Abstract
Geometry is an essential part of mathematics education and understanding effective strategies for learning geometry is increasingly important. This study presents a combination of bibliometric and systematic review of research on geometry learning strategies, analysing on publication trends, main contributors, research topics and citation networks over the past three decades. Utilizing data from the Web of Science database, we reviewed 730 articles, identifying key themes through co-citation analysis and three major clusters: (1) Foundations of mathematics education and research methodology, (2) Spatial ability, cognitive development and STEM learning and (3) Early spatial and mathematical development in education. The study reveals that spatial reasoning is very important for understanding mathematics and training in spatial skills helps to improve problem-solving skills and achievements in STEM subjects. However, four gaps in the research were identified: limited research from Africa and Latin America, lack of long-term studies on spatial training effects, limited integration of AI and digital tools and limited interdisciplinary integration with cognitive psychology and neuroscience. The novelty of this study lies in mapping thirty years of intellectual development in geometry education by combining bibliometric and systematic review methods, offering new insights for improving teaching strategies and future research directions.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
EURASIA J Math Sci Tech Ed, Volume 21, Issue 6, 2025, Article No: em2654
https://doi.org/10.29333/ejmste/16515
Publication date: 18 Jun 2025
Article Views: 58
Article Downloads: 29
Open Access References How to cite this articleReferences
- Agustiningsih, N., Susanto, & Yuliati, N. (2019). Student creative thinking process in solving geometry problems based on van hiele level. IOP Conference Series: Earth and Environmental Science, 243, Article 012126. https://doi.org/10.1088/1755-1315/243/1/012126
- Alkouri, Z. (2022). Developing spatial abilities in young children: Implications for early childhood education. Cogent Education, 9(1), Article 2083471. https://doi.org/10.1080/2331186X.2022.2083471
- Altintas, E., Ilgün, Ş., & Angay, M. (2022). İlköğretim Matematik Öğretmenlerinin Geometri Dersinin İşlenişi İle İlgili Görüşleri [The opinions of primary school mathematics teachers on the teaching of geometry lesson]. Artvin Çoruh Üniversitesi Uluslararası Sosyal Bilimler Dergisi, 8(1), 87-106. https://doi.org/10.22466/acusbd.1101910
- Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
- Arvanitaki, M., & Zaranis, N. (2020). The use of ICT in teaching geometry in primary school. Education and Information Technologies, 25(6), 5003-5016. https://doi.org/10.1007/s10639-020-10210-7
- Aydemir, G., Orbay, K., & Orbay, M. (2023). A bibliometric analysis of geometry education research based on Web of Science Core collection database. Shanlax International Journal of Education, 11(2). https://doi.org/10.34293/education.v11i2.4483
- Baker, H. K., Pandey, N., Kumar, S., & Haldar, A. (2020). A bibliometric analysis of board diversity: Current status, development, and future research directions. Journal of Business Research, 108, 232-246. https://doi.org/10.1016/j.jbusres.2019.11.025
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Barut, M. E. O., & Retnawati, H. (2020). Geometry learning in vocational high school: Investigating the students’ difficulties and levels of thinking. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012058
- Battista, M. T. (1990). Spatial visualization and gender differences in high school Geometry. Journal for Research in Mathematics Education, 21(1), 47-60. https://doi.org/10.2307/749456
- Battista, M. T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based classroom. Journal for Research in Mathematics Education, 30(4), 417-448. https://doi.org/10.2307/749708
- Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843-908). Information Age.
- Bizzaro, M., Giofrè, D., Girelli, L., & Cornoldi, C. (2018). Arithmetic, working memory, and visuospatial imagery abilities in children with poor geometric learning. Learning and individual differences, 62, 79-88. https://doi.org/10.1016/j.lindif.2018.01.013
- Boyack, K. W., & Klavans, R. (2010). Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404. https://doi.org/10.1002/asi.21419
- Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544. https://doi.org/10.1016/j.compedu.2013.02.017
- Casey, B. M., & Fell, H. (2018). Spatial reasoning: A critical problem-solving tool in children’s mathematics strategy tool-kit. In K. S. Mix, & M. T. Battista (Eds.), Visualizing mathematics (pp. 47-75). Springer International Publishing. https://doi.org/10.1007/978-3-319-98767-5_3
- Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269-309. https://doi.org/10.1080/07370000802177177
- Castro, P., Gómez, P., & Cañadas, M. C. (2022). Trends in learning and teaching of geometry: The case of the geometry and its applications meeting. International Electronic Journal of Mathematics Education, 17(4), Article em0715. https://doi.org/10.29333/iejme/12474
- Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Edition). Academic Press.
- Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12-26. https://doi.org/10.1016/j.cognition.2017.01.014
- Creswell, J. W. (2013). Research design qualitative, quantitative, and mixed methods approaches (3rd ed.). SAGE Publication.
- Crompton, H., & Ferguson, S. (2024). An analysis of the essential understandings in elementary geometry and a comparison to the common core standards with teaching implications. European Journal of Science and Mathematics Education, 12(2), 258-275. https://doi.org/10.30935/scimath/14361
- Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., Lackenby, M., Williamson, G., Hassabis, D., & Kohli, P. (2021). Advancing mathematics by guiding human intuition with AI. Nature, 600(7887), 70-74. https://doi.org/10.1038/s41586-021-04086-x
- Donnelly, R., & Patrinos, H. A. (2022). Learning loss during Covid-19: An early systematic review. Prospects, 51(4), 601-609. https://doi.org/10.1007/s11125-021-09582-6
- Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
- Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809-1831. https://doi.org/10.1007/s11192-015-1645-z
- Fernández-Méndez, L. M., Contreras, M. J., Mammarella, I. C., Feraco, T., & Meneghetti, C. (2020). Mathematical achievement: The role of spatial and motor skills in 6–8 year-old children. PeerJ, 8. https://doi.org/10.7717/peerj.10095
- Flores-Bascuñana, M., Diago, P. D., Villena-Taranilla, R., & Yáñez, D. F. (2019). On augmented reality for the learning of 3D-geometric contents: A preliminary exploratory study with 6-grade primary students. Education Sciences, 10(1) Article 4. https://doi.org/10.3390/educsci10010004
- Galitskaya, V., & Drigas, A. (2023). Mobiles & ICT based interventions for learning difficulties in geometry. International Journal of Engineering Pedagogy, 13(4), 21-36. https://doi.org/10.3991/ijep.v13i4.36309
- Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gotlieb, H., Kronitz, R., Hockenberry, M., & Tannock, R. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: A randomized controlled trial. Journal of Child Psychology and Psychiatry, 53(12), 1277-1284. https://doi.org/10.1111/j.1469-7610.2012.02592.x
- Grouws, D. A. (1992). Handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics. Macmillan Publishing Co, Inc.
- Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229-1241. https://doi.org/10.1037/a0027433
- Hasumi, T., & Chiu, M.-S. (2022). Online mathematics education as bio-eco-techno process: Bibliometric analysis using co-authorship and bibliographic coupling. Scientometrics, 127(8), 4631-4654. https://doi.org/10.1007/s11192-022-04441-3
- Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236-264. https://doi.org/10.1080/07370008.2017.1323902
- Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684-689. https://doi.org/10.1037/0022-0663.91.4.684
- Henríquez-Rivas, C., & Vergara-Gómez, A. (2025). Design and validation of a questionnaire to explore the geometric work of mathematics teachers. European Journal of Science and Mathematics Education, 13(2), 103-118. https://doi.org/10.30935/scimath/16161
- Huang, X., Huang, R., & Bosch, M. (2021). Analyzing a teacher’s learning through cross-cultural collaboration: a praxeological perspective of mathematical knowledge for teaching. Educational Studies in Mathematics, 107(3), 427-446. https://doi.org/10.1007/s10649-021-10057-w
- Hung, P.-H., Hwang, G.-J., Lee, Y.-H., & Su, I.-H. (2012). A cognitive component analysis approach for developing game-based spatial learning tools. Computers & Education, 59(2), 762-773. https://doi.org/10.1016/j.compedu.2012.03.018
- Ismail, S. A. S., Maat, S. M., & Khalid, F. (2024). 35 years of fraction learning: Integrating systematic review and bibliometric analysis on a global scale. Eurasia Journal of Mathematics, Science and Technology Education, 20(12), Article em2543. https://doi.org/10.29333/ejmste/15657
- Jablonski, S., & Ludwig, M. (2023). Teaching and learning of geometry—A literature review on current developments in theory and practice. Education Sciences, 13(7), Article 682. https://doi.org/10.3390/educsci13070682
- Judd, N., & Klingberg, T. (2021). Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nature Human Behaviour, 5(11), 1548-1554. https://doi.org/10.1038/s41562-021-01118-4
