Abstract
This paper reports some experiments on probabilistic reasoning designed to investigate the impact of the probabilistic problem presentation format (verbal-numerical and graphical-pictorial) on subjects’ confidence in the correctness of their performance, other than the calibration between confidence and accuracy. To understand the potential effect of the format, these dimensions were assessed by monitoring contextual and individual variables: time pressure, numerical and visuospatial abilities, statistical anxiety and attitudes towards statistics. The participants included 257 Psychology students without statistical knowledge, recruited from Italian and Spanish universities, who fulfilled self-report validated measures. The students expressed their retrospective judgments of confidence item-by-item in relation to each probabilistic problem. This approach enabled the computation of two measures of calibration (the Bias Index - the Confidence-Judgment Accuracy Quotient). The results indicated that the problem presentation format did not exert a significant main effect on confidence, with the exception of when the interaction between the format and one subscale of the attitudes towards the statistics test was considered. The Bias Index, however, was significantly related to the interaction between format and time pressure. The study offers a point of reflection in relation to the potential effect exerted by the problem format and time constraint in calibration.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EURASIA J Math Sci Tech Ed, Volume 16, Issue 2, February 2020, Article No: em1820
https://doi.org/10.29333/ejmste/113111
Publication date: 09 Dec 2019
Article Views: 2795
Article Downloads: 1334
Open Access References How to cite this articleReferences
- Agasisti, T., & Cordero-Ferrera, J. M. (2013). Educational disparities across regions: A multilevel analysis for Italy and Spain. Journal of Policy Modeling, 35(6), 1079-1102. https://doi.org/10.1016/j.jpolmod.2013.07.002.
- Agasisti, T., & Pérez-Esparrells, C. (2010). Comparing efficiency in a cross-country perspective: the case of Italian and Spanish state universities. Higher Education, 59(1), 85-103. https://doi.org/10.1007/s10734-009-9235-8.
- Agus, M., Penna, M. P., Peró-Cebollero, M., & Guàrdia-Olmos, J. (2016). Assessing Probabilistic Reasoning in Verbal-Numerical and Graphical-Pictorial Formats: An Evaluation of the Psychometric Properties of an Instrument. Eurasia Journal of Mathematics, Science & Technology Education, 12(8), 2013–2038. https://doi.org/10.12973/eurasia.2016.1265a.
- Agus, M., Peró-Cebollero, M., Guàrdia-Olmos, J., Pessa, E., Figus, R., & Penna, M. (2019). A Comparison of Probabilistic Reasoning in Psychology Undergraduates in Italy and Spain: Seeking Cross-national Evidence. Eurasia Journal of Mathematics, Science and Technology Education, 15(10). https://doi.org/10.29333/ejmste/106232.
- Agus, M., Peró-Cebollero, M., Penna, M. P., & Guàrdia-Olmos, J. (2015a). Towards the development of problems comparing verbal-numerical and graphical formats in statistical reasoning. Quality and Quantity, 49(2), 691–709. https://doi.org/10.1007/s11135-014-0018-7.
- Agus, M., Peró-Cebollero, M., Penna, M. P., & Guàrdia-Olmos, J. (2015b). Comparing Psychology Undergraduates’ Performance in Probabilistic Reasoning under Verbal-Numerical and Graphical-Pictorial Problem Presentation Format: What is the Role of Individual and Contextual Dimensions? Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 735–750. https://doi.org/10.12973/eurasia.2015.1382a.
- Alexander, P. A. (2013). Calibration: What is it and why it matters? An introduction to the special issue on calibrating calibration. Learning and Instruction, 24(1), 1-3. https://doi.org/10.1016/j.learninstruc.2012.10.003.
- Ayal, S., & Beyth-Marom, R. (2014). The effects of mental steps and compatibility on Bayesian reasoning. Judgment and Decision Making, 9(3), 226-242.
- Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “Choking under pressure” in math. Psychological Science, 16(2), 101-105. https://doi.org/10.1111/j.0956-7976.2005.00789.x.
- Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the Fragility of Performance: Choking Under Pressure in Mathematical Problem Solving. Journal of Experimental Psychology: General, 133(4), 584-600. https://doi.org/10.1037/0096-3445.133.4.584.
- Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Learning and Instruction, 7(2), 161-186. https://doi.org/10.1016/S0959-4752(96)00015-1.
