Recreational Experiences for Teaching Basic Scientific Concepts in Primary Education: The Case of Density and Pressure
More details
Hide details
Department of Didactics of Experimental Sciences, University of Extremadura, Avda. De Elvas s/n, 06006 Badajoz, SPAIN
Publish date: 2018-08-23
EURASIA J. Math., Sci Tech. Ed 2018;14(12):em1616
Recreational science experiences were used as a teaching tool in the learning process of two basic concepts at primary school level: pressure and density. These kinds of resources are widely spread as hook methodologies in non-formal educative areas, but this work puts them into the formal school space. A comparative study in four primary students groups was carried out, involving up to 82 students of 10-11 years old. Control groups were submitted to the traditional oral-based classroom whereas the experimental groups underwent a novel teaching methodology totally based on recreational science experiences. The results showed that although the immediate knowledge acquisition is similar in both cases, the use of recreational science inside classroom enhances the remembrance of the learning experience and probably links positive emotions to science education.
1. Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.
2. Alake-Tuenter, E., Biemans, H. J. A., Tobi, H., Walls, A. E. J., Oosterheert, I., & Mulder, M. (2012). Inquiry-Based Science Education Competencies of primary School Teachers: A literature study and critical review of the American National Science Education Standards. International Journal of Science Education, 34(17), 1-32.
3. Ausubel, D. P. (2000). The acquisition and retention of knowledge: a cognitive view. Dordrecht: Kluwer Academic Publishers.
4. Ayvacı, H. Ş. (2010). A pilot survey to improve the use of scientific process skills of kindergarten children. Electronic Journal of Science and Mathematics Education, 4(2), 1-24.
5. Basheer, A., Hugerat, M., Kortam, N., & Hofstein, A. (2016). The Effectiveness of Teachers’ Use of Demonstrations for Enhancing Students’ Understanding of and Attitudes to Learning the Oxidation-Reduction Concept. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 555-570.
6. Borrachero, A. B., Gómez, R., & Bermejo, M. L. (2013). Emociones ante las ciencias y sus posibles causas [Emotions towards science and their possible causes]. International Journal of Developmental and Educational Psychology, 25(2), 535-548.
7. Bozdoğan, A. E., & Yalçın, N. (2009). Determining the Influence of a Science Exhibition Center Training Program on Elementary Pupils’ Interest and Achievement in Science. Eurasia Journal of Mathematics, Science and Technology Education, 5(1), 27-34.
8. Brígido, M., Borrachero, A. B., Bermejo, M. L., & Mellado, V. (2013). Prospective primary teachers’ self-efficacy and emotions in science teaching. European Journal of Teacher Education, 36(2), 200–217.
9. Britner, S. L., & Pajares, F. (2006). Sources of science self‐efficacy beliefs of middle school students. Journal of research in science teaching, 43(5), 485-499.
10. Bulunuz, M. (2012). Motivational qualities of hands-on science activities for Turkish preservice kindergarten teachers. Eurasia Journal of Mathematics, Science & Technology Education, 8(2), 73–82.
11. Bulunuz, M., & Jarrett, S.O. (2009). Developing an interest in science: Background experiences of preservice elementary teachers. International Journal of Environmental and Science Education, 5(1), 65-84.
12. Carmichael, P., Driver, R., Holding, B., Phillips, I., Twigger, D., & Watts, D. M. (1990). Research on Students’ Conceptions in Science: A Bibliography. Leeds: University of Leeds.
13. Carrascosa, J., Gil-Pérez, D., & Vilches, A. (2006). Papel de la actividad experimental en la educación científica [Role of experimental activity in science education]. Caderno Brasileiro de Ensino de Física., 23(2), 157-181.
14. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Second Edition. Hillsdate, NJ: Laurence Erlbaum.
15. Confederación de Sociedades Científicas de España, COSCE. (2011). Enseñanza de las Ciencias en la Didáctica escolar para edades tempranas en España (Enciende report) [Science teaching in school didactics for early ages in Spain (Turns report)]. Madrid, Spain: COSCE.
16. Costa, M. F., & Dorrío, B. V. (2010). Actividades manipulativas como herramienta didáctica en la educación científico-tecnológica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 7(2), 462-472.
17. Dávila, M. A., Borrachero, A. B., Cañada, F., Martínez, G., & Sánchez, J. (2015). Evolución de las emociones que experimentan los estudiantes del grado de maestro en educación primaria, en didáctica de la materia y la energía [Evolution of the emotions experienced by students in the teacher’s degree in primary education, in the subject of didactics of matter and energy]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(3), 550-564.
18. Ding, C., & Hershberger, S. (2002). Assessing content validity and content equivalence using structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 283-297.
19. Ding, L., & Beichner, R. (2009). Approaches to data analysis of multiple-choice questions. Physical Review Special Topics-Physics Education Research, 5(2), 020103.
