Virtual Learning Environments to Enhance Spatial Orientation
More details
Hide details
University of La Laguna, SPAIN
Online publish date: 2017-11-26
Publish date: 2017-11-26
EURASIA J. Math., Sci Tech. Ed 2018;14(3):709–719
The spatial orientation skill allows us to determine our location in relation to the environment. It can be developed through specific training, and is a competence to be acquired in STEM university degrees related to geospatial information. In addition to map reading, an activity that provides the spatial orientation skill is wayfinding. While wayfinding the information obtained from successive views of the environment provides spatial orientation. This research presents an immersive orientation experiment, in which an urban environment is displayed through a Smartphone installed in VR 3D glasses. The motion direction is controlled with a joystick. In the experiment 32-second year engineering students from La Laguna University participated, and the average gain in spatial orientation skill was of 12.81º, measured with the Perspective Taking Spatial Orientation Test. No gender differences detected. This gain is less than that obtained in previous experiments with GISc, Geoportals and Augmented Reality resources.
1. Alias, M., Black, T. R., & Gray, D. E. (2002). Effect of instructions on spatial visualization ability in civil engineering students. International Education Journal, 3(1), 1–12.
2. Allahyar M., & Hunt, E. (2003). The Assessment of Spatial Orientation Using Virtual Reality Techniques. International Journal of Testing, 3(3), 263-275. doi:10.1207/S15327574IJT0303_5.
3. Barfield, W., & Baird, K. (1998). Future direction in virtual reality: augmented environments through wearable computers, Virtual Reality: Selected Tools and Applications. Proceedings of VR 98 Seminar and Workshop on Virtual Reality, Editor Khalid, Malaysia, pp. 9 – 15.
4. Battista, M. T. (2007). The development of geometric and spatial thinking. In Second handbook of research on mathematics teaching and learning. Charlotte, NC: Information Age Publishing.
5. Björk, S., & Holopainen, J. (2004). Patterns in Game Design. Charles River Media, Boston, MA.
6. Bliss, J. P., Tidwell, P. D., & Guest, M. A. (1997). The effectiveness of virtual reality for administering spatial navigation training to firefighters. Presence: Teleoperators and Virtual Environments, 6(1), 73–86. doi:10.1162/pres.1997.6.1.73.
7. Bodner, G., & Guay, R. (1997). The purdue visualization of rotations test. Chemical Education, 2(4), 1–18.
8. Carbonell C. (2017). Spatial-Thinking Knowledge Acquisition from Route-Based Learning and Survey Learning: Improvement of Spatial Orientation Skill with Geographic Information Science Sources. Journal of Surveying Engineering, 143 (1). doi:10.1061/(ASCE)SU.1943-5428.0000200#sthash.s5c5UD7c.dpuf.
9. Carbonell C., & Bermejo L.A. (2017). Landscape interpretation with augmented reality and maps to improve spatial orientation skill. Journal of Geography in Higher Education, 4(1), 119-133. doi:10.1080/03098265.2016.1260530.
10. Carbonell C., Saorín J. L., De la Torre, J., & Marrero G. A. M. (2011). Engineers’ spatial orientation ability development at the European Space for Higher Education. European Journal of Engineering Education, 36 (5), 505-512. doi:10.1080/03043797.2011.602184.
11. Carbonell, C., Martín-Dorta, N., Saorín Pérez, J. L., & De La Torre Cantero, J. (2015). Specific Professional Skills Development for Engineering Studies: Spatial Orientation. International Journal of Engineering Education, 31(1B), 316–322.
12. Carbonell, C., Mejías, M. A., Saorín, J. L., & Contero, M. C. (2012). Spatial data infrastructure: Development of spatial abilities in the framework of european space for higher education. Boletín de la asociación de geógrafos españoles, 58(2012), 157–175.
13. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329–340.
14. Coluccia, E., Louse, G., & Brandimonte, M. A. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27(2), 135–144.
15. Dahmani, L., Ledoux, A., Boyer, P., & Bohbot, V. D. (2012). Wayfinding: The effects of large displays and 3-D perception. Behavior Research Methods 44(2), 447-454. doi:10.3758/s13428-011-0158-9.
16. Darken, R. P., & Banker, W. P. (1998). Navigating in natural environments: A virtual environment training transfer study. Proceedings of the IEEE Virtual Reality Annual International Symposium (pp. 12-19). IEEE. doi:10.1162/pres.1999.8.6.iii.
17. Darken, R. P., Allard, T., & Achille, L.B. (1999). Spatial Orientation and Wayfinding in Large-Scale Virtual Spaces II. Presence, 8(6), 3-5.
18. Dominguez, M. G., & Martin-Gutierrez, J., & Roca, C. (2013). Tools, Methodologies and Motivation to Improve Spatial Skill on Engineering Students. Paper presented at 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia. Retrieved from
19. Downs, R. M., & Stea, D. (1973). Cognitive maps and spatial behaviour. Process and products. In R.M. Downs and D. Stea (Eds.), Image and environment: Cognitive mapping and spatial behaviour (pp.8-26). Chicago: Aldine.