- Boekaerts, M., & Rozendaal, J. S. (2010). Using multiple calibration indices in order to capture the complex picture of what affects students’ accuracy of feeling of confidence. Learning and Instruction, 20(5), 372-382. https://doi.org/10.1016/j.learninstruc.2009.03.002.
- Bol, L., & Hacker, D. J. (2001). A comparison of the effects of practice tests and traditional review on performance and calibration. Journal of Experimental Education, 69(2), 133–151. https://doi.org/10.1080/00220970109600653.
- Bol, L., Hacker, D. J., O’Shea, P., & Allen, D. (2005). The Influence of Overt Practice, Achievement Level, and Explanatory Style on Calibration Accuracy and Performance. Journal of Experimental Education, 73(4), 269-290. https://doi.org/10.3200/JEXE.73.4.269-290.
- Brase, G. L. (2009). How different types of participant payments alter task performance. Judgment and Decision Making, 4(5), 419-428. https://doi.org/10.1111/j.1559-1816.1997.tb00644.x.
- Brase, G. L. (2009). Pictorial representations in statistical reasoning. Applied Cognitive Psychology, 23(3), 369-381. https://doi.org/10.1002/acp.1460.
- Brase, G. L., & Hill, W. T. (2015). Good fences make for good neighbors but bad science: a review of what improves Bayesian reasoning and why. Frontiers in Psychology, 6, 340. https://doi.org/10.3389/fpsyg.2015.00340.
- Buratti, S., & Allwood, C. M. (2015). Metacognition: Fundaments, Applications, and Trends. In A. Peña-Ayala (Ed.), Intelligent Systems Reference Library. https://doi.org/10.1007/978-3-319-11062-2.
- Carmona, J., Primi, C., & Chiesi, F. (2008). Testing for measurement invariance of the Survey of Attitudes Toward Statistics: A comparison of Italian and Spanish students. III European Congress of Methodology, Oviedo, Spain.
- Chiesi, F., & Primi, C. (2009). Assessing statistics attitudes among college students: Psychometric properties of the Italian version of the Survey of Attitudes toward Statistics (SATS). Learning and Individual Differences, 19(2), 309-313. https://doi.org/10.1016/j.lindif.2008.10.008.
- Chiesi, F., Primi, C., & Carmona, J. (2011). Measuring Statistics Anxiety. Cross-Country Validity of the Statistical Anxiety Scale (SAS). Journal of Psychoeducational Assessment, 29(6), 559-569. https://doi.org/10.1177/.
- 0734282911404985.
- Chiu, M. M., & Xihua, Z. (2008). Family and motivation effects on mathematics achievement: Analyses of students in 41 countries. Learning and Instruction, 18(4), 321-336. https://doi.org/10.1016/j.learninstruc.2007.06.003.
- Cohen, J. (1973). Eta-Squared and Partial Eta-Squared in Fixed Factor Anova Designs. Educational and Psychological Measurement, 33(1), 107-112. https://doi.org/10.1177/001316447303300111.
- Cohen, J. (1977). Statistical power analysis for the behavioral sciences, Rev. ed. In Statistical power analysis for the behavioral sciences, Rev. ed. Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
- Cokely, E., & Kelley, C. M. (2009). Cognitive abilities and superior decision making under risk: A protocol analysis and process model evaluation. Judgment and Decision Making, 4(1), 20-33.
- Colom, R., Contreras, M. J., Botella, J., & Santacreu, J. (2002). Vehicles of spatial ability. Personality and Individual Differences, 32(5), 903-912. https://doi.org/10.1016/S0191-8869(01)00095-2.
- Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58(1), 1-73. https://doi.org/10.1016/0010-0277(95)00664-8.
- Dauphinee, T. L., Schau, C., & Stevens, J. J. (1997). Survey of attitudes toward statistics: Factor structure and factorial invariance for women and men. Structural Equation Modeling: A Multidisciplinary Journal, 4(2), 129-141. https://doi.org/10.1080/10705519709540066.
- DeCaro, M. S., Thomas, R. D., Albert, N. B., & Beilock, S. L. (2011). Choking under pressure: Multiple routes to skill failure. Journal of Experimental Psychology: General, 140(3), 390-406. https://doi.org/10.1037/a0023466.
- Dinsmore, D. L., & Parkinson, M. M. (2013). What are confidence judgments made of? Students’ explanations for their confidence ratings and what that means for calibration. Learning and Instruction, 24(1), 4-14. https://doi.org/10.1016/j.learninstruc.2012.06.001.
