Abstract
Mathematics education research highlights a need for instruments to better understand teaching practices specifically concerning geometry education. The research is underpinned by the theory of mathematical working spaces and is based on a quantitative approach. This study presents the results of research organized in stages that demonstrates the process of construction and validation of an instrument aimed at characterizing the teaching of specific geometry topics in secondary education (similarity of figures, homothecy, and Thales’ theorem). The instrument was applied to a sample of 63 secondary education mathematics teachers in Chile. The teachers work in public and private educational institutions. Based on confirmatory factor analysis, three empirical dimensions and items for each dimension are established, which allows teacher profiles to be characterized according to how they decide to teach specific geometric topics. The results can be used for decision-making in future research, for teaching training, and for proposing didactic improvements.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EURASIA J Math Sci Tech Ed, Volume 22, Issue 2, February 2026, Article No: em2784
https://doi.org/10.29333/ejmste/17910
Publication date: 14 Feb 2026
Article Views: 27
Article Downloads: 9
Open Access References How to cite this articleReferences
- Aguilera Moraga, Y., Verdugo-Hernández, P., & Gatica, J. (2025). Design and implementation of a task sequence for teaching homothety. Eurasia Journal of Mathematics, Science and Technology Education, 21(6), Article em2656. https://doi.org/10.29333/ejmste/16540
- Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131-142. https://doi.org/10.1177/0013164485451012
- Alavi, M., Biros, E., & Cleary, M. (2024). Notes to factor analysis techniques for construct validity. Canadian Journal of Nursing Research, 56(2), 164-170. https://doi.org/10.1177/08445621231204296
- Almanasreh, E., Moles, R., & Chen, T. F. (2019). Evaluation of methods used for estimating content validity. Research in Social and Administrative Pharmacy, 15(2), 214-221. https://doi.org/10.1016/j.sapharm.2018.03.066
- Aravena-Díaz, M., Gutiérrez, A., & Jaime, A. (2016). Estudio de los niveles de razonamiento de van Hiele en alumnos de centros de enseñanza vulnerables de educación media en Chile [Study of van Hiele’s reasoning levels in students from vulnerable secondary schools in Chile]. Enseñanza de las Ciencias, 34(1), 107-128. https://doi.org/10.5565/rev/ensciencias.1664
- Arteaga-Martínez, B., Macías-Sánchez, J., Pla-Castells, M., & Ramírez-García, M. (2021). Diseño y validación de un instrumento para observación de clases de matemáticas en educación secundaria: Grupo nominal y método Delphi [Design and validation of an instrument for observing mathematics classes in secondary education: Nominal group and Delphi method]. RELIEVE–Revista Electrónica de Investigación y Evaluación Educativa, 27(2). https://doi.org/10.30827/relieve.v27i2.21812
- Avcu, R. (2022). Pre-service middle school mathematics teachers’ personal concept definitions of special quadrilaterals. Mathematics Education Research Journal, 35(4), 743-788. https://doi.org/10.1007/s13394-022-00412-2
- Ayvaz, Ü., Gündüz, N., & Bozkuş, F. (2017). Understanding of prospective mathematics teachers of the concept of diagonal. Journal on Mathematics Education, 8(2), 165-184. https://doi.org/10.22342/jme.8.2.4102.165-184
- Bandalos, D. L., & Finney, S. J. (2019). Factor analysis. Exploratory and confirmatory. In G. R. Hancock (Ed.), The review guide to quantitative methods in the social sciences (pp. 98-122). Routledge. https://doi.org/10.4324/9781315755649-8
- Bandalos, D. L., & Gerstner, J. J. (2016). Using factor analysis in test construction. In K. Schweizer, & C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advances (pp. 26-51). Hogrefe.
- Bartram, D. (2007). Increasing validity with forced-choice criterion measurement formats. International Journal of Selection and Assessment, 15, 263-272. https://doi.org/10.1111/j.1468-2389.2007.00386.x
- Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods and Research, 16(1), 78-117. https://doi.org/10.1177/0049124187016001004
- Chuaqui, M., & Riera, G. (2011). Transformaciones en geometría Euclidiana y no Euclidiana [Transformations in Euclidean and non-Euclidean geometry]. J. C. Sáez Editor.