20. Ding, L., Chabay, R., Sherwood, B., & Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical review special Topics-Physics education research, 2(1), 010105.
21. Dorrío, B. V., Rodríguez, S., Fernández, J., Ansín, J. A., & Lago, A. (2007). Ciencias en las manos: Aprendizaje informal. [Science in the hands: Informal learning]. Alambique, 52, 107-116.
22. Duit, R., & Pfundt, H. (1998). Students’ Alternative Frameworks and Science Education. Printed version and database. Kiel: IPN.
23. Duschl, R. A., Schweingruber, H. A., & Shouse, A.W. (2007). Taking science to school: Learning and teaching science in grades K-8.Washington, D.C.: National Academy Press.
24. Esteves, Z., Cabral, A., & Costa, M. F. M. (2008). Informal Learning in Basic Schools. Science Fairs. International Journal of Hands-on Science, 1(2), 23-27.
25. Etkina, E. (2000). The minilab as a tool in physics instruction. The Physics Teacher, 38, 136-138.
26. European Commission. (2004). Europe needs More Scientists: Report by the High Level Group on Increasing Human Resources for Science and Technology. Brussels: European Commission.
27. European Commission. (2007). Science Education Now: A renewed pedagogy for the future of Europe. Brussels: European Commission.
28. Eurydice. (2006). Science teaching in schools in Europe. Brussels: Eurydice.
29. Eurydice. (2011). Science Education in Europe: National Policies, Practices and Research. Brussels: Eurydice.
30. FECYT. (2014). Percepción social de la ciencia y la tecnología [Social perception of science and technology]. España: Fundación Española para la ciencia y la tecnología.
31. Fortes, M. (1991). Desarrollo del niño y experimentación en ciencias [Child development and experimentation in science]. Revista de psicologia de la educacion, 6, 65-89.
32. Fortus, D., & Vedder‐Weiss, D. (2014). Measuring students’ continuing motivation for science learning. Journal of Research in Science Teaching, 51(4), 497-522.
33. Francl, M. (2012). Homemade chemists. Nature Chemistry, 4, 687-690.
34. García Barros, S., & Martínez Losada, C. (2003). Análisis del trabajo práctico en textos escolares de Primaria y Secundaria [Analysis of practical work in primary and secondary school textbooks]. Enseñanza de las Ciencias (Núm. Extraordinario) 5-16.
35. García Molina, R. (2011). Ciencia recreativa: un recurso didáctico para enseñar deleitando [Recreational science: a didactic resource for delightful teaching]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8 (Núm. Extraordinario), 370-392.
36. Garritz, A. (2005). Debate sobre cómo cambiar los textos de química para el siglo XXI [Debate on how to change chemistry texts for the 21st century]. Educación Química, 16(3), 363-369.
37. Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655-675.<655::AID-TEA3>3.0.CO;2-E.
38. Hodson, D. (1992). In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541-566.
39. Hodson, D. (1993). Rethinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142.
40. Karacop, A., & Doymus, K. (2013). Effects of Jigsaw Cooperative Learning and Animation Techniques on Student’s Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter. Journal of Science Education and Technology, 22, 186-203.
41. Kelly, J. (2000). Rethinking the elementary science methods course: a case for content, pedagogy and informal science education. International Journal of Science Education, 22, 755-777.
42. Kline, P. (2015). A handbook of test construction (psychology revivals): introduction to psychometric design. New York. Routledge.
43. Latorre, A., & Fortes, C. (1990). Modelos en psicología de la educación y su aplicación a la enseñanza-aprendizaje de las ciencias-experimentales [Models in the psychology of education and their application to the teaching and learning of the experimental sciences]. Didáctica de las ciencias experimentales y sociales, 4, 57-61.
44. Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls: Relations to later self-concept and science achievement. Science Education, 97(4), 574–593.
45. Lewin, W. (2011). For the love of physics. From the end of the rainbow to the edge of time. A journey through the wonders of physics. New York. Free Press.
46. Lozano, O., Garcia-Molina, R., & Solbes, J. (2007). Cuatro juegos que ilustran la conservación de la energía [Four games that illustrate energy conservation]. Alambique. Didáctica de las Ciencias Experimentales, 54, 115-118.
47. Mantzicopoulos, P., Patrick, H., & Samarapungavan, A. (2008). Young children’s motivational beliefs about learning science. Early Childhood Research Quarterly, 23(3), 378-394.
48. Martínez, G., Naranjo, F. L., Pérez, A. L., Suero, M. I., & Pardo, P. J. (2017). Meaningful learning Theory in science education: just another pedagogical trend? Journal of Sciene Education, 18(1), 19-23.
49. Marulanda, J. I. & Gómez, L. A. (2006). Experimentos en el aula de clase para la enseñanza de la física [Classroom experiments for teaching physics]. Revista de la Sociedad Colombiana de Física, 38(2), 699-702.