- Dougherty, M. R., & Sprenger, A. (2006). The influence of improper sets of information on judgment: how irrelevant information can bias judged probability. Journal of Experimental Psychology: General, 135(2), 262-281. https://doi.org/10.1037/0096-3445.135.2.262.
- Dunlosky, J., & Thiede, K. W. (2013). Four cornerstones of calibration research: Why understanding students’ judgments can improve their achievement. Learning and Instruction, 24(1), 58-61. https://doi.org/10.1016/j.learninstruc.2012.05.002.
- Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13(4), 277-287. https://doi.org/10.1027/1016-9040.13.4.277.
- Evans, J. S. B. T., Handley, S. J., & Bacon, A. M. (2009). Reasoning Under Time Pressure. Experimental Psychology, 56(2), 77-83. https://doi.org/10.1027/1618-3169.56.2.77.
- Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532-538. https://doi.org/10.1037/a0015808.
- Frosch, C. A., & Johnson-Laird, P. N. (2011). Is everyday causation deterministic or probabilistic? Acta Psychologica, 137(3), 280-291. https://doi.org/10.1016/j.actpsy.2011.01.015.
- Gal, I., Garfield, J., & Gal, Y. (1997). The assessment challenge in statistics education (Vol. 12). IOS Press.
- Garcia-Retamero, R., & Cokely, E. (2013). Communicating Health Risks With Visual Aids. Current Directions in Psychological Science, 22(5), 392-399. https://doi.org/10.1177/0963721413491570.
- Garcia-Retamero, R., & Cokely, E. (2014). The Influence of Skills, Message Frame, and Visual Aids on Prevention of Sexually Transmitted Diseases. Journal of Behavioral Decision Making, 27(2), 179-189. https://doi.org/10.1002/bdm.1797.
- Garcia-Retamero, R., & Cokely, E. (2017). Designing Visual Aids That Promote Risk Literacy: A Systematic Review of Health Research and Evidence-Based Design Heuristics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 582-627. https://doi.org/10.1177/0018720817690634.
- Garcia-Retamero, R., Cokely, E., & Hoffrage, U. (2015). Visual aids improve diagnostic inferences and metacognitive judgment calibration. Frontiers in Psychology, 6, 932. https://doi.org/10.3389/fpsyg.2015.00932.
- Garcia-Retamero, R., & Hoffrage, U. (2013). Visual representation of statistical information improves diagnostic inferences in doctors and their patients. Social Science & Medicine (1982), 83, 27-33. https://doi.org/10.1016/j.socscimed.2013.01.034.
- Gardner, H. (1993). Multiple intelligences: The theory in practice. New York: Basic books.
- Ghazal, S., Cokely, E., & Garcia-Retamero, R. (2014). Predicting biases in very highly educated samples: Numeracy and metacognition. Judgment and Decision Making, 9(1), 15-34. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84893087076&partnerID=tZOtx3y1.
- Gimmig, D., Huguet, P., & Caverni, J.-P. (2006). Choking under pressure and working memory capacity: When performance pressure reduces fluid intelligence. Psychonomic Bulletin & Review, 13(6), 1005-1010.
- Girotto, V., & Gonzalez, M. (2001). Solving probabilistic and statistical problems: A matter of information structure and question form. Cognition, 78(3), 247-276. https://doi.org/10.1016/S0010-0277(00)00133-5.
- Glenberg, A. M., & Epstein, W. (1987). Inexpert calibration of comprehension. Memory & Cognition, 15(1), 84-93. https://doi.org/10.3758/BF03197714.
- Guàrdia-Olmos, J., Freixa, M., Peró, M., Turbany, J., Cosculluela, A., Barrios, M., & Rifà, X. (2006). Factors Related to the Academic Performance of Students in the Statistics Course in Psychology. Quality & Quantity, 40(4), 661-674. https://doi.org/10.1007/s11135-005-2072-7.
- Gutierrez, A. P., & Schraw, G. (2015). Effects of Strategy Training and Incentives on Students’ Performance, Confidence, and Calibration. Journal of Experimental Education, 83(3), 386-404. https://doi.org/10.1080/00220973.2014.907230.
