SPECIAL ISSUE PAPER
Abductive Reasoning in Mathematics Education: Approaches to and Theorisations of a Complex Idea
 
 
More details
Hide details
1
University of Bremen, GERMANY
Publish date: 2018-06-25
 
EURASIA J. Math., Sci Tech. Ed 2018;14(9):em1584
KEYWORDS:
ABSTRACT:
There is a growing literature on the importance of abductive reasoning in mathematics education. However, there are some important variations in what exactly is referred to as ‘abductive reasoning’. This article identifies key theorisations of abductive reasoning in the work of Peirce, Habermas and Eco, as well as describing different approaches to abductive reasoning found the mathematics education literature. A framework in which the different approaches taken in the research literature can be placed and compared is proposed.
CORRESPONDING AUTHOR:
David A. Reid   
University of Bremen, MZH 6300, Bibliotheksstraße 5, 28359 Bremen, Germany
 
REFERENCES (50):
1. Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2-3), 189-206. https://doi.org/10.1007/s10649....
2. Arzarello, F., Andriano, V., Olivero, F., & Robutti, O. (1998). Abduction and conjecturing in mathematics. Philosophica, 61, 77-94.
3. Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998a). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 24–31). Stellenbosch, South Africa.
4. Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998b). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2 pp. 32-39). Stellenbosch, South Africa.
5. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM: The International Journal on Mathematics Education, 34(3), 66–72.
6. Beck, C., & Jungwirth, H. (1999). Deutungshypothesen in der interpretativen Forschung. Journal für Mathematik-Didaktik, 20(4), 231-259. https://doi.org/10.1007/BF0333....
7. Boero, P., Garuti, R., & Lemut, E. (1999). About the generation of conditionality of statements and its links with proving. In O. Zaslavsky (Ed.) Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 137–144), Haifa, Israel:PME.
8. Boero, P., Garuti, R., Lemut, E., & Mariotti M. A. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. Puig & A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 113-120). Valencia, Spain: PME.
9. Bonfantini, M. & Proni, G. (1983). To guess or not to guess. In U. Eco & T. Sebeok (Eds.). The sign of three: Dupin, Holmes, Peirce, (pp. 119-134). Bloomington, IN: Indiana University Press.
10. Brandt, B., & Krummheuer, G. (2000). Das Prinzip der Komparation im Rahmen der Interpretativen Unterrichtsforschung in der Mathematikdidaktik. In Journal for Mathematik-didaktik, 21(3/4), 193-226. https://doi.org/10.1007/BF0333....
11. Cifarelli, V. & Sáenz-Ludlow, A. (1996). Abductive processes and mathematics learning. In E. Jakubowski, D. Watkins, & H. Biske (Eds.), Proceedings of the Eighteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 161-166). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
12. Cifarelli, V. (1997b). Emergence of novel problem solving activity. In E. Pehkonen (Ed.) Proceedings of the 21st Conference for the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 145-152). Lahti, Finland: University of Helsinki and Lahti Research and Training Center.
13. Cifarelli, V. (1999). Abductive Inference: Connections between Problem Posing and Solving. In O. Zaslavsky (Ed.) Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 217-224). Haifa: PME.
14. Cifarelli, V. V. (1997a, March). Emergence of abductive reasoning in mathematical problem solving. Paper presented to the Special Interest Group for Research in Mathematics Education at the annual conference of the American Educational Research Association, Chicago, Illinois.
15. de Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17-24.
16. Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce, (pp. 198-220). Bloomington, IN: Indiana University Press.
17. Fann K. T. (1970). Peirce’s theory of abduction. The Hague, Holland: Martinus Nijhoff. https://doi.org/10.1007/978-94....
18. Ferrando, E. (2000). The relevance of Peircean theory of abduction to the development of students’ conceptions of proof (with particular attention to proof in calculus). In C. W. Spinks & S. Simpkins (Eds.), Proceedings of the twenty-fourth annual meeting of the Semiotics Society of America: Semiotics 2000 (pp. 1–16). New York: Legas.
19. Ferrando, E. (2006). The abductive system. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.), Proceedings of the Thirtieth Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 57-64). Prague, Czech Republic.
20. Habermas, J. (1968). Erkenntnis und Interesse. Suhrkamp, Frankfurt am Main 1968.
21. Habermas, J. (1987). Knowledge and human interests. Translated by Jeremy J. Shapiro. Cambridge UK: Polity.
22. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1&2), 5-23. https://doi.org/10.1023/A:1012....
23. Hoffmann, M. H. G. (1999). Problems with Peirce’s concept of abduction. Foundations of Science, 4(3), 271-305. https://doi.org/10.1023/A:1009....