20. Dünser, A., Steinbügl, K., Kaufmann, H., & Glück, J. (2006). Virtual and augmented reality as spatial ability training tools. Proceedings of the 7th ACM SIGCHI New Zealand chapter’s international conference on Computer-human interaction: design centered HCI, p.125-132, July 06-07, 2006, Christchurch, New Zealand. doi:10.1145/1152760.1152776.
21. Farrell, M. J., Arnold, P., Pettifer, S., Adams, J., Graham, T., & MacManamon, M. (2003). Transfer of route learning from virtual to real environments. Journal of Experimental Psychology Applied, 9(4), 219–227. doi:10.1037/1076-898X.9.4.219.
22. Fleishman, J. J., & Dusek, E. R. (1971). Reliability and learning factors associated with cognitive tests. Psychogical Reports, 29(2): 523–530. doi:10.2466/pr0.1971.29.2.523.
23. Gonzato, M., & Godino, J. D. (2011). Aspectos históricos, sociales y educativos de la orientación espacial. Unión: revista iberoamericana de educación matemática, 23(2010), 24–45.
24. Gonzato, M., Fernández, T., & Díaz, J. (2011). Tareas para el desarrollo de habilidades de visualización y orientación espacial. Números: revista didáctica de las matemáticas 77(2011), 99–117.
25. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. doi:10.1016/j.intell.2003.12.001.
26. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151-176. doi:10.1016/j.intell.2005.09.005.
27. Helsel, S. (1992). Virtual Reality and Education. Educational Technology, 32(5), 38-42.
28. Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. Wiley, New York.
29. Johannesen, M. (2013). The role of virtual learning environments in a primary school context: An analysis of inscription of assessment practices. British Journal of Educational Technology, 44(2), 302-313. doi:10.1111/j.1467-8535.2012.01296.x.
30. Koh, G., von Wiegand, T., Garnett, R., Durlach, N., & Shinn-Cunningham, B. (2000). Use of Virtual Environments for Acquiring Configurational Knowledge about Specific Real-World Spaces: Preliminary Experiment. Presence: Teleoperators and Virtual Environments, 8(6), 632-656. doi:10.1162/105474699566530.
31. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation, spatial ability and spatial orientation ability. Memory and Cognition, 29(5), 745–756. doi:10.3758/BF03200477.
32. Lin, C., Chen, C., & Lou, Y. (2014). Developing spatial orientation and spatial memory with a treasure hunting game. Journal of Educational Technology & Society, 17(3), 79-92.
33. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. doi:10.2307/1130467.
34. Liu, I., Levy, R. M., Bartoni, J. J. S., & Iaria, G. (2011). Age and gender differences in various topographical orientation strategies. Brain Research, 1410, 112–119. doi:10.1016/j.brainres.2011.07.005.
35. Loeffler, C. E., & Anderson, T. (eds.) (1994). The Virtual Reality Casebook. New York: Van Nostrand Reinhold.
36. Lynch, K. (1960). The image of the city. MIT Press, Cambridge, MA.
37. MacEachren, A. M., & Kraak, M.-J. (2001). Research challenges in geovisualization. Cartography and Geographic Information Science, 28(1), 3-12. doi:10.1559/152304001782173970.
38. Maier, P. H. (1998). Spatial geometry and spatial ability: How to make solid geometry solid. Proc., Annual Conf. of Didactics of Mathematics, E. Osnabrück, E. Cohors-Fresenborg, K. Reiss, G. Toener, and H. Weigand, eds., Gessellschaft für Didaktik der Mathematik, Munich, Germany, 63–75.
39. Mayrath, M. C., Traphagan, T., Heikes, E. J., & Trivedi, A. (2011). Instructional design best practices for Second Life: A case study from a college-level English course. Interactive Learning Environments, 19(2), 125-142. doi:10.1080/10494820802602568.
40. Mcgee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86(5), 889–918.
41. McKinnon, L. D., & North, M. M. 2004. A comparative study of presence in virtual reality vs. presence in the real world. Proceedings of the 42nd Annual Southeast Regional Conference (pp. 253-254).
42. Montello, D. R., Lovelace, K. L., Golledge, R. G., & Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89(3), 515-534.
43. Nardi, D., Newcombe, N. S., & Shipley, T. (2010). The world is not flat: Can people reorient using slope? Journal of Experimental Psychology: learning, Memory and Cognition, 37(2), 354–367. doi:10.1037/a0021614.
44. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM Ed.
45. Newcombe, N. S., & Shipley, T. F. (2015). Studying visual and spatial reasoning for design creativity. In John S. Gero (Ed.), Thinking about spatial thinking: New typology, new assessments (pp. 179–192).
46. Oh, K., & Nussli, N. (2014). Teacher training in the use of a three-dimensional immersive virtual world: Building understanding through first-hand experiences. Journal of Teaching and Learning with Technology, 3(1), 33-58.