- Gutierrez, A. P., Schraw, G., Kuch, F., & Richmond, A. S. (2016). A two-process model of metacognitive monitoring: Evidence for general accuracy and error factors. Learning and Instruction, 44, 1-10. https://doi.org/10.1016/j.learninstruc.2016.02.006.
- Hafenbrädl, S., & Hoffrage, U. (2015). Toward an ecological analysis of Bayesian inferences: how task characteristics influence responses. Frontiers in Psychology, 6, 939. Retrieved from http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00939.
- Hanoch, Y., & Vitouch, O. (2004). When less is more information, emotional arousal and the ecological reframing of the Yerkes-Dodson law. Theory & Psychology, 14(4), 427-452. https://doi.org/10.1177/0959354304044918.
- Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684-689. https://doi.org/10.1037/0022-0663.91.4.684.
- Iannello, P., Perucca, V., Riva, S., Antonietti, A., & Pravettoni, G. (2015). What do physicians believe about the way decisions are made? A pilot study on metacognitive knowledge in the medical context. Europe’s Journal of Psychology, 11(4), 691-706. https://doi.org/10.5964/ejop.v11i4.979.
- Jackson, S., & Kleitman, S. (2013). Individual differences in decision-making and confidence: Capturing decision tendencies in a fictitious medical test. Metacognition and Learning, 9(1), 25-49. https://doi.org/10.1007/s11409-013-9110-y.
- Jackson, S., & Kleitman, S. (2014). Individual differences in metacognitive feelings of confidence: The generality and predictive validity of judgement confidence and its calibration in a medical decision-making task. Personality and Individual Differences, 60(2014), S32. https://doi.org/10.1016/j.paid.2013.07.065.
- Jackson, S., Kleitman, S., Howie, P., & Stankov, L. (2016). Cognitive abilities, monitoring confidence, and control thresholds. Explain individual differences in heuristics and biases. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01559.
- Kellen, V., Chan, S., & Fang, X. (2013). Improving user performance in conditional probability problems with computer-generated diagrams. In Human-Computer Interaction. Users and Contexts of Use (pp. 183-192). New York: Springer.
- Kleiner, S. (2014). Subjective time pressure: general or domain specific? Social Science Research, 47, 108-120. https://doi.org/10.1016/j.ssresearch.2014.03.013.
- Lalonde, R. N., & Gardner, R. C. (1993). Statistics as a second language? A model for predicting performance in psychology students. Canadian Journal of Behavioural Science, 25(1), 108-125. https://doi.org/10.1037/h0078792.
- Lee, J. (2009). Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learning and Individual Differences, 19(3), 355-365. https://doi.org/10.1016/j.lindif.2008.10.009.
- Lichtenstein, S., & Fischhoff, B. (1977). Do those who know more also know more about how much they know? Organizational Behavior and Human Performance, 20(2), 159-183. https://doi.org/10.1016/0030-5073(77)90001-0.
- Lin, L.-M., & Zabrucky, K. M. (1998). Calibration of Comprehension: Research and Implications for Education and Instruction. Contemporary Educational Psychology, 23(4), 345-391. https://doi.org/10.1006/ceps.1998.0972.
- Lundeberg, M. A., Fox, P. W., & Punćochaŕ, J. (1994). Highly Confident but Wrong: Gender Differences and Similarities in Confidence Judgments. Journal of Educational Psychology, 86(1), 114-121. https://doi.org/10.1037/0022-0663.86.1.114.
- Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004). Disrupting feedback processing interferes with rule-based but not information-integration category learning. Memory & Cognition, 32(4), 582-591. https://doi.org/10.3758/BF03195849.
- Maloney, E. A., Waechter, S., Risko, E. F., & Fugelsang, J. A. (2012). Reducing the sex difference in math anxiety: The role of spatial processing ability. Learning and Individual Differences, 22(3), 380-384. https://doi.org/10.1016/j.lindif.2012.01.001.
- Markman, A. B., Maddox, W. T., & Worthy, D. A. (2006). Choking and excelling under pressure. Psychological Science, 17(11), 944-948. https://doi.org/10.1111/j.1467-9280.2006.01809.x.
- Mevel, K., Poirel, N. N., Rossi, S., Cassotti, M., Simon, G. G., Houdé, O., & De Neys, W. (2014). Bias detection: Response confidence evidence for conflict sensitivity in the ratio bias task. Journal of Cognitive Psychology, 27(2), 227-237. https://doi.org/10.1080/20445911.2014.986487.