- Julius, R., Halim, M. S. A., Hadi, N. A., Alias, A. N., Khalid, M. H. M., Mahfodz, Z., & Ramli, F. F. (2021). Bibliometric analysis of research in mathematics education using scopus database. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), Article em2040. https://doi.org/10.29333/EJMSTE/11329
- Juman, Z. A. M. S., Mathavan, M., Ambegedara, A. S., & Udagedara, I. G. K. (2022). Difficulties in learning geometry component in mathematics and active-based learning methods to overcome the difficulties. Shanlax International Journal of Education, 10(2), 41-58. https://doi.org/10.34293/education.v10i2.4299
- Kumar, S., Tomar, S., & Verma, D. (2019). Women’s financial planning for retirement. International Journal of Bank Marketing, 37(1), 120-141. https://doi.org/10.1108/IJBM-08-2017-0165
- Kuzle, A., Glasnović Gracin, D., & Krišto, A. (2023). Depicting classroom social climate: Using drawings to examine primary students’ perceptions of geometry teaching and learning practices. International Electronic Journal of Mathematics Education, 18(4), Article em0757. https://doi.org/10.29333/iejme/13743
- Laborde, C. (2015). Teaching and learning geometry. In The Proceedings of the 12th International Congress on Mathematical Education (pp. 431-436). Springer International Publishing. https://doi.org/10.1007/978-3-319-12688-3_35
- Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940-949. https://doi.org/10.1037/0012-1649.35.4.940
- Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48(2), 530-542. https://doi.org/10.1037/a0025913
- Li, K., Rollins, J., & Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1). https://doi.org/10.1007/s11192-017-2622-5
- Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Source: Child Development, 56(6), 1479-1498. https://doi.org/10.1111/j.1467-8624.1985.tb00213.x
- Liu, J., Ni, B., Chen, Y., Yu, Z., & Wang, H. (2023). Learning by restoring broken 3D geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9), 11024-11039. https://doi.org/10.1109/TPAMI.2023.3263867
- Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170-186. https://doi.org/10.1111/bjep.12142
- Lu’luilmaknun, U., Salsabila, N. H., Triutami, T. W., Novitasari, D., & Junaidi. (2021). The use of technology in learning geometry. Journal of Physics: Conference Series, 1778(1). https://doi.org/10.1088/1742-6596/1778/1/012030
- Md Sabri, S., Ismail, I., Annuar, N., Abdul Rahman, N. R., Abd Hamid, N. Z., & Abd Mutalib, H. (2024). A conceptual analysis of technology integration in classroom instruction towards enhancing student engagement and learning outcomes. International Journal of Education, Psychology and Counseling, 9(55), 750-769. https://doi.org/10.35631/IJEPC.955051
- Mifetu, R. K. (2023). Using activity method to address students’ problem-solving difficulties in circle geometry. Contemporary Mathematics and Science Education, 4(1), Article ep23016. https://doi.org/10.30935/conmaths/13079
- Mistretta, R. M. (2000). Enhancing geometric reasoning. Adolescene, 35(138), 365-379.
- Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math. developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (Vol. 42, pp. 197-243). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394388-0.00006-X
- Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Supplemental material for separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206-1227. https://doi.org/10.1037/xge0000182.supp
- Moè, A. (2016). Teaching motivation and strategies to improve mental rotation abilities. Intelligence, 59, 16-23. https://doi.org/10.1016/j.intell.2016.10.004
- Möhring, W., Ribner, A. D., Segerer, R., Libertus, M. E., Kahl, T., Troesch, L. M., & Grob, A. (2021). Developmental trajectories of children’s spatial skills: Influencing variables and associations with later mathematical thinking. Learning and Instruction, 75, Article 101515. https://doi.org/10.1016/j.learninstruc.2021.101515
- Muzaini, M., Rahayuningsih, S., Ikram, M., & Nasiruddin, F. A.-Z. (2023). Mathematical creativity: Student geometrical figure apprehension in geometry problem-solving using new auxiliary elements. International Journal of Educational Methodology, 9(1), 139-150. https://doi.org/10.12973/ijem.9.1.139
- National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. NCTM.