24. Hoffmann, M. H. G. (2001). Skizze einer semiotischen Theorie des Lernens. Journal für Mathematik-Didaktik, 22(3-4), 231-251. https://doi.org/10.1007/BF0333....
25. Knipping, C. (2003a). Argumentation structures in classroom proving situations. In M.A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society in Mathematics Education (unpaginated). Bellaria, Italy. Retrieved from http://ermeweb.free.fr/CERME3/....
26. Knipping, C. (2003b). Beweisprozesse in der Unterrichtspraxis: Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich [Proving processes in teaching practices – Comparative analysis of mathematics teaching in France and Germany]. Hildesheim: Franzbecker Verlag.
27. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82. https://doi.org/10.1016/j.jmat....
28. Magnani, L. (2001). Abduction, reason and science: Processes of discovery and explanation. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-1-....
29. Meyer, M. (2010). Abduction—A logical view for investigating and initiating processes of discovering mathematical coherences. Educational Studies in Mathematics, 74(2), 185-205. https://doi.org/10.1007/s10649....
30. Pedemonte, B. (2001). Some cognitive aspects of the relationship between argumentation and proof in mathematics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33–40). Utrecht: PME.
31. Pedemonte, B. (2002a). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration dans l’apprentissage des mathématiques. Thèse de doctorat. Grenoble I: Université Joseph Fourier.
32. Pedemonte, B. (2002b). Relation between argumentation and proof in mathematics: cognitive unity or break? In J. Novotná (Ed.), Proceedings of the 2nd Conference of the European Society for Research in Mathematics Education (pp. 70–80). Marienbad.
33. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23-41.
34. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM – The International Journal on Mathematics Education, 40(3), 385-400. https://doi.org/10.1007/s11858....
35. Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281-303. https://doi.org/10.1007/s10649....
36. Peirce, C. S. (1867). On the natural classification of arguments. Presented 9 April 1867 to the American Academy of Arts and Sciences. Proceedings of the American Academy of Arts and Sciences 7, 261-287. (Compiled in Peirce, C. S., 1960, 2.461-516).
37. Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular Science Monthly, 13 (August), 470-82. (Compiled in Peirce, C. S., 1960, 2.619-644).
38. Peirce, C. S. (1883). A Theory of Probable Inference, in C. S. Peirce (Ed.) Studies in Logic, pp. 126-181. Boston: Little, Brown and Co. (Compiled in Peirce, C. S., 1960, 2.694-754) https://doi.org/10.1037/12811-....
39. Peirce, C. S. (1896). manuscript “The Logic of Mathematics; an Attempt to Develop my Categories from within.” (Compiled in Peirce, C. S., 1960, CP 1.417–520).
40. Peirce, C. S. (1902a). The Carnegie Application. (Compiled in Peirce, C. S., Writings, Vol 4, p. 588) Arisbe homepage: http://www.door.net/arisbe/men... L75/L75.htm.
41. Peirce, C. S. (1902b). Minute Logic, an uncompleted book. (Compiled in Peirce, C. S., 1960, in various places including 2.102).
42. Peirce, C. S. (1903) Lectures on Pragmatism (held from March, 26. to May, 14. at Harvard University). (Compiled in Peirce, C. S., 1960, 5.14–212).
43. Peirce, C. S. (1960). Collected papers. Cambridge, MA: Harvard University Press.
44. Rivera, F. D., & Becker, J. R. (2007). Abduction–induction (generalization) processes of elementary majors on figural patterns in algebra. The Journal of Mathematical Behavior, 26(2), 140-155. https://doi.org/10.1016/j.jmat....
45. Saenz-Ludlow, A. (1997). Inferential processes in Michael's mathematical thinking. In E. Pehkonen (Ed.) Proceedings of the 21st Conference for the International Group for the Psychology of Mathematics Education (Vol. 4, 169-176). Lahti, Finland: University of Helsinki and Lahti Research and Training Center.
46. Schurz, G. (2008). Patterns of abduction. Synthese, 164(2), 201-234. https://doi.org/10.1007/s11229....
47. Toulmin, S. E. (1958). The uses of argument, Cambridge, UK: Cambridge University Press.
48. Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht. Theoretische Grundlagen und mikroethnographische Falluntersuchungen [“Interaction patterns and routines in instructing. Theoretical basics and microethnographical case studies”]. Weinheim: Beltz.
49. Voigt, J. (2000). Abduktion. In M. Neubrand (Ed.) Beitrage zum Mathematikunterricht. Vortrage auf der 34. Tagungfiir Didaktik der Mathematik vom 28. Februar bis 3. Marz 2000 in Potsdam. pp. 694-697. Hildesheim: Franzbecker.
50. Weber, K., Maher, C., Powell, A., & Lee, H. S. (2008). Learning opportunities from group discussions: Warrants become the objects of debate. Educational Studies in Mathematics, 68(3), 247-261. https://doi.org/10.1007/s10649....
eISSN:1305-8223
ISSN:1305-8215