The Developmental Changes of Number Processing and Calculation Abilities in Chinese Primary School Students
Shudong Zhang 1,  
Fei Li 1,  
Libo Zhao 2  
Lipei Xie 3,  
Hui Zhao 4, 5  
More details
Hide details
Faculty of Education, Beijing Normal University, Beijing, CHINA
Department of Psychology, BeiHang University, Beijing, CHINA
Beijing Jianxiang School, Beijing, CHINA
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGoven Institute for Brain Research, Beijing Normal University, CHINA
Siegler Center for Innovations in Learning, Beijing Normal University, 100875, CHINA
Online publish date: 2018-04-26
Publish date: 2018-04-26
EURASIA J. Math., Sci Tech. Ed 2018;14(7):2745–2756
Based on the ‘triple-code’ theory, the present study provided a comprehensive examination of the development of number processing and calculation abilities of Chinese primary school students. 310 children from grade 1 to grade 4 were assessed using the battery of number processing and calculation tests (NUCALC-R (Protocol)), covering tests of the Verbal, Visual Arabic and Analogue Magnitude Modules of the numerical abilities. The results showed that the three modules had different developmental trajectories from grade 1 to grade 4: the Verbal Module and Analog Module reached a plateau in grade 3, but the Visual Arabic Module improved gradually across the four grades. In addition, the subtests within each module also showed different developmental trajectories, demonstrating a rich profile of how the specific ways of representing and manipulating the numerals in a given module develop in the early school years.
1. Abbound, S., Maidenbaum, S., Dehaene, S., & Amedi, A. (2015). A number-form area in the blind. Nature Communication, 6, 6026.
2. Artemenko, C., Moeller, K., Huber, S., & Klein, E. (2015). Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Frontiers in Human Neuroscience, 9, 1-8.
3. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189-201.
4. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016-1031.
5. Campbell, J., & Clark, J. (1988). An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117(2), 204-214.
6. Campbell, J., & Epp, L.J. (2004). An Encoding-Complex Approach to Numerical Cognition in Chinese-English Bilinguals. Canadian Journal of Experimental Psychology, 58:4, 229-244.
7. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844-854.
8. Cohen, L., & Dehaene, S. (2000). Calculating without reading: unsuspected residual abilities in pure alexia. Cogntive Neuropsycholgy 17(6), 563-583.
9. Dehaene, S. (1992). Varieties of numberical abilities. Cognition, 44, 1-42.
10. Dehaene, S. (2011). The number sense: how the mind creates mathematics: Oxford University Press.
11. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 33(2), 219–250.
12. Dehaene, S., Bossini, S., & Giraux, P. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.
13. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506.
14. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 284(5416), 970-974.
15. Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33(4), 697-710.
16. Dellatolas, G., von Aster, M., Willadino-Braga, L., Meier, M., & Deloche, G. (2000). Number processing and mental calculation in school children aged 7 to 10 years: a transcultural comparison. European Child and Adolescent Psychiatry, 9 Suppl 2, II102-110.
17. Fosco, W. D., & Hawk, L. W. (2017). Relating lab to life: Decrements in attention over time predict math productivity among children with ADHD. Child Neuropsychology, 23(2), 148-158.
18. Fry, A. E., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7, 237–241.
19. Fuson, K. C., Richards, J., & Briards, D. J. (1982). The Acquisition of the Number Word Sequence. In C. J. Brainerd (Hrsg.), Children's Logical and Mathematical Cognition. Progress in Cognitive Development Research (S. 33–92). New York: Springer.
20. Holloway, I., & Ansari, D. (2008). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.
21. Holton, D., & Clarke, D. (2006). Scaffolding and metacognition. International Journal of Mathematical Education in Science & Technology, 37(2), 127-143.
22. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448.
23. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382-10385.
24. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763-787.
25. Klein, E., Bahnmueller, J., Mann, A., Pixner, S., Kaufmann, L., Nuerk, H. C., & Moeller, K. (2013). Language influences on numerical development-inversion effects on multi-digit number processing. Frontiers in Psychology, 4(8), 1-6.
26. Klein, E., Mann, A., Huber, S., Bloechle, J., Willmes, K., Karim, A. A., … Moeller, K. (2013). Bilateral Bi-Cephalic Tdcs with Two Active Electrodes of the Same Polarity Modulates Bilateral Cognitive Processes Differentially. Plos One, 8 (8), e71607.
27. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583-1585.
28. Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I., Siapati, S., Annika, G., ... von Aster, M. (2004). An epidemiological study of number processing and mental calculation in Greek schoolchildren. Journal of Learning Disabilities, 37(5), 377-388.
29. Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: a FMRI study. Developmental Neuropsychology, 33(4), 447-473.
30. Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–1958.
31. Libertus, M., Woldorff, M. G, & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3, Article 1.
32. Mann, A., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2012). On the development of Arabic three-digit number processing in primary school children. Journal of Experimental Child Psychology, 113(4), 594-601.
33. Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. NeuroImage, 61(4), 1444-1460.
34. McCloskey, M. (1992). Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44(1-2), 107-157.
35. McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: evidence from dyscalculia. Brain and Cog., 4(2), 171-196.
36. McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781.
37. Miller, K. F., & Paredes, D. R. (1990). Starting to add worse: effects of learning to multiply on children’s addition. Cognition, 37(3), 213-242.
38. Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H.-C. (2011). Early place-value understanding as a precursor for later arithmetic performance. A longitudinal study on numerical development. Research in Developmental Disabilities, 32, 1837–1851.
39. Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., ... Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40(4), 847-858.
40. Noel, M.-P., & Seron, X. (1993). Arabic number reading deficit: A single case study or when 236 is read (2306) and judged superior to 1258. Cognitive Neuropsychology, 10(4), 317-339.
41. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33.
42. Peake, C., Jimenez, J. E., & Rodrigues, C. (2017). Data-driven heterogeneity in mathematical learning disabilities based on the triple code model. Research in Developmental Disabilities, 71, 130-142.
43. Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. NeuroImage, 81, 306-316.
44. Santos, F. H. D., Da Silva, P. A., Ribeiro, F. S., Dias, A. L. R. P., Frigério, M. C., Dellatolas, G., & von Aster, M. (2013). Number processing and calculation in Brazilian children aged 7-12 years. The Spanish Journal of Psychology, 15(2), 513-525.
45. Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions. NeuroImage, 22(3), 1414-1420.
46. Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting Attention within Visual Short-Term Memory: Development and Mechanisms. Child development, 85(2), 578-592.
47. Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., … Parvizi, J. (2013). A brain area for visual numerals. J. Neurosci. 33, 6709-6715.
48. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444.
49. Siemann, J., & Petermann, F. (2017). Evaluation of the Triple Code Model of numerical processing—Reviewing past neuroimaging and clinical findings. Research in Developmental Disabilities, 72, 106-117.
50. von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9 Suppl 2, II41-57.
51. von Aster, M., & Shalev, R. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868-873.
52. von Aster, M., & Weinhold, M. (2002). The neuropsychological test battery for number processing and calculation in children (NUCALC-R) PROTOCOL. Männedorf.
53. Vygotsky, L. S. (1986). In Thought and Language (Kozulin, A., ed.), MIT Press.
54. Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220-251.
55. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11.
56. Zhang, S., & Dong, Q. (2006). Revision of test of number processing and calculation and study on its reliability and validity. Chinese Journal of Special Education, 71(5), 62-66.