- National Mathematics Advisory Panel. (2008). The final report of the National Mathematics Advisory Panel 2008 U.S. Department of Education. https://www.ed.gov/
- Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179-192). Springer Netherlands. https://doi.org/10.1007/978-94-017-9297-4_10
- Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (Second edition, Vol. 27, pp. 27-42). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.004
- Paas, F., & van Merriënboer, J. J. G. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4), 394-398. https://doi.org/10.1177/0963721420922183
- Polasek, V., & Sedlacek, L. (2015). Dynamic geometry environments as cognitive tool in mathematics education. Journal of Technology and Information, 7(2), 45-54. https://doi.org/10.5507/jtie.2015.017
- Puig, A., Rodríguez, I., Baldeón, J., & Múria, S. (2022). Children building and having fun while they learn geometry. Computer Applications in Engineering Education, 30(3), 741-758. https://doi.org/10.1002/cae.22484
- Ramdhani, M. R., Usodo, B., & Subanti, S. (2017). Discovery learning with scientific approach on geometry. Journal of Physics: Conference Series, 895, Article 012033. https://doi.org/10.1088/1742-6596/895/1/012033
- Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to spatial abilities as a function of working memory in children. Quarterly Journal of Experimental Psychology, 65(3), 474-487. https://doi.org/10.1080/17470218.2011.616214
- Rivella, C., Cornoldi, C., Caviola, S., & Giofrè, D. (2021). Learning a new geometric concept: The role of working memory and of domain-specific abilities. British Journal of Educational Psychology, 91(4), 1537-1554. https://doi.org/10.1111/bjep.12434
- Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. Routledge. https://doi.org/10.4324/9780203883785
- Seah, R. (2015). Reasoning with geometric shapes. Australian Mathematics Teacher, 71(2), 4-11.
- Serin, H. (2018). Perspectives on the teaching of geometry: Teaching and learning methods. Journal of Education and Training, 5(1). https://doi.org/10.5296/jet.v5i1.12115
- Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604-614. https://doi.org/10.1037/0022-0663.93.3.604
- Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 32(9), 701-703. https://doi.org/10.1126/science.171.3972.701
- Shi, L., Dong, L., Zhao, W., & Tan, D. (2023). Improving middle school students’ geometry problem solving ability through hands-on experience: An fNIRS study. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1126047
- Silva, M. C. L. da. (2022). Geometria escolar nos anos iniciais: uma história de movimentos em parceria com o desenho [School geometry in the earl years: A history of movements in partnership with drawing]. Zetetike, 30. https://doi.org/10.20396/zet.v30i00.8667515
- Simonetti, M., Perri, D., Amato, N., & Gervasi, O. (2020). Teaching math with the help of virtual reality. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, T. Eufemia, T. C. Maria, & K. Yeliz (Eds.), Computational Science and Its Applications – International Conference Computation Science 2020 (Vol. 12255, pp. 799-809). Springer. https://doi.org/10.1007/978-3-030-58820-5_57
- Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 48(5), 691-719. https://doi.org/10.1007/s11858-016-0796-6
- Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2017). Geometry education, including the use of new technologies: A survey of recent research. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on Mathematical Education (pp. 277-287). Springer. https://doi.org/10.1007/978-3-319-62597-3_18
- Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20-29. https://doi.org/10.1016/j.lindif.2013.03.010
- Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in spatial problem solving in a stem domain. Journal of Educational Psychology, 106(2), 390-402. https://doi.org/10.1037/a0034823
- Su, Y.-S., Cheng, H.-W., & Lai, C.-F. (2022). Study of virtual reality immersive technology enhanced mathematics geometry learning. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.760418
- Sunzuma, G. (2023). Technology integration in geometry teaching and learning. LUMAT: International Journal on Math, Science and Technology Education, 11(3). https://doi.org/10.31129/LUMAT.11.3.1938
- Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K. (2011). Co-citation analysis: An overview. In B. S. Kademi, A. N. Bandi, S. Sirurmath, M. Angadi, I. C. Bandi, T. Shah, & S. Rao (Eds.), Beyond librarianship: Creativity, innovation and discovery (pp. 179-185). B.R. Publishing Corporation.
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Allyn & Bacon/Pearson Education.
- Talan, G., & Sharma, G. D. (2019). Doing well by doing good: A systematic review and research agenda for sustainable investment. Sustainability, 11(2), Article 353. https://doi.org/10.3390/su11020353
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375
- Trujillo, C. M., & Long, T. M. (2018). Document co-citation analysis to enhance transdisciplinary research. Science Advances, 4(1). https://doi.org/10.1126/sciadv.1701130
- Tsay, M.-Y. (2009). Citation analysis of Ted Nelson’s works and his influence on hypertext concept. Scientometrics, 79(3), 451-472. https://doi.org/10.1007/s11192-008-1641-7
- Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education. When, why, and how? In B. H. Ross (Ed.), Psychology of learning and motivation - advances in research and theory (Vol. 57, pp. 147-181). https://doi.org/10.1016/B978-0-12-394293-7.00004-2
- Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402. https://doi.org/10.1037/a0028446
- Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57-86. https://doi.org/10.1207/s1532690xci2301_3
- Van Hiele, P. M. (1986). Structure and insight. A theory of mathematics education. Academic Press.
- Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotation, a group test of three-dimensional spatial visualizations. Perceptual and Motor Skills, 47(2), 599-604. https://doi.org/10.2466/pms.1978.47.2.599
- Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062-1076. https://doi.org/10.1111/cdev.12165
- Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250-270. https://doi.org/10.1037/0033-2909.117.2.250
- Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817-835. https://doi.org/10.1037/a0016127
- Wang, J., Wen, M.-L., & Jou, M. (2016). Identifying students’ difficulties when learning technical skills via a wireless sensor network. Interactive Learning Environments, 24(3), 396-408. https://doi.org/10.1080/10494820.2013.851091
- Wei, R. (2024). Advances in geometry: A review of recent developments. Global Journal of Mathematics and Statistic, 1, 10-18.
- Yang, J. C., & Chen, S. Y. (2010). Effects of gender differences and spatial abilities within a digital pentominoes game. Computers & Education, 55(3), 1220-1233. https://doi.org/10.1016/j.compedu.2010.05.019
- Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A meta-analysis. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.01938
- Yi, M., Flores, R., & Wang, J. (2020). Examining the influence of van Hiele theory-based instructional activities on elementary preservice teachers’ geometry knowledge for teaching 2-D shapes. Teaching and Teacher Education, 91, Article 103038. https://doi.org/10.1016/j.tate.2020.103038
- Young, C., Levine, S. C., & Mix, K. S. (2018). What processes underlie the relation between spatial skill and mathematics? In K. S. Mix, & M. T. Battista (Eds.), Visualizing mathematics the role of spatial reasoning in mathematical thought (pp. 117-148). Springer. https://doi.org/10.1007/978-3-319-98767-5_5
- Zhang, W., & Chen, J. (2023). Policies of STEM education from the perspective of international comparison. International Journal of New Developments in Education, 5(8), 37-43. https://doi.org/10.25236/IJNDE.2023.050807
- Zhang, Y., Wang, P., Jia, W., Zhang, A., & Chen, G. (2025). Dynamic visualization by GeoGebra for mathematics learning: a meta-analysis of 20 years of research. Journal of Research on Technology in Education, 57(2), 437-458. https://doi.org/10.1080/15391523.2023.2250886
- Zhou, P., Cai, X., & Lyu, X. (2020). An in-depth analysis of government funding and international collaboration in scientific research. Scientometrics, 125(2), 1331-1347. https://doi.org/10.1007/s11192-020-03595-2
- Ziatdinov, R., & Valles, J. R. (2022). Synthesis of modeling, visualization, and programming in GeoGebra as an effective approach for teaching and learning STEM topics. Mathematics, 10(3), Article 398. https://doi.org/10.3390/math10030398
- Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629
How to cite this article
APA
Almubarak, M., Maat, S. M., & Mahmud, M. S. (2025). Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 21(6), em2654. https://doi.org/10.29333/ejmste/16515
Vancouver
Almubarak M, Maat SM, Mahmud MS. Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review. EURASIA J Math Sci Tech Ed. 2025;21(6):em2654. https://doi.org/10.29333/ejmste/16515
AMA
Almubarak M, Maat SM, Mahmud MS. Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review. EURASIA J Math Sci Tech Ed. 2025;21(6), em2654. https://doi.org/10.29333/ejmste/16515
Chicago
Almubarak, Musfirah, Siti Mistima Maat, and Muhammad Sofwan Mahmud. "Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review". Eurasia Journal of Mathematics, Science and Technology Education 2025 21 no. 6 (2025): em2654. https://doi.org/10.29333/ejmste/16515
Harvard
Almubarak, M., Maat, S. M., and Mahmud, M. S. (2025). Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 21(6), em2654. https://doi.org/10.29333/ejmste/16515
MLA
Almubarak, Musfirah et al. "Evolving three decades of geometry learning strategies: A combination of bibliometric analysis and systematic review". Eurasia Journal of Mathematics, Science and Technology Education, vol. 21, no. 6, 2025, em2654. https://doi.org/10.29333/ejmste/16515