- CPEIP. (2021). Estándares pedagógicos y disciplinarios para carreras de pedagogía en matemática. educación media [Pedagogical and disciplinary standards for mathematics pedagogy courses. secondary education]. Center for Improvement, Experimentation, and Pedagogical Research. https://estandaresdocentes.mineduc.cl/wpcontent/uploads/2023/05/Matematica-Media.pdf
- Creager, M. A. (2022). Geometric refutations of prospective secondary mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 10(1), 74-99. https://doi.org/10.46328/ijemst.1594
- Creswell, J. W., & Creswell, J. D. (2023). Research design. Qualitative, quantitative and mixed methods approaches (6th Ed.). SAGE.
- Creswell, J., & Clark, V. (2018). Designing and conducting mixed methods research. SAGE.
- Depaepe, F., Verschaffel, L., & Star, J. (2020). Expertise in developing students’ expertise in mathematics: Bridging teachers’ professional knowledge and instructional quality. ZDM Mathematics Education, 52, 179-192. https://doi.org/10.1007/s11858-020-01148-8
- Duke, C., Hamidi, S., & Ewing, R. (2020). Validity and reliability. In R. Ewing, & K. Park (Eds.), Basic quantitative research methods for urban planner (pp. 88-106). Routledge. https://doi.org/10.4324/9780429325021-6
- Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements [The cognitive conditions for learning geometry: Development of visualization, differentiation of reasoning and coordination of their functioning]. Annales de Didactique et de Sciences Cognitives, 10, 5-53.
- Espinoza Salfate, L., Guerrero, G., Barbé Farré, J., & Márquez Salinas, F. (2023). Design and validation of a classroom observation instrument to evaluate the quality of mathematical activity from a gender perspective. Education Sciences, 13(3), Article 266. https://doi.org/10.3390/educsci13030266
- Espinoza-Vásquez, G., Henríquez-Rivas, C., Climent, N., Ponce, R., & Verdugo-Hernández, P. (2025). Teaching Thales’s theorem: Relations between suitable mathematical working spaces and specialised knowledge. Educational Studies in Mathematics, 118, 271-293. https://doi.org/10.1007/s10649-024-10367-9
- Ferrando, P. J., & Lorenzo-Seva, U. (2018). Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and Psychological Measurement, 78(5), 762-780. https://doi.org/10.1177/0013164417719308
- Flores Salazar, J. V., Théry Romero, M. C., Neira Fernández, V., & Peñaloza Vara, T. N. (2025). In-service teachers’ mathematical work on quadrilaterals and their technological knowledge. Eurasia Journal of Mathematics, Science and Technology Education, 21(3), Article em2604. https://doi.org/10.29333/ejmste/16069
- Flores-Salazar, J. (2018). Semiotic representations: A study of dynamic figural register. In N. Presmeg, L. Radford, W. M. Roth, & G. Kadunz (Eds.), Signs of signification. ICME-13 monographs (pp. 217-233). Springer. https://doi.org/10.1007/978-3-319-70287-2_12
- García López, M. M., Romero Albaladejo, I. M., & Gil Cuadra, F. (2021). Efectos de trabajar con GeoGebra en el aula en la relación afecto-cognición [Effects of working with GeoGebra in the classroom on the affect-cognition relationship]. Enseñanza de las Ciencias, 39(3), 177-198. https://doi.org/10.5565/rev/ensciencias.3299
- Goetz, J. P., & LeCompte, M. D. (1988). Etnografía y diseño cualitativo en investigación educativa [Ethnography and qualitative design in educational research].