50. McColgan, M. W., Finn, R. A., Broder, D. L., & Hassel, G. E. (2017). Assessing students’ conceptual knowledge of electricity and magnetism. Physical Review Physics Education Research, 13(2), 020121.
51. McComas, W. F. (2011). Science Fair. The Science Teacher, 78(8), 34-38.
52. Mellado, V., Borrachero, A. B., Brígido, M., Melo, L.V., Dávila, M.A., Cañada, F., ... Bermejo, M. L. (2014). Las emociones en la enseñanza de las ciencias [Emotions in science education]. Enseñanza de las Ciencias, 32(3), 11-36.
53. Melo, L. V., Sánchez, R., Cañada, F., & Martínez, G. (2016). Dificultades del aprendizaje sobre el principio de Arquímedes en el contexto de la flotación [Learning difficulties on the Archimedes principle in the context of flotation]. Revista Brasileira de Ensino de Física, 38(4), e4401.
54. Millar, R. (2010). Practical works. In J. Osborne & J. Dillon (Eds.), Good practice in science teaching. What research has to say (pp. 108–134). New York, NY: Open University Press.
55. Murphy, C., & Beggs, J. (2003). Children’s perceptions of school science. School Science Review, 84, 109-116.
56. Novak, J. D. (1985). Metaleaming and Metaknowledge Strategies to Help Students Learn How to Learn. In L. West & L. Pines (eds.), Cognitive Structure and Conceptual Change. (In the Educational Psychology Series). (Academic Press: Orlando, Florida), 189-209.
57. Novak, J. D. (1998). Learning, creating and using knowledge: Concept maps as facilitative tools in schools and corporations. Mahwah, NJ: Lawrence Erlbaum Associates.
58. NSB (2004). Science and Engineering Indicators 2004 (NSB 04-01). Arlington, VA: National Science Board, National Science Foundation. Retrieved from
59. OECD (Organisation for Economic Co-operation and Development). (2006). Evolution of Student Interest in Science and Technology Studies Policy Report. Global Science Forum. May 2006. OECD, Paris.
60. Olsen, R. V., Prenzel, M., &Martin, R. (2011). Interest in science: A many-faceted pictures painted by data from the OECD PISA study. International Journal of Science Education, 33(1), 1-6.
61. Oppermann, E., Brunner, M., Eccles, J. S., & Anders, Y. (2018). Uncovering young children’s motivational beliefs about learning science. Journal of Research in Science Teaching, 55(3), 399-421.
62. Osborne, J., Simon, S., & Collins, S. (2010) Attitudes towards science: A review of the literature and its implications, International Journal of Science Education, 25(9), 1049-1079.
63. Palmer, D. (2009). Student interest generated during an inquiry skills lesson. Journal of Research in Science Teaching, 46(2), 147-165.
64. Paul, J., Lederman, N. G., & Groß, J. (2016). Learning experimentation through science fairs. International Journal of Science Education, 38(15), 2367-2387.
65. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels, Belgium: Directorate General for Research, Science, Economy and Society.
66. Saçkes, M., Trundle, K. C., Bell, R. L., & O’Connell, A. A. (2011). The influence of early science experience in kindergarten on children’s immediate and later science achievement: Evidence from the early childhood longitudinal study. Journal of Research in Science Teaching, 48(2), 217–235.
67. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83.
68. Strike, K. A., & Posner, G. J. (1990). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (eds.). Philosophy of Science, Cognitive Science and Educational Theory and Practice. Albany, Nueva York: SUNY Press.
69. Tanveer, M. A., Shabbir, M. F., Ammar, M., Dolla, S. I., & Aslam, H. D. (2012). Influence of Teacher on Student’ Learning Motivation in Management Sciences Studies. American Journal of Scientific Research, 67(1), 76-87.
70. Toplis, R., & Allen, M. (2012). ‘I do and I understand?’ Practical work and laboratory use in United Kingdom schools. Eurasia Journal of Mathematics, Science & Technology Education, 8(1), 3-9.
71. Vázquez, A., & Manassero, M. A. (2011). El descenso de las actitudes hacia la ciencia de chicos y chicas en la educación obligatoria [The decline in boys’ and girls’ attitudes towards science in compulsory education]. Ciencia & Educaçao, 17(2), 249-268.
72. Wallace, C. S., Yin Tsoi, M., Calkin, J., & Darley, M. (2003). Learning from inquiry-based laboratories in nonmajor biology: An interpretive study of the relationships among inquiry experience, epistemologies, and conceptual growth. Journal of Research in Science Teaching, 40(10), 986–1024.
73. Yakar, Z., & Baykara, H. (2014). Inquiry-based laboratory practices in a science teacher training program. Eurasia Journal of Mathematics, Science & Technology Education, 10(2), 173–183.