Math Self-Concept and Mathematics Achievement: Examining Gender Variation and Reciprocal Relations among Junior High School Students in Taiwan
Ching-Yi Lee 1,  
Hsin-Yi Kung 2  
More details
Hide details
d.School, Feng Chia University, TAIWAN
Graduate Institute of Education, National Changhua University of Education, TAIWAN
Online publish date: 2018-01-10
Publish date: 2018-01-10
EURASIA J. Math., Sci Tech. Ed 2018;14(4):1239–1252
The study explored Taiwanese students’ mathematics learning at the junior high school level. Utilizing structural equation modeling, it examined the relationships between math self-concept and mathematics achievement with longitudinal data. Participants included 1,256 Taiwanese seventh graders in the first wave and declined slightly to 1,211 eighth graders in the second wave. Findings indicated the following. First, the longitudinal effects were all significant: (a) prior mathematics achievement significantly predicted subsequent math self-concept (skill development model), (b) prior math self-concept significantly predicted subsequent mathematics achievement (self-enhancement model), and (c) the reciprocal effects model was supported, and the effects of achievement tended to become stronger and more systematic. Second, results showed significant gender variation with respect to math self-concept and mathematics achievement. Boys had significantly higher math self-concept than girls, whereas girls exhibited higher mathematics achievement than boys. The implications of these findings for cultivating students’ interest in mathematics learning were discussed.
1. Alkhateeb, H. M. (2001). Gender differences in mathematics achievement among high school students in the UAE 1991-2000. School Science and Mathematics, 101(1), 5-9. doi:10.1111/j.1949-8594.2001.tb18184.x.
2. Bassey, S. W., Joshua, M. T., & Asim, A. E. (2011). Gender differences and mathematics achievement of rural senior secondary students in Cross River State, Nigeria. Mathematics Connection, 10, 56-60.
3. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.
4. Butt, I. H., & Dogar, A. H. (2014). Gender disparity in mathematics achievement among the rural and urban high school students in Pakistan. Pakistan Journal of Social Sciences, 34(1), 93-100.
5. Byrne, B. M. (1996). Academic self-concept: Its structure, measurement, and relation to academic achievement. In B. A. Bracken (Ed.), Handbook of self-concept: Developmental, social, and clinical considerations (pp. 287-316). New York, NY: Wiley.
6. Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105(3), 456-466. doi:10.1037/0033-2909.105.3.456.
7. Calsyn, R. J., & Kenny, D. A. (1977). Self-concept of ability and perceived evaluation of others: Cause or effect of academic achievement? Journal of Educational Psychology, 69(2), 136-145. doi:10.1037/0022-0663.69.2.136.
8. Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32(1), 28-57. doi:10.2307/749620.
9. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16-29. doi:10.1037/1082-989X.1.1.16.
10. Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math-gender stereotypes in elementary school children. Child Development, 82(3), 766-779. doi:10.1111/j.1467-8624.2010.01529.x.
11. DiPerna, J. C., & Elliott, S. N. (2000). Academic competence evaluation scales. San Antonio, TX: The Psychological Corporation.
12. DiPerna, J. C., & Volpe, R. J., Elliott, S. N. (2005). A model of academic enablers and mathematics achievement in the elementary grades. Journal of School Psychology, 43, 379-392. doi:10.1016/j.jsp.2005.09.002.
13. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. doi:10.1037/a0018053.
14. Ercikan, L., McCreith, T., & Lapointe, V. (2005). Factors associated with mathematics achievement and participation in advanced mathematics courses: An examination of gender differences from an international perspective. School Science and Mathematics, 105(1), 5-14. doi:10.1111/j.1949-8594.2005.tb18031.x.
15. Fan, X., & Sivo, S. A. (2009). Using Δgoodness-of-fit indexes in assessing mean structure invariance. Structural Equation Modeling, 16, 54-69. doi:10.1080/10705510802561311.
16. Foy, P., & Olson, J. (2009). TIMSS 2007 user guide for the international database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
17. Goldman, A. D., & Penner, A. M. (2014). Exploring international gender differences in mathematics self-concept. International Journal of Adolescence and Youth. doi:10.1080/02673843.2013.847850.
18. Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4), 700-717. doi:10.1037/a0026659.
19. Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320, 1164-1165, doi:10.1126/science.1154094.
20. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3-4), 153-166. doi:10.1007/s11199-011-9996-2.
21. Ho, H.-Z. (2013). Gender and Education. In D. Ness, & C.-L. Lin (Eds.), International education: An encyclopedia of contemporary issues and systems (pp. 61-63). Armonk, NY: M.E. Sharpe.
22. Ho, H.-Z., Chen, W.-W., & Kung, H.-Y. (2008). Taiwan. In I. Epstein, & L. Limage (Eds.), The Greenwood encyclopedia of children’s issues worldwide: Asia and Oceania volume (pp. 439-464). CT, USA: Greenwood Publishing Group. doi:10.11650/twjm/1500405197.
23. Hoelter, J. W. (1983). The analysis of covariance structures goodness-of-fit indices. Sociological Methods & Research, 11(3), 325-344. doi:10.1177/0049124183011003003.
24. House, J. D. (2006). Mathematics beliefs and achievement of elementary school students in Japan and the United States: Results from the Third International Mathematics and Science Study. The Journal of Genetic Psychology, 167(1), 31-45. doi:10.3200/GNTP.167.1.31-45.