47. Pantelidis, V. (1995). Reasons to Use VR in Education. VR in the Schools, 1, 9.
48. Patel, K. K., & Kumar, S. (2010). Advanced Knowledge Based Systems: Model, Applications & Research. TMRF e-Book. Eds. Sajja & Akernar. Kolhapur, India.
49. Patel, K. K., & Vij, S. K. (2010). Spatial navigation in virtual world. Advanced knowledge based systems: model, applications and research. TMRF e-Book, 101-125.
50. Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics: Emergence from psychology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 205–235). Dordrecht: Sense Publisers.
51. Rafi, A., & Karboulonis, P. (2000). The Re-Convergence of Art and Science: A Vehicle for Creativity. Proceedings of the Fifth International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA), 497.
52. Reber, A. S. (1985). Dictionary of psychology. Penguin, London.
53. Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory and Cognition, 27(4), 741-750.
54. Riva, G. (2006). Virtual reality. Encyclopaedia of Biomedical Engineering. London: John Wiley & Sons.
55. Roca-González, C., Martín-Gutiérrez, J., García-Domínguez, M., & Mato, M.C. 2017. Virtual Technologies to Develop Visual-Spatial Ability in Engineering Students. EURASIA Journal of Mathematics Science and Technology Education, 13(2), 441-468. doi:10.12973/ eurasia.2017.00625a.
56. Rodrigues, J., Sauzéon, H., Wallet, G., & N’Kaoua, B. (2010). Transfer of spatial-knowledge from virtual to real environment: effect of active/passive learning depending on a test-retest procedure and the type of retrieval tests. Journal of Cybertherapy & Rehabilitation, 3(3), 275–283.
57. Rose, F. D., Attree, E. A., Brooks, B. M., Parslow, D. M., & Penn, P. R. (2000). Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics, 43(4), 494-511. doi:10.1080/001401300184378.
58. Schinazi, V. R., Epstein, R. A., Nardi, D., Newcombe, N. S., & Shipley, T. F. (2009). The acquisition of spatial knowledge in an unfamiliar campus environment, in Proceeding of the 50th Annual Meeting of the Psychonomics Society, Boston, MA.
59. Siegel, A. W., & White, S. H. (1975). The Development of Spatial Representations of Large-Scale Environments. In H. Reese (Ed.), Advances in Child Development and Behavior, 10. New York: Academic Press.
60. Smith, I. M. (1964). Spatial ability: Its educational and social significance. University of London Press, London.
61. Spanish Cabinet’s Office (2007). Royal Decree 1393/2007 from October 29th. State’s Official Bulletin. Retrieved on 1 May 2013 from http://www.
62. Stock, C., Bishop, D., O´Connor, A.N., Cehn, T., Pettir, C.J and Aurambout, J.P. (2008). SIEVE: Collaborative Decision-making in an Immersive Online Environment. Cartography and Geographic Information Science, 35(2), 133-144. Retrieved from
63. Tartre, L. A. (1990a). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216–229. doi:10.2307/749375.
64. Tartre, L. A. (1990b). Spatial skills, gender and mathematics. Mathematics and gender, E. E. Fennena and G. C. Leder, eds., New York: Teachers College Press, 27–59.
65. Thorndyke, P. W., & Goldin, S. E. (1983). Spatial Learning and Reasoning Skill. In H. L. Pick & L. P. Acredolo (Eds.), Spatial Orientation: Theory, Research, and Application, (pp. 195-217). New York: Plenum Press.
66. Uddin, S.H. (1999). Digital Architecture. McGraw-Hill.
67. Waller, D. (1999). An assessment of individual differences in spatial knowledge of real and virtual environments (Doctoral dissertation, University of Washington, Seatle, 1999). Dissertation Abstracts International, 60(4-B), 1882.
68. Waller, D., Beall, A. C., and Loomis, J. M. (2004). Using virtual environments to assess directional knowledge. Journal of Environmental Psychology, 24(1), 105–116. doi:10.1162/105474698565631.
69. Waller, D., Hunt, E., & Knapp, D. (1998). The Transfer of Spatial Knowledge in Virtual Environment Training. Presence: Teleoperators and Virtual Environments, 7(2), 129-143.
70. Wilson PN, Foreman N, Tlauka M. (1996). Transfer of spatial information from a virtual to a real environment in physically disabled children. Disabli Rehabilitation, 18(12), 633-7.
71. Witmer, B. G., Bailey, J. H., & Knerr, B. W. (1995). Training Dismounted Soldiers in Virtual Environments: Route Learning and Transfer. (Technical Report 1022). U.S. Army Research Institute for the Behavioral and Social Sciences.
72. Wu, F., Liu, Z., Wang, J., & Zhao, Y. 2015. Establishment virtual maintenance environment based on VIRTOOLS to effectively enhance the sense of immersion of teaching equipment. Proceedings of the 2015 International Conference on Education Technology, Management and Humanities Science (ETMHS 2015). Atlantis Press. doi:10.2991/etmhs-15.2015.93.
73. Zhang X. (2008). A multiscale progressive model on virtual navigation. International Journal of Human Computer Studies, 66(4), 243-256. doi:10.1016/j.ijhcs.2007.09.004.