SPECIAL ISSUE PAPER
Analysis Problem Solving in Mathematical Using Theory Newman
 
More details
Hide details
1
Lampung University (Peoples’ Friendship University of Lampung), Lampung, INDONESIA
2
Lampung University, Lampung, INDONESIA
Online publish date: 2017-11-19
Publish date: 2017-11-19
 
EURASIA J. Math., Sci Tech. Ed 2018;14(2):671–681
KEYWORDS
This article belongs to the special issue "Literature and the Arts in Mathematical Education".
ABSTRACT
In this context, several recent studies have focused on the ability to understand a problem and difficulties regarding the solving as a means of improve students’ mathematical problem-solving abilities. Design of research explores types and factors of mistakes students in solving mathematical problems. The instrument used is problem solving test. Data from Indonesia secondary school students (N = 147) who were about 15 years old were analyzed using theory Newman. Procedure Newman includes: reading errors, comprehension errors, transformation errors, process skill errors and enconding errors. The results indicate to reading errors of 4.35%, comprehension errors of 17.39%, transformation errors of 34.78%, process skill errors of 23.91%, and enconding errors 19.57%. Factors errors students’ is not to absorb information well, not understanding the transformation of the problem, not following the material thoroughly, and comprehension mathematical of weak concepts.
 
REFERENCES (24)
1.
Abdullah, A. H. (2015). Analysis of Students’ Errors in Solving Higher Order Thinking Skills (HOTS) Problems for the Topic of Fraction. Asian Social Science, 11(2).
 
2.
Abdurrahman, M. (2009). The Education Learning for Childrens Disabilities. Jakarta: Rineka Reserved.
 
3.
Anderson J., Reder L., & Simon H. (1996). Situated learning and education. Educational Researcher, 25(4), 5–11.
 
4.
Clements, M. A. (1980). Analyzing children’s errors on written mathematical task. Educational Studies in Mathematics, 11, 1-21.
 
5.
Cockcroft, W. H. (1982). Mathematics Counts: Report of The Committee of Enquiry into the Teaching of Mathematics in Schools. London: HMSO.
 
6.
Gasco, J., Villarroel, J. D., & Zuazagoitia, D. (2014). Different Procedures for Solving Mathematical Word Problems in High SchoolInternational Education Studies. doi:10.5539/ies.v7n7p77.
 
7.
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 3358. doi:10.1023/B:TRUC.0000021809.10236.71.
 
8.
Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13, 129-164. doi:10.1207/s15327809jls1302_1.
 
9.
Krawec, J. L. (2010). Problem representation and mathematical problem solving of students with varyingabilities (Doctoral dissertation), University of Miami, Miami).
 
10.
Lester, F. K., & Kehle, P. E. (2003). From Problem Solving to Modeling: The Evolution of Thinking About Research on Complex Mathematical Activity. In R. Lesh, & H. M. Doerr (Eds.), Beyond Constructivism Models and Modeling Perspectives on Mathematical Problem Solving, Learning, and Teaching (pp. 501-517). Mahwah, NJ: Lawrence Erlbaum Associates.
 
11.
Moleong. (2011). Metodologi Penelitian Kualitatif (cet. XXIX). Bandung: Remaja Rosdakarya.
 
12.
NCTM. (2000). Principles and Standards for School Mathematics. Reston: Virginia.
 
13.
Ng, S. F., & Lee, K. (2009). The model method: Singapore children’s tool for representing and solving algebraic word problems. Journal for Research in Mathematics Education, 40(3), 282-313.
 
14.
OECD. (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy (Paris: OECD Publishing).
 
15.
Polya, G. (1973). How to Solve It (2nd edition). New Jersey: Princeton University Press.
 
16.
Polya, G. (1985). How to Solve It (2nd edition). New Jersey: Princeton University Press.
 
17.
Saragih, S., & Habeahan, W. L. (2014). The Improving of Problem Solving Ability and Students’ Creativity Mathematical by Using Problem Based Learning in SMP Negeri 2 Siantar. Journal of Education and Practice: www.iiste.org.
 
18.
Scheiter, K., Gerjets, P., & Schuh, J. (2010). The acquisition of problem-solving skills in mathematics: How animations can aid understanding of structural problem features and solution procedures. Instructional Science, 38(5), 487-502. doi:10.1007/s11251-009-9114-9.
 
19.
Sismono, T. Y. E., Kohar, A. W., Kurniasari, I., & Astuti, Y. P. (2015). An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving: IOP SCIENCE, Journal of Physics: Conference Series 693, (2016) 012015. doi:10.1088/1742-6596/693/1/012015.
 
20.
Sugiyono. (2013) Metode Penelitian Pendidikan Kuantitatif dan Kualitatif dan R&D. Bandung: Alfabeta.
 
21.
Sugiyono. (2015). Kesalahan Prosedur Newman pada siswa sekolah Menengah Pertam. Jurnal Ilmiah STKIP PGRI Ngawi, 13(1).
 
22.
Van der Schoot, M., Bakker Arkema, A. H., Horsley, T. M., & Van Lieshout, E. D. C. M. (2009). The consistency effect depends on markedness in less successful but not successful problem solvers: An eye movementstudy in primary school children. Contemporary Educational Psychology, 34, 58-66. doi:10.1016/j.cedpsych.2008.07.002.
 
23.
Visitasari, R., & Siswano, dan T. E. Y. (2013). Kemampuan siswa memecahkan masalah berbentuk soal cerita aljabar menggunakan tahapan analisis Newman. Universitas Negeri Surabaya.
 
24.
Webb, L. N. (1979). Process, Conceptual Knowledge, and Mathematical Problem Solving Ability. Journal For Research in Mathematics Education, 10, 83-93.
 
eISSN:1305-8223
ISSN:1305-8215