25. Isiksal, M, & Cakiroglu, E. (2008). Gender differences regarding mathematics achievement: The case of Turkish middle school students. School Science and Mathematics, 108(3), 113-120. doi:10.1111/j.1949-8594.2008.tb17814.x.
26. Kung, H.-Y. (2009). Perception or confidence? Self-concept, self-efficacy and achievement in mathematics: A longitudinal study. Policy Futures in Education, 7(4), 387-398. doi:10.2304/pfie.2009.7.4.387.
27. Kung, H.-Y., & Lee, C.-Y. (2016). The longitudinal reciprocal effects model of junior high school students’ mathematics self-concept and mathematics achievement: The perspectives of gender and urban/rural differences. Chinese Journal of Science Education, 24(S), 511-536. doi:10.6173/CJSE.2016.24S.04.
28. Leung, F. K. S. (2002). Behind the high achievement of East Asian students. Educational Research and Evaluation, 8(1), 87-108. doi:10.1076/edre.
29. Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136(6), 1123-1135. doi:10.1037/a0021276.
30. Louis, R. A., & Mistele, J. M. (2012). The differences in scores and self-efficacy by student gender in mathematics and science. International Journal of Science and Mathematics Education, 10, 1163-1190. doi:10.1007/s10763-011-9325-9.
31. Marsh, H. W. (1988). Self Description Questionnaire I: A theoretical and empirical basis for the measurement of multiple dimensions of preadolescent self-concept: A test manual and a research monograph. San Antonio, TX: The Psychological Corporation.
32. Marsh, H. W. (1990). Causal ordering of academic self-concept and academic achievement: A multiwave, longitudinal panel analysis. Journal of Educational Psychology, 82(4), 646-656. doi:10.1037/0022-0663.82.4.646.
33. Marsh, H. W. (1993). Academic self-concept: Theory measurement and research. In J. Suls (Ed.), Psychological perspectives on the self (pp. 59-98). Hillsdale, NJ: Erlbaum.
34. Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81, 59-77. doi:10.1348/000709910X503501.
35. Marsh, H. W., & Yeung, A. S. (1997). Causal effects of academic self-concept on academic achievement: Structural equation models of longitudinal data. Journal of Educational Psychology, 89(1), 41-54. doi:10.1037/0022-0663.89.1.41.
36. Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76(2), 397-416. doi:10.1111/j.1467-8624.2005.00853.x.
37. Martínez, J. F., Stecher, B., & Borko, H. (2009). Classroom assessment practices, teacher judgments, and student achievement in mathematics: Evidence from the ECLS. Educational Assessment, 14, 78-102. doi:10.1080/10627190903039429.
38. Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
39. Nagy, G., Watt, H. M., Eccles, J. S., Trautwein, U., Lüdtke, O., & Baumert, J. (2010). The development of students’ mathematics self‐concept in relation to gender: Different countries, different trajectories? Journal of Research on Adolescence, 20(2), 482-506. doi:10.1111/j.1532-7795.2010.00644.x.
40. Ross, J. A., Scott, G., & Bruce, C. D. (2012). The gender confidence gap in fractions knowledge: Gender differences in student belief-achievement relationships. School Science and Mathematics, 112(5), 278-288. doi:10.1111/j.1949-8594.2012.00144.x.
41. Rubie-Davies, C. M., & Lee, K. (2013). Self-concept of students in higher education: are there differences by faculty and gender? Educational Studies, 39(1), 56-67. doi:10.1080/03055698.2012.671513.
42. Sarouphim, K. M., & Chartouny, M. (2017). Mathematics education in Lebanon: Gender differences in attitudes and achievement. Education Studies in Mathematics, 94(1), 55-68. doi:10.1007/s10649-016-9712-9.
43. Schumacker, R. E., & Lomax, R. G. (2015). A beginner’s guide to structural equation modeling (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
44. Schwartz, C. S., & Sinicrope, R. (2013). Prospective elementary teachers’ perceptions of gender differences in children’s attitudes toward mathematics. School Science & Mathematics, 113(8), 410-416. doi:10.1111/ssm.12045.
45. Shen, C. (2005). How American middle schools differ from schools of five Asian countries: Based on cross-national data from TIMSS 1999. Educational Research and Evaluation, 11(2), 179-199. doi:10.1080/13803610500110810.
46. Skaalvik, E. M., & Valås, H. (1999). Relations among achievement, self-concept, and motivation in mathematics and language arts: A longitudinal study. The Journal of Experimental Education, 67(2), 135-149. doi:10.1080/00220979909598349.
47. Sullivan, A. (2009). Academic self‐concept, gender and single‐sex schooling. British Educational Research Journal, 35(2), 259-288. doi:10.1080/01411920802042960.
48. The Department of Statistics of Ministry of Education (2016). Education statistics inquiry network. Retrieved from
49. Tsui, M. (2007). Gender and mathematics achievement in China and the United States. Gender Issues, 24, 1-11. doi:10.1007/s12147-007-9044-2.
50. Yan, W., & Lin, Q. (2005). Parent involvement and mathematics achievement: Contrast across racial and ethnic groups. The Journal of Educational Research, 99(2), 116-127. doi:10.3200/JOER.99.2.116.
51. You, Z. (2010). Research in brief: Gender differences in mathematics learning. School Science and Mathematics, 110(3), 115-117. doi:10.1111/j.1949-8594.2010.00028.x.