- Gómez-Chacón, I. M., Kuzniak, A., & Vivier, L. (2016). El rol del profesor desde la perspectiva de los wspacios de trabajo matemático [The role of the teacher from the perspective of mathematical working spaces]. Bolema, 30(54). https://doi.org/10.1590/1980-4415v30n54a01
- Guzmán Retamal, I., Pino-Fan, L. R., & Arredondo, E. H. (2020). Paradojas didácticas observadas en la gestión de los teoremas de Euclides [Didactic paradoxes observed in the management of Euclid’s theorems]. Bolema, 34(67), 651-677. https://doi.org/10.1590/1980-4415v34n67a15
- Henríquez-Rivas, C., & Kuzniak, A. (2021). Profundización en el trabajo geométrico de futuros profesores en entornos tecnológicos y de lápiz y papel [Deepening the geometric work of future teachers in technological environments and pencil and paper]. Bolema, 35(71), 1550-1572. https://doi.org/10.1590/1980-4415v35n71a15
- Henríquez-Rivas, C., & Verdugo-Hernández, P. (2023). Diseño de tareas en la formación inicial docente de matemáticas que involucran las representaciones de una función [Design of tasks in the initial training of mathematics teachers that involve the representations of a function]. Educación Matemática, 35(3), 178-208. https://doi.org/10.24844/EM3503.06
- Henríquez-Rivas, C., & Vergara-Gómez, A. (2025). Design and validation of a questionnaire to explore the geometric work of mathematics teachers. European Journal of Science and Mathematics Education, 13(2), 103-118. https://doi.org/10.30935/scimath/16161
- Henríquez-Rivas, C., Kuzniak, A., & Masselin, B. (2022). The idoine or suitable MWS as an essential transition stage between personal and reference mathematical work. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 121–146). Springer. https://doi.org/10.1007/978-3-030-90850-8_6
- Henríquez-Rivas, C., Ponce, R., Carrillo, J., Climent, N., & Espinoza-Vásquez, G. (2021). Trabajo matemático de un profesor basado en tareas y ejemplos propuestos para la enseñanza [Mathematical work of a teacher based on tasks and examples proposed for teaching]. Enseñanza de las Ciencias, 39(2), 123–142. https://doi.org/10.5565/rev/ensciencias.3210
- Herbst, P., Cheah, U. H., Richard, P. R., & Keith, J. (2018). International perspectives on the teaching and learning of geometry in secondary schools. Springer. https://doi.org/10.1007/978-3-319-77476-3
- Houdement, C., & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour létude de l’enseignement de la géométrie en formation des maîtres [An example of a conceptual framework for the study of geometry teaching in teacher training]. Educational Studies in Mathematics, 40, 283-312. https://doi.org/10.1023/A:1003851228212
- Jones, K., & Tzekaki, M. (2016). Research on the teaching and learning of geometry. In G. Gutiérrez, C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education: The journey continues (pp. 109-149). Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_4
- Kıyıcı, O. D., & Dikkartın Övez, F. T. (2025). Mathematical working spaces in the mathematical modeling cycle: The case of preservice elementary mathematics teachers. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-025-10443-8
- Kuzniak, A. (2011). L’espace de travail mathématique et ses genèses [The mathematical working space and its geneses]. Annales de Didactique et de Sciences Cognitives, 16, 9-24.
