and it was a nice feeling to 
know that students felt that kind of reciprocity 
toward me – [and] that I do really feel for them, as 
much as of a hard time I give them. 

LMH: You mentioned earlier Dr. Green. In 
your career, were there any other teachers or 
researchers who have influenced you through the 
years? 

DZ: Oh, there are so many brilliant people in 
our field alone too . . . and [if] I should pick one of 
them, yet leave out certain names [they] would be 
insulted –  but I can certainly talk about individuals 
like Glenn Aikenhead who has written a lot on 
scientific literacy – but he is going to be [one] the 
first people that I think took a real empathetic view 
of what means to be a scientifically literate and 
begin to make some connections to ethical 
concerns in science as well. Looking at Norm 
Lederman’s works with Fouad Abd-El-Khalick and 
the work that he has done with Valerie Akerson 
and Randy Bell at that time. 

Some of the individuals kind of crossed over 
and made some connections to socioscientific 
issues as well.  But their whole research program on 
NOS and they’re doing connections to some things 
that I am doing – and [it has] certainly been an 
influential asset to me. I look at some of the other 
people’s work like Dianna Kuhn and Jonathan 
Osborne and some of the colleagues that he works 
with in Europe on argumentation [and] discourse 
have certainly informed my work as well.  

Outside of science education beside Thomas F. 
Green and Larry Kohlberg, there have been other 
individuals in moral education and [the] character 
education field that have influenced my work too. 
Most notably, I can mention Marvin Berkowitz, 
who holds the only endowed chair position in the 
country in character education. He is at the 
University of Missouri, St. Louis and I have invited 
him to be a keynote speaker at ASTE and talk to 
science educators about character as well. And he is 
so prolific in his own field and we’ve talked quite [a 
bit] -- some of his work has been influencing me of 
late. And there are many others . . . we can go on 
for a long time. 

GV: Talking about your publications, which 
work or works would you consider, in your 
opinion, to be influential or influencing the science 
education? 

DZ: Which did you like the best? [Interviewers:☺]  
LMH: I like one of your books that you had 

come out a little bit ago here. You edited a book 
with Springer. “The Role of Moral Reasoning on 
Socioscientific Issues and Discourse in Science 
Education”. 

DZ:  Right. That was a piece that pulled a lot of 
things together. That was a book on the role of 
moral reasoning and socioscientific issues and 
discourse in science education. I wrote a number of 
chapters in there with other individuals as well and 
other people contributed to it that really had an 
interest in this area too. And that was a good 
opportunity to really pull together a lot of ideas. I 
am really happy with the book – seems to be pretty 
well received and I think that’s also a good place 
for people to start if they want to know a little bit 
more about this area.  

I have to say there are a lot of good papers that 
I have done with other individuals and I will be 
remiss if I didn’t mention the name of Troy Sadler 
who is an Assistant Professor at the University of 
Florida. I think that Troy is also, while a new 
scholar, an exemplary scholar and his thinking has 
certainly influenced my thinking as well and 
hopefully some of me has rubbed off onto him too. 
The work that we have done together, I am very 
proud of – and I would say the one article that sort 
of got a lot of recognition in the field, I think, may 
be gotten me a few invitations to speak in other 
places – was the article where we did on our 
“Beyond STS” and then laying out the research 
agenda for socioscientific issues.  

I knew that I was shaking some of the pillars, 
and you know, trying  for the point of making a 
case . . . not tearing down one tradition but trying 
to show the real weaknesses of the STS tradition, 
and to show how that field could be moved in a 
different direction under the SSI framework. I tried 
to articulate in there, the rationale behind it and the 
reasons for it.  Hopefully, I think we did a pretty 
good job and that seems to get a referenced quite a 
bit and got us a lot of recognition. So there [are] a 
lot of other papers that I am proud of but I won’t 
tell you the specific ones . . . there are a lot of good 
ones.  One of the papers is that I did with Troy 
Sadler, He was the first author of, in JRST was 
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“Patterns of Informal Reasoning  in the Context of 
Socioscientific Decision Making” and that was 
voted for the outstanding article for JRST, 2005 – 
and of course, that was one that I am very proud of 
. . . to work with Troy on. 

GV: So if we were to ask Dana to describe 
Dana, How would Dana describe himself? ☺ 

DZ:  In terms of what part of my life? 
GV: Your professional. If you want to throw in 

your personal, you are more than welcome.  
DZ: That’s a hard one. I have tried to break 

down the barriers that naturally exist between 
professors and students. I think it’s an artificial 
divide but I know it’s partly institutional; it’s there 
too for a reason.  But I have always tried to strip 
away that and begin a personal relationship with my 
students. That doesn’t mean that we have to be 
best friends but the point is we are both 
individuals.  Even though I am on the one side of 
the fence and they are on the other, I never really 
saw that there has to be a fence there. And I guess I 
have been as successful as I have been with my 
students because I see them as smart people that 
can help me out. And they are creative in their 
thinking and [their] ideas -- and they’ll challenge me 
and push me in [new] directions. I think I am rather 
adept, now [at] challenging them and pushing them 
. . . it’s a two way street in our seminars and in our 
courses and I think that they have the freedom 
[and] flexibility to ask anything of me and challenge 
on any front or level. But again it’s a two way street 
and we both are better for it. 

Concluding thoughts: 

We as interviewers recognize that we have only 
touched upon on Dr. Zeidler’s contributions to the 
field of science education. Hopefully, this article 
will enable members of the science education 
community to not only recognize his contributions 
and his interests outside of his scholarly work. 
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