RESEARCH PAPER
Description Language of Educational Content Structure: Possibilities of Modern Mathematics
 
More details
Hide details
1
Russian State Vocational Pedagogical University, Ekaterinburg, RUSSIA
2
Kazan (Volga region) Federal University, Kazan, RUSSIA
Online publish date: 2019-01-19
Publish date: 2019-01-19
 
EURASIA J. Math., Sci Tech. Ed 2019;15(3):em1678
KEYWORDS
ABSTRACT
In modern conditions of intensive growth and differentiation of scientific knowledge, continuing reforms of educational systems, the pedagogical society is constantly facing the problem of justification of the content of education and its structuring. One of the tasks referring to this problem is a task of development of the description language of the educational content structure. Research objective consists of justification of the possibility of use of fractal geometry statements for the description of the educational content structure. As a main research method we have chosen a theoretic methodological analysis of scientific works concerning a development of an educational content theory and describing empirically stated defining peculiarities of its structure. Comparison of the description language of the educational content structure accepted in pedagogy and the description methods of structure of objects researched by the fractal geometry. The hypothesis about fractal nature of the educational content structure has been formed and proved immediately by means of the empiric material: the content structure of education and its “through” branches has a mosaic nature consisting of elements with different qualities (for example, mathematic, scientific and humanitarian disciplines or: basic, vocational and polytechnic education. The mosaic elements create a multistage system and are characterized by essentially divergent proportions. With the increasing of density or weight (with respect to “size”) of elements of bearers of some properties we can state that the element of a larger proportion consisting of smaller elements expresses mainly the given property (so it plays a key role). The general picture looks like a mosaic board consisting of elements made themselves as mosaic pictures. This procedure occurs again on several levels. This description presents properly an idea of a multifractal formed by means of overlapping fractals, because the iteration procedure of creation of geometrical fractals looks on every step as a mosaic picture. The article may be useful for educationists researching the questions concerning the educational content and its structure and also for practitioners selecting the training documentation while developing different levels of educational programs.
 
REFERENCES (50)
1.
Aharony, A., Gefen, Y., Kapitulnik, A., & Murat, M. (1985). Fractal Eigen dimensionalities for percolation cluster. Phis. Rev, B31, 4721-4722. https://doi.org/10.1103/PhysRe....
 
2.
Avnir, D., & Pfeifer, P. (1983). Fractal dimension in chemistry. An intensive characteristic of surface irregularity. Nouv. J. Chim, 7, 71-72.
 
3.
Avnir, D., Farin, D., & Pfeifer, P. (1984). Molecular fractal surfaces. Nature, 308, 261-263. https://doi.org/10.1038/308261....
 
4.
Barnsley, M. (1988). Fractal Everywhere. Boston: Academic Press.
 
5.
Benzi, R., Paladin, G., Parisi, G., & Vulpani, A. (1984). On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys, A17, 3521-3531. https://doi.org/10.1088/0305-4....
 
6.
Bozhokin, S. V., & Parshin, D. A. (2001). Fractals and multifractals: Training guide. Moscow-Izhevsk: Scientific publishing center “Reguliarnaia i khaoticheskaia dinamika”.
 
7.
Chelpanov, G. I. (1994). Study guide of logics. Moscow: Publishing group “Progress”.
 
8.
Einstein, А. (1935). The basics of relativity theory. Moscow: The united scientific technical publisher of NKTP of the USSR. The main editorial of basic technical literature and nomography.
 
9.
Falconer, K. J. (1990). Fractal Geometry: Mathematical Foundations and Applications. New York: John Wiley.
 
10.
Feder, J. (1988). Fractals –Plenum press. New York and London. Moscow: Mir. https://doi.org/10.1007/978-1-....
 
11.
Gapontseva, M. G. (2002). Integrative approach in the content of continuous naturalistic education (PhD Thesis). Ekaterinburg.
 
12.
Gapontseva, M. G., Fedorov, V. A., & Gapontsev, V. L. (2009). Concepts of fractal geometry as a language of pedagogical objects and a theory of scientific knowledge. The Education and science journal, 2(59), 3-22.
 
13.
Gapontseva, M. G., Fedorov, V. A., & Gapontsev, V. L. (2009). Concepts of fractal geometry as a language of pedagogical objects and a theory of scientific knowledge. The Education and science journal, 4(61), 6-22.
 
14.
Gapontseva, M. G., Fedorov, V. A., & Gapontsev, V. L. (2010). Evolution of the educational con-tent structure. Ekaterinburg: Russian State Vocational Pedagogical University publisher.
 
15.
Gimaliev, V. G., Prokopev, A. I., Makarova, E. V., Abdulkhakova, K. R., Kozin, M. N., & Fazylzyanova, G. I. (2018). Personality features and values orientations of university students with manipulative behavior. Espacios, 39(20), 14.
 
16.
Isaeva, V. V., Karetin, J. A., Chernyshev, A. V., & Shkuratov, D. J. (2004). Fractals and chaos in the biological morphogenesis. Vladivostok: Prosvet.
 
17.
Kofman, А. (1982). Introduction into a theory of fuzzy sets. Moscow: Radio I cviaz.
 
18.
Kubrushko, P. F. (2001). Content of vocational pedagogic education. Moscow: Vysshaia shkola.
 
19.
Lednev, V. S. (1969). About polytechnic education. Moscow: Sovetskaia Pedagogika.
 
20.
Lednev, V. S. (1971). Classification of sciences. Moscow: Vysshaia shkola.
 
21.
Lednev, V. S. (1973). Some actual questions of subject structure of the content of basic secondary education. Sovetskaia Pedagogika, 3, 144-156.
 