- Kuzniak, A. (2018). Thinking about the teaching of geometry through the lens of the theory of geometric working spaces. In P. Herbst, U. Cheah, P. Richard, & K. Jones (Eds.), International perspectives on the teaching and learning of geometry in secondary schools. ICME-13 monographs (pp. 5-21). Springer. https://doi.org/10.1007/978-3-319-77476-3_2
- Kuzniak, A. (2022). The theory of mathematical working spaces—Theoretical characteristics. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 3-31). Springer. https://doi.org/10.1007/978-3-030-90850-8_1
- Kuzniak, A., & Nechache, A. (2021). On forms of geometric work: A study with pre-service teachers based on the theory of mathematical working spaces. Educational Studies in Mathematics, 106(2), 271-289. https://doi.org/10.1007/s10649-020-10011-2
- Kuzniak, A., & Richard, P. (2014). Espacios de trabajo matemático. Puntos de vista y perspectivas [Mathematical working spaces. Points of view and perspectives]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(4-I), 5-15. https://doi.org/10.12802/relime.13.1741a
- Kuzniak, A., Montoya Delgadillo, E., & Richard, P. (2022). Mathematical work in educational context: The perspective of the theory of mathematical working spaces. Springer. https://doi.org/10.1007/978-3-030-90850-8
- Kuzniak, A., Nechache, A., & Drouhard, J. P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48, 861-874. https://doi.org/10.1007/s11858-016-0773-0
- Lagrange, J. B., & Richard, P. (2022). Instrumental genesis in the theory of MWS: Insight from didactic research on digital artifacts. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 211-228). Springer. https://doi.org/10.1007/978-3-030-90850-8_9
- Legendre, P. (2005). Species associations: The Kendall coefficient of concordance revisited. Journal of Agricultural, Biological, and Environmental Statistics, 10(2), 226-245. https://doi.org/10.1198/108571105x46642
- MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. https://doi.org/10.1037/1082-989X.1.2.130
- Magaña Medina, D. E., Hernández-Mena, V., Aguilar Morales, N., & Sánchez Escobedo, P. A. (2023). Apoyo de pares y expectativas de resultado en STEM: Desarrollo y validación de un instrumento [Peer support and outcome expectations in STEM: Development and validation of an instrument]. Revista Electrónica de Investigación Educativa, 25, Article e06. https://doi.org/10.24320/redie.2023.25.e06.4274
- Martin, V., Thibault, M., & Homier, M. (2022). Convergence and divergence in probability teaching in elementary and secondary school in Québec: A closer look at eight teachers’ self-reported practices. Canadian Journal of Science, Mathematics and Technology Education, 22, 659-678. https://doi.org/10.1007/s42330-022-00241-2
- Menares-Espinoza, R., & Vivier, L. (2022). Personal mathematical work and personal MWS. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 91-120). Springer. https://doi.org/10.1007/978-3-030-90850-8_5
- Mineduc. (2015). Bases curriculares 7º básico a 2º medio [Curriculum bases 7th grade to 2nd grade]. Ministry of Education of Chile. https://media.mineduc.cl/
- Montoya-Delgadillo, E. Mena-Lorca, A., & Mena-Lorca, J. (2014). Circulaciones y génesis en el espacio de trabajo matemático [Circulations and genesis in the mathematical working space]. Relime, 17(4-I), 181-197. https://doi.org/10.12802/relime.13.1749
- Montoya-Delgadillo, E., & Reyes-Avendaño, C. (2022). The reference mathematical working space. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 73-90). Springer. https://doi.org/10.1007/978-3-030-90850-8_4
- Montoya-Delgadillo, E., & Vivier, L. (2016). Mathematical working space and paradigms as an analysis tool for the teaching and learning of analysis. ZDM Mathematics Education, 48, 739-754. https://doi.org/10.1007/s11858-016-0777-9
- Morales, H. (2018). Influencia de un proceso de formación de profesores en el sistema de enseñanza del concepto de área en estudiantes de pedagogía en matemáticas, un estudio de caso [Influence of a teacher training process on the teaching system in the concept of area in mathematics pedagogy students, a case study]. Bolema, 32(62), 1050-1067. https://doi.org/10.1590/1980-4415v32n62a15