- Moro, R., & Bodanza, G. A. (2010). El debate acerca del efecto facilitador en problemas de probabilidad condicional:¿ Un caso de experimentación crucial? Interdisciplinaria, 27(1), 163-174. Retrieved from http://www.scielo.org.ar/pdf/interd/v27n1/v27n1a11.pdf.
- Moro, R., Bodanza, G. A., & Freidin, E. (2011). Sets or frequencies? How to help people solve conditional probability problems. Journal of Cognitive Psychology, 23(7), 843-857. https://doi.org/10.1080/20445911.2011.579072.
- Morony, S., Kleitman, S., Lee, Y. P., & Stankov, L. (2013). Predicting achievement: Confidence vs self-efficacy, anxiety, and self-concept in Confucian and European countries. International Journal of Educational Research, 58, 79-96. https://doi.org/10.1016/j.ijer.2012.11.002.
- Nietfeld, J. L., & Schraw, G. (2002). The effect of knowledge and strategy training on monitoring accuracy. The Journal of Educational Research, 95(3), 131-142. https://doi.org/10.1080/00220670209596583.
- Okan, Y., Garcia-Retamero, R., Cokely, E., & Maldonado, A. (2015). Improving Risk Understanding Across Ability Levels: Encouraging Active Processing With Dynamic Icon Arrays. Journal of Experimental Psychology: Applied. https://doi.org/10.1037/xap0000045.
- Onwuegbuzie, A. J. (1995). Statistics test anxiety and female students. Psychology of Women Quarterly, 19(3), 413-418. https://doi.org/10.1111/j.1471-6402.1995.tb00083.x.
- Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs. Educational and Psychological Measurement, 64(6), 916-924. https://doi.org/10.1177/0013164404264848.
- Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. Academic Press.
- Primi, C., & Chiesi, F. (2016). Statistics anxiety: A mediator in learning probability. 13th International Congress on Mathematical Education, 1-7. Hamburg, July 24-31, 2016.
- Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. https://doi.org/10.1016/j.edurev.2010.12.001.
- Riva, S., Monti, M., & Antonietti, A. (2011). Simple heuristics in over-the-counter drug choices: a new hint for medical education and practice. Advances in Medical Education and Practice, 2, 59-70. https://doi.org/10.2147/AMEP.S13004.
- Rutherford, T. (2017). The measurement of calibration in real contexts. Learning and Instruction, 47, 33-42. https://doi.org/10.1016/j.learninstruc.2016.10.006.
- Schneider, W. R. (2011). The Relationship Between Statistics Self-Efficacy , Statistics Anxiety , and Performance in an Introductory Graduate Statistics Course. University of South Florida Scholar Commons, 65. https://doi.org/3450237.
- Schraw, G. (2009). Measuring Metacognitive Judgments. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 415-429). Routledge.
- Serra, M. J., & Metcalfe, J. (2009). Effective Implementation of Metacognition. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 278-298). Routledge.
- Shaughnessy, J. J. M. (1979). Confidence-judgment accuracy as a predictor of test performance. Journal of Research in Personality, 13(4), 505-514. https://doi.org/10.1016/0092-6566(79)90012-6.
- Sloman, S. A., Over, D. E., Slovak, L., & Stibel, J. M. (2003). Frequency illusions and other fallacies. Organizational Behavior and Human Decision Processes, 91(2), 296-309. https://doi.org/10.1016/S0749-5978(03)00021-9.
- Stankov, L. (2013). Noncognitive predictors of intelligence and academic achievement: An important role of confidence. Personality and Individual Differences, 55(7), 727-732. https://doi.org/10.1016/j.paid.2013.07.006.
- Stankov, L., & Crawford, J. D. (1996). Confidence judgments in studies of individual differences. Personality and Individual Differences, 21(6), 971-986. https://doi.org/10.1016/S0191-8869(96)00130-4.
- Stankov, L., & Crawford, J. D. (1997). Self-confidence and performance on tests of cognitive abilities. Intelligence, 25(2), 93-109. https://doi.org/10.1016/S0160-2896(97)90047-7.
- Stankov, L., Lee, J., Luo, W., & Hogan, D. J. (2012). Confidence: A better predictor of academic achievement than self-efficacy, self-concept and anxiety? Learning and Individual Differences, 22(6), 747-758. https://doi.org/10.1016/j.lindif.2012.05.013.
- Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: implications for the rationality debate? The Behavioral and Brain Sciences, 23(5), 645-665. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11301544.
- Stupple, E. J. N., Ball, L. J., & Ellis, D. (2013). Matching bias in syllogistic reasoning: Evidence for a dual-process account from response times and confidence ratings. Thinking & Reasoning, 19(1), 54-77. https://doi.org/10.1080/13546783.2012.735622.
- Tabachnick, B. G., & Fidell, L. S. (1996). Using Multivariate Statistics (3rd ed.). New York: HarperCollins.
- Tempelaar, D. T. (2009). The Role of Self-theories of Intelligence and Self-perceived Metacognitive Knowledge, Skills, and Attitudes, in Learning Statistics. Fifth Global SELF International Biennial Conference. Enabling Human Potential, 13-15. Retrieved from http://www.self.ox.ac.uk/documents/Tempelaar.pdf.
- Thompson, V., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and metacognition. Cognitive Psychology, 63(3), 107-140. https://doi.org/10.1016/j.cogpsych.2011.06.001.
- Thurstone, L. L., & Thurstone, T. G. (1981). PMA: abilità mentali primarie: manuale di istruzioni - Batteria fattoriale delle abilità mentali primarie. Firenze: Organizzazioni Speciali.
- Thurstone, L. L., & Thurstone, T. G. (1987). TEA - tests de aptitudes escolares : manual (Vol. 5a). Madrid: Tea.
- Tobias, S., & Everson, H. T. (2009). The importance of knowing what you know: A knowledge monitoring framework for studying metacognition in education. In D. L. Hacker, J. Dunlosky, & A. Graesser (Eds.), Handbook of metacognition in education (pp. 107-127). New York: Routledge.
- Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124.
- Vigil-Colet, A., Lorenzo-Seva, U., & Condon, L. (2008). Development and validation of the statistical anxiety scale. Psicothema, 20(1), 174-180.
- Was, C. A. (2014). Discrimination in measures of knowledge monitoring accuracy. Advances in Cognitive Psychology, 10(3), 104-112. https://doi.org/10.5709/acp-0161-y.
- Watson, J. M., & Moritz, J. B. (2003). Fairness of dice: A longitudinal study of students’ beliefs and strategies for making judgments. Journal for Research in Mathematics Education, 270-304.
- Yamagishi, K. (2003). Facilitating normative judgments of conditional probability: Frequency or nested sets? Experimental Psychology, 50(2), 97-106. https://doi.org/10.1026//1618-3169.50.2.97.
How to cite this article
APA
Agus, M., Peró-Cebollero, M., Guàrdia-Olmos, J., Portoghese, I., Mascia, M. L., & Penna, M. P. (2020). What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain. Eurasia Journal of Mathematics, Science and Technology Education, 16(2), em1820. https://doi.org/10.29333/ejmste/113111
Vancouver
Agus M, Peró-Cebollero M, Guàrdia-Olmos J, Portoghese I, Mascia ML, Penna MP. What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain. EURASIA J Math Sci Tech Ed. 2020;16(2):em1820. https://doi.org/10.29333/ejmste/113111
AMA
Agus M, Peró-Cebollero M, Guàrdia-Olmos J, Portoghese I, Mascia ML, Penna MP. What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain. EURASIA J Math Sci Tech Ed. 2020;16(2), em1820. https://doi.org/10.29333/ejmste/113111
Chicago
Agus, Mirian, Maribel Peró-Cebollero, Joan Guàrdia-Olmos, Igor Portoghese, Maria Lidia Mascia, and Maria Pietronilla Penna. "What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain". Eurasia Journal of Mathematics, Science and Technology Education 2020 16 no. 2 (2020): em1820. https://doi.org/10.29333/ejmste/113111
Harvard
Agus, M., Peró-Cebollero, M., Guàrdia-Olmos, J., Portoghese, I., Mascia, M. L., and Penna, M. P. (2020). What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain. Eurasia Journal of Mathematics, Science and Technology Education, 16(2), em1820. https://doi.org/10.29333/ejmste/113111
MLA
Agus, Mirian et al. "What’s about the Calibration between Confidence and Accuracy? Findings in Probabilistic Problems from Italy and Spain". Eurasia Journal of Mathematics, Science and Technology Education, vol. 16, no. 2, 2020, em1820. https://doi.org/10.29333/ejmste/113111