Application of the Complementarities of Two Theories, APOS and OSA, for the Analysis of the University Students’ Understanding on the Graph of the Function and its Derivative
More details
Hide details
Ferdowsi University of Mashhad, Mashhad, IRAN
University of Barcelona, Barcelona, SPAIN
Online publish date: 2018-03-25
Publish date: 2018-03-25
EURASIA J. Math., Sci Tech. Ed 2018;14(6):2301–2315
The goal of this paper is the combined use of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. For this, we study the students’ understanding to solve one graphing problem in relation to the first derivative and characterize their schemas in terms of levels (intra, inter and trans) of development of the schema for sketching f' when given the graph f. We present a multiple case study in which 14 students of the first course of Calculus in one university of Iran participated voluntarily. Results show that most of the students in our study had major problems in developing mental constructions and doing the practical work needed to solve the problem, particularly those mental constructions that have to be made to calculate the derivative at the critical points and to determine the speed of the variation of the inclination of the tangent lines to f, which is why most of them have constructed a schema at the intra level of development of the schema for sketching f' when given the graph f. We finish with some final conclusions.
Amit, M., & Vinner, S. (1990). Some misconceptions in calculus: Anecdotes or the tip of the iceberg? In G. Booker, P. Cobb, & T. N. de Mendicuti (Eds.), Proceedings of the 14th International Conference for the Psychology of Mathematics Education, (Vol. 1, pp. 3-10.) Cinvestav, Mexico: PME.
Arnon, I. Cottrill, J., Dubinsky, E., Oktac, A.¸ Roa, S., Trigueros, M., & Weller, K. (2014). APOS Theory: A Framework for Research and Curriculum Development in Mathematics Education. New York, Heidelberg, Dordrecht, London: Springer.
Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399-430.
Badillo, E., Azcárate, C., & Font, V. (2011). Analysis of Mathematics teachers’ level of understanding of the objects f'(a) and f'(x). Enseñanza de las ciencias, 29(2), 191-206.
Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for Research in Mathematics Education, 31(5), 557–578.
Borji, V., & Alamolhodaei, H. (2016a, August 28-31). Freshman students’ graphical understanding of the first and second derivative based on APOS theory and Schema development. Paper presented in the 47th Annual Iranian Mathematics Conference: Kharazmi University, Tehran, Iran.
Borji, V., & Alamolhodaei, H. (2016b, September 6-8). Students’ understanding of the derivative concept based on APOS framework. Paper presented in the 14th Iranian Mathematics Education Conference (IMEC14), Shiraz, Iran.
Borji, V., & Voskoglou, M. G. (2016). Applying the APOS Theory to Study the Student Understanding of the Polar Coordinates. American Journal of Educational Research, 4(16), 1149-1156.
Borji, V., & Voskoglou, M. G. (2017). Designing an ACE Approach for Teaching the Polar Coordinates. American Journal of Educational Research, 5(3), 303-309.
Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics, Science & Technology Education, 13(6), 1893-1918.
Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., & Vidakovic, D. (1997). Constructing a schema: The case of the chain rule? Journal of Mathematical Behavior, 16(4), 345-364.
Dominguez, A., Barniol, P., & Zavala, G. (2017). Test of Understanding Graphs in Calculus: Test of Students’ Interpretation of Calculus Graphs. EURASIA Journal of Mathematics, Science and Technology Education. 13(10), 6507-6531.
Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses: A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82(1), 23–49.
Dubinsky, E., & McDonald, M. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 273–280). Dordrecht, The Netherlands: Kluwer.
Ferrini-Mundy, J., & Graham, K. (1994). Research in calculus learning: Understanding limits, derivatives, and integrals. In J. Kaput & E. Dubinsky (Eds.), Research issues in Undergraduate mathematics learning (pp. 19-26). Washington, DC: Mathematical Association of America.
Font, V. (2000). Procediments per obtenir expressions simbòliques a partir de gràfiques. Aplicacions a les derivades (Unpublished PhD thesis), University of Barcelona, Spain.
Font, V. (2005). Una aproximación ontosemiótica a la didáctica del análisis. In A. Maz, B. Gómez, & M. Torralba (Eds.), Investigación en Educación Matemática. Noveno Simposio de la Sociedad Española de la Investigación en Educación matemática (SEIEM) (pp. 109-128). University of Cordoba, Spain.
Font, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, 69(1), 33-52.
Font, V., Badillo, E., Trigueros, M., & Rubio, N. (2012). La encapsulación de procesos en objetos analizada desde la perspectiva del enfoque onto-semiótico. In A. Estepa et al. (Eds.), Actas del XVI Simposio de la Sociedad Española de Investigación en Educacion Matemática (pp. 239-247). Jaen, Spain: SEIEM.
Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124.