- Nechache, A. (2017). La catégorisation des tâches et du travailleur-sujet: Un outil méthodologique pour l’étude du travail mathématique dans le domaine des probabilités [Task and worker-subject categorization: A methodological tool for the study of mathematical work in the field of probability]. Annales de Didactique et de Sciences Cognitives, 19, 67-90. https://doi.org/10.4000/adsc.709
- Nechache, A., & Gómez-Chacón, I. M. (2022). Methodological aspects in the theory of mathematical working spaces. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 33-56), Springer. https://doi.org/10.1007/978-3-030-90850-8_2
- Olfos Ayarza, R., Goldrine Godoy, T., Morales Candia, S., Estrella, S., Morales Ibarra, G., Pinto Wong, A., & Reyes Santander, P. (2022). Pauta para evaluar la dimensión práctica de la capacidad de enseñanza de la matemática en maestras de infantil en formación [Pauta to evaluate the practical dimension of the ability to teach mathematics in childhood educators in training]. PNA–Revista de Investigación en Didáctica de la Matemática, 16(4), 343-364. https://doi.org/10.30827/pna.v16i4.22125
- Özdemir, F., Ilhan, A., & Aslaner, R. (2024). The effect of ACE cycle based instruction on geometry self-efficacy beliefs in polygons learning area. Learning and Motivation, 86, Article 101985. https://doi.org/10.1016/j.lmot.2024.101985
- Panqueban, D., Henríquez-Rivas, C., & Kuzniak, A. (2024). Advances and trends in research on mathematical working spaces: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 20(6), Article em2450. https://doi.org/10.29333/ejmste/14588
- Penfield, R. D., & Giacobbi, Jr., P. R. (2004). Applying a score confidence interval to Aiken’s item content-relevance index. Measurement in Physical Education and Exercise Science, 8(4), 213-225. https://doi.org/10.1207/s15327841mpee0804_3
- Pincheira-Hauck, N., & Vásquez-Ortiz, C. (2018). Conocimiento didáctico-matemático para la enseñanza de la matemática elemental en futuros profesores de educación básica: Diseño, construcción y validación de un instrumento de evaluación [Didactic-mathematical knowledge for teaching elementary mathematics in future teachers of basic education: Design, construction and validation of an evaluation instrument]. Estudios Pedagógicos, 44(1), 25-48. https://doi.org/10.4067/s0718-07052018000100025
- Prieto-González, J. L., & Gutiérrez-Araujo, R. E. (2024). Geometry learning with dynamic software in pre-service mathematics teacher education: A systematic review. Education and Information Technologies, 29, 22499-22519. https://doi.org/10.1007/s10639-024-12756-2
- Richard, P., Venant, F., & Gagnon, M. (2019). Issues and challenges in instrumental proof. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof technology in mathematics research and teaching. Mathematics education in the digital era, vol. 14 (pp. 139-172), Springer. https://doi.org/10.1007/978-3-030-28483-1_7
- Richard, P. (2004). Raisonnement et stratégies de preuve dans l’enseignement des mathématiques [Reasoning and proof strategies in mathematics education]. Peter Lang.
- Seguí, J. F., & Alsina, Á. (2023). Evaluando el conocimiento especializado para enseñar estadística y probabilidad: Elaboración y validación del cuestionario MTSK-estocástico [Assessing specialized knowledge for teaching statistics and probability: Development and validation of the MTSK-stochastic questionnaire]. Uniciencia, 37(1), 84-105. https://doi.org/10.15359/ru.37-1.5
- Sierpinska, A. (2004). Research in mathematics education through a keyhole: Task problematization. For the Learning of Mathematics, 24(2), 7-15.
- Sinclair, N., Bartolini Bussi, M., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2017). Geometry education, including the use of new technologies: A survey of recent research. In G. Kaiser (Eds.), Proceedings of the 13th International Congress on Mathematical Education (pp. 277-287), Springer. https://doi.org/10.1007/978-3-319-62597-3_18
- Skjong R., & Wentworth, B. H. (2001). Expert judgement and risk perception. In Proceedings of the 11th International Offshore and Polar Engineering Conference (pp. 537-544).