22.
Lednev, V. S. (1980). Contents of secondary general education: problems of structure. Moscow: Sovetskaia Pedagogika.
 
23.
Lednev, V. S. (1988). Continuous education: structure and content. Moscow: Sovetskaia Pedagogika.
 
24.
Lednev, V. S. (1989). Content of education. Moscow: Vysshaia shkola.
 
25.
Lednev, V. S. (1991a). Content of education: essence, structure, perspectives. 2nd edition, re-worked. Moscow: Vysshaia shkola.
 
26.
Lednev, V. S. (1991b). Structure of pedagogical science. Moscow: Sovetskaia Pedagogika.
 
27.
Lednev, V. S., & Kubrushko, P. F. (2001). Industrial training. Training and practical guide. Moscow: Moscow state printing university publisher.
 
28.
Lednev, V. S., Kuznetsov, А. А., & Sova, А. I. (1977). Structure and content of basic technical knowledge while studying the ground of production. Moscow: Academia.
 
29.
Lednev, V. S., Ryzhakov, M. V., & Shishov, S. E. (1994). Conception of federal components of the educational standard of basic, compulsory and secondary (complete) general education. Moscow: AST.
 
30.
Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractal dimension. Sciense, 155, 636-638. https://doi.org/10.1126/scienc....
 
31.
Mandelbrot, B. B. (1978). The fractal geometry of trees and other natural phenomena. Buffon Bicentenary Symposiume on Geometrical Probability, Ed. R.Miles & J. Serra. New York: Springer. https://doi.org/10.1007/978-3-....
 
32.
Mandelbrot, B. B. (1983). Fractals in physics: Squig clasers, diffusion, fractal measures, and unicity of fractal dimensionality. J. Stat. Phys, 34, 895-930. https://doi.org/10.1007/BF0100....
 
33.
Mandelbrot, B. B. (2002). The fractal geometry of nature. Moscow: Institute of computer research.
 
34.
Mandelbrot, B. B. (2009). Fractals and the chaos. Mandelbrot set and other miracles. Moscow: Scientific publishing center “Reguliarnaia i khaoticheskaia dinamika”. https://doi.org/10.1142/S02183....
 
35.
Mandelbrot, B. B., & Hadson, R. L. (2006). (Dis)obedient markets: fractal revolution in finances = The Misbehavior of Markets. Moscow: “Viliams”.
 
36.
Mandelbrot, B. B., Passoja, D. E., & Paullay, A. J. (1984). Fractal character of fracture surfaces of metal. Nature, 308, 721-722. https://doi.org/10.1038/308721....
 
37.
Mavrikidi, F. I. (2008). Fractal mathematics and the nature of changes. Delfis, 54(2), 142-156.
 
38.
Meneveau, C., & Sreenivasan, K. R. (1987). Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett, 59, 1424-1427. https://doi.org/10.1103/PhysRe....
 
39.
Mutavchi, E. P., Prokopyev, A. I., Kostyleva, G. V., Blinov, L. V., Fedorov, V. V., & Polichka, A. E. (2018). Scientific - methodical resource of student training and vocational motivation development in university. Espacios, 39(20), 15.
 
40.
Nazarov, D. M., & Konysheva, L. K. (2018). Intellectual systems: the basics of a theory of fuzzy sets: training guide for academic baccalaureate. Moscow: Jurait Publisher.
 
41.
Novak, V., Perfilieva, I., & Mochkrozh, I. (2006). Mathematical Principles of Fuzzy Logic. Moscow: Fizmatlit.
 
42.
Olemskoi, A. I., & Flat, A. I. (1993). Application of a fractal conception in the physics of condensed medium. Uspekhi fizicheskikh nauk, 163(12), 1-15. https://doi.org/10.3367/UFNr.0....
 
43.
Peitgen, H. O., & Richter, P. H. (1986). The Beauty of Fractals. Berlin: Springer, (Translation: Peitgen H.-O., Richter P.H. The Beauty of Fractals. Moscow: Mir. https://doi.org/10.1007/978-3-....
 
44.
Petersm E. (2004). Fractal analysis of financial markets: Application of Chaos theory in the investments and economics. Moscow: Internet-trend.
 
45.
Pietronero, L., & Tosatti, E. (1986). Fractals in Physics (North-Holland, Amsterdam). (The translation: Fractals in Physics. Edited by. L. Pietronero, E. Tosatti. Moscow: Mir.
 
46.
Ryabchenko, O. N., Prokopev, A. I., Romanchenko, L. N., Korzhuev, A. V., Krokhina, Yu. A. (2018). Social and philosophical understanding of national and civic identity in the context of interethnic and interreligious conflict risks. XLinguae, 11(2), 359-369.
 
47.
Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., …, Depaepe, F. (2018). Integrated STEM Education: A Systematic Review of Instructional Practices in Secondary Education. European Journal of STEM Education, 3(1), 02. https://doi.org/10.20897/ejste....
 
48.
van Driel, S., Slot, E., & Bakker, A. (2018). A Primary Teacher Learning to Use Scaffolding Strategies to Support Pupils’ Scientific Language Development. European Journal of STEM Education, 3(2), 05. https://doi.org/10.20897/ejste....
 
49.
Zak, J. A. (2016). Making decisions in conditions of indistinct and fuzzy data. Fuzzy-technologies. Moscow: URSS, 349 p.
 
50.
Zeldovitch, I. B., & Sokolov, D. D. (1985). Fractals, similarity, intermediate asymptotics. Uspekhi fizicheskikh nauk, 146(3), 493. https://doi.org/10.3367/UFNr.0....
 
eISSN:1305-8223
ISSN:1305-8215