Abstract
This study sought to investigate the effect of different instructional methods on students’ conceptual change and to explore junior secondary school students’ misconceptions about electrical resistance. Quasi-experimental design was employed to compare whether or not there are significant differences among various teaching methods. The participants (165 junior secondary school students in China) were enrolled in three classes instructed by the same physics teacher. This study was carried out in a synthesized theoretical framework and found that the inquiry teaching method was effective in learning about resistance. Meanwhile, didactic learning supplemented with mathematical deduction was better in developing conceptual understanding of equivalent resistance. The crux of the matter is not whether the instructional method is traditional, but whether it brings mental disequilibrium and achieves conceptual framework shift. The findings distinguished a teaching strategy rooted in cognitive psychology from a strategy derived from physics itself. It also demonstrated the importance for teachers to use strategies derived from physics to accomplish students’ conceptual framework shift. Meanwhile, this study investigated the opinions held by students and found a number which had not previously been reported. Therefore, it is essential for physics teachers to probe students’ misunderstanding of a certain physics concept and design corresponding teaching method to accomplish students’ conceptual framework shift.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EURASIA J Math Sci Tech Ed, Volume 14, Issue 7, July 2018, 2771-2786
https://doi.org/10.29333/ejmste/90592
Publication date: 26 Apr 2018
Article Views: 2753
Article Downloads: 1413
Open Access References How to cite this article