Font, V., Malaspina, U., Gimenez, J., & Wilhelmi, M. (2011). Mathematical objects through the lens of three different theoretical perspectives. In T. Rowland et al. (Eds.), Proceedings of the VII congress of the European society for research in mathematics education (pp. 2411-2420). Rzeszow, Poland: University of Rzeszow.
Font, V., Montiel, M., Vidakovic, D., & Wilhelmi, M. R. (2011). Analysis of dimensional analogy by means of different theoretical perspectives. In Roberta V. Nata (Ed.), Progress in education, volume 19 (pp. 39-76). Hauppauge, NY: Nova publishers.
Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2012). What is a Mathematical object? Looking to objects from two theoretical perspectives: APOS and OSA. Pre-Proceedings of the 12th International Congress on Mathematical Education, Seoul, Korea: ICME.
Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107–122.
Fuentealba, C., Sánchez-Matamoros, G., Badillo, E., & Trigueros, M. (2017). Thematization of derivative schema in university students: Nuances in constructing relations between a function’s successive derivatives. International journal of mathematical education in science and technology, 48(3), 374-392.
García, M., Llinares, S., & Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9(5), 1023–1045.
Lauten, A., Graham, K., & Ferrini-Mundy, J. (1994). Student understanding of basic calculus concepts: Interaction with the graphics calculator. Journal of Mathematical Behavior, 13(2), 225-237.
Leinhardt, G., Zaslavsky, O., & Stein, M.K., (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1-64.
Mackie, D., & Court, S. (2002). Using Computer Algebra to Encourage a Deep Learning Approach to Calculus. In Proceedings of the 2nd International Conference on the Teaching of Mathematics. Retrieved from
Nemirovsky, R., & Rubin, A. (1992). Students’ tendency to assume resemblances between a function and its derivatives. TERC Working 2-92. Cambridge MA: TERC.
Oehrtman M. C., Carlson, M. P., & Thompson P. W. (2008). Foundational reasoning ability that promote coherence in students’ function understanding. In M. P. Carlson & C. Rasmussen (Eds). Making the connection: research and practice in undergraduate mathematics, (pp. 150–171). Washington, DC: Mathematical Association of America.
Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(3), 235-250.
Özmantar, M. F., Akkoç, H., Bingölbali, E., Demir, S., & Ergene, B. (2010). Pre-Service Mathematics Teachers’ Use of Multiple Representations in Technology-Rich Environments. EURASIA Journal of Mathematics, Science and Technology Education, 6(1), 19-36.
Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89(2), 233–250.
Piaget, J., & García, R. (1983). Psychogenesis and the history of science. New York: Columbia University Press.
Pino-Fan, L., Font, V., Gordillo, W., Larios, V. & Breda (2017). Analysis of the Meanings of the Antiderivative Used by Students of the First Engineering Courses. International Journal of Science and Mathematics Education, 1-23. (online)
Pino-Fan, L., Godino, J. D., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada. Educação Matemática Pesquisa, 13(1), 141-178.
Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education. 21(1), 63-94.
Robles, M. G., Telechea, E., & Font, V. (2014). Una propuesta de acercamiento alternativo al teorema fundamental del cálculo. Educación Matemática, 26(2), 69-109.
Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Enseñanza de las Ciencias, 33(2), 29–49.
Sahin, Z., Erbas, A. K., & Yenmez, A. A. (2015). Relational Understanding of the Derivative Concept through Mathematical Modeling: A Case Study. EURASIA Journal of Mathematics, Science & Technology Education, 11(1), 177-188.
Sánchez-Matamoros, G. Fernández, C., & Llinares, S. (2015). Developing pre-service teachers’ noticing of students’ understanding of the derivative concept. International Journal of Science and Mathematics Education, 13(6), 1305–1329.
Sánchez-Matamoros, G., García, M., & Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en didáctica de la matemática. Revista Latinoamericana de Matemática Educativa, 11(2), 267-296.
Selden, J., Selden, A., & Mason, A. (1994). Even good calculus students can’t solve non-routine problems. In J. J. Kaput & E. Dubinsky (Eds.), Research issues in undergraduate mathematics learning, MAA Notes 33 (pp. 19-26). Washington, D.C.: Mathematical Association of America.
Stewart, J. (2010). Calculus, 7th Edition. Brooks/Cole Cengage Learning, Mason.
Tall, D. (2013). How Humans Learn to Think Mathematically: Exploring the Three Worlds of Mathematics. Cambridge University Press.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.
Tiwari, T. K. (2007). Computer Graphics as an Instructional Aid in an Introductory Differential Calculus Course. International Electronic Journal of Mathematics Education, 2(1), 32-48.
Trigueros, M., & Martínez-Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73(1), 3-19.
Zandieh M. (2000). A theoretical framework for analyzing students understanding of the concept of derivative. In E. Dubinsky, A. H. Schoenfeld & J. Kaput, Research in Collegiate Mathematics Education. (Vol IV, pp.103–127). Providence, RI: American Mathematical Society.