- Stylianides, G., Stylianides, A., & Moutsios Rentzos, A. (2024). Proof and proving in school and university mathematics education research: A systematic review. ZDM Mathematics Education, 56, 47-59. https://doi.org/10.1007/s11858-023-01518-y
- Sunzuma, G., & Maharaj, A. (2020). In-service secondary teachers’ teaching approaches and views towards integrating ethnomathematics approaches into geometry teaching. Bolema, 34(66), 22-39. https://doi.org/10.1590/1980-4415v34n66a02
- Tachie, S.A. (2020). The challenges of South African teachers in teaching Euclidean geometry. International Journal of Learning, Teaching and Educational Research, 19(8), 297-312. https://doi.org/10.26803/ijlter.19.8.16
- Villa-Ochoa, J. A., & Suárez-Téllez, L. (2022). Computer algebra systems and dynamic geometry for mathematical thinking. In M. Danesi (Eds.), Handbook of cognitive mathematics (pp. 843-868). Springer. https://doi.org/10.1007/978-3-031-03945-4_36
- Vízek, L., Samková, L., & Star, J. R. (2024). Assessing the quality of conceptual knowledge through dynamic constructions. Educational Studies in Mathematics, 117, 67-191. https://doi.org/10.1007/s10649-024-10349-x
- Weigand, H. G., Hollebrands, K., & Maschietto, M. (2025). Geometry education at secondary level–A systematic literature review. ZDM Mathematics Education, 57, 829-843. https://doi.org/10.1007/s11858-025-01703-1
- Yang, X., Kaiser, G., König, J., & Blömeke, S. (2020). Relationship between pre-service mathematics teachers’ knowledge, beliefs and instructional practices in China. ZDM Mathematics Education, 52, 281-294. https://doi.org/10.1007/s11858-020-01145-x
- Zakaryan, D., & Sosa, L. (2021). Conocimiento del profesor de secundaria de la práctica matemática en clases de geometría [High school teacher’s knowledge of mathematical practice in geometry classes]. Educación Matemática, 33(1), 71-97. https://doi.org/10.24844/em3301.03
- Zhang, Y., Xin, J.J., Yu, Z., Liu, Y., Zhao, W., Li, N., & Chen, G. (2025). Enhancing preservice teachers’ use of dialogic teaching and dynamic visualizations in mathematics classes: Bridging the knowing-doing gap. International Journal of Science and Mathematics Education, 23, 1793-1823. https://doi.org/10.1007/s10763-025-10558-7
- Zhu, J., Yeung, P. sze., & Hsieh, W. Y. (2021). Mathematical beliefs and self-reported practices of Chinese early childhood teachers in the context of teaching mathematics during block play. European Early Childhood Education Research Journal, 29(5), 747-763. https://doi.org/10.1080/1350293X.2021.1933118
How to cite this article
APA
Henríquez-Rivas, C., Vergara-Gómez, A., & González-Campos, J. (2026). Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument. Eurasia Journal of Mathematics, Science and Technology Education, 22(2), em2784. https://doi.org/10.29333/ejmste/17910
Vancouver
Henríquez-Rivas C, Vergara-Gómez A, González-Campos J. Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument. EURASIA J Math Sci Tech Ed. 2026;22(2):em2784. https://doi.org/10.29333/ejmste/17910
AMA
Henríquez-Rivas C, Vergara-Gómez A, González-Campos J. Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument. EURASIA J Math Sci Tech Ed. 2026;22(2), em2784. https://doi.org/10.29333/ejmste/17910
Chicago
Henríquez-Rivas, Carolina, Andrea Vergara-Gómez, and José González-Campos. "Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument". Eurasia Journal of Mathematics, Science and Technology Education 2026 22 no. 2 (2026): em2784. https://doi.org/10.29333/ejmste/17910
Harvard
Henríquez-Rivas, C., Vergara-Gómez, A., and González-Campos, J. (2026). Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument. Eurasia Journal of Mathematics, Science and Technology Education, 22(2), em2784. https://doi.org/10.29333/ejmste/17910
MLA
Henríquez-Rivas, Carolina et al. "Characterization of teacher profiles in teaching specific geometric topics based on a validated instrument". Eurasia Journal of Mathematics, Science and Technology Education, vol. 22, no. 2, 2026, em2784. https://doi.org/10.29333/ejmste/17910
Full Text (PDF)