Abstract
Physics is the discipline within the STEM fields (Science, Technology, Engineering, and Mathematics) with the lowest academic performance rates in secondary education and the most pronounced gender gap. This article examines the outcomes of implementing problem-solving activities using educational technologies within a STEM framework in physics education. The intervention was conducted in a secondary education setting (ages 14–16) with a group of 35 students (12 boys and 23 girls) over six sessions. Students completed a custom-designed questionnaire, administered both before and after the educational intervention, consisting of 20 multiple-choice questions on physics concepts. The results demonstrated an overall improvement in academic performance, with girls showing greater gains than boys.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EURASIA J Math Sci Tech Ed, Volume 22, Issue 1, January 2026, Article No: em2766
https://doi.org/10.29333/ejmste/17758
Publication date: 20 Jan 2026
Article Views: 29
Article Downloads: 16
Open Access References How to cite this articleReferences
- Aldon, G., Hitt, F., Bazzini, L., & Gellert, U. (2017). Mathematics and technology. Springer. https://doi.org/10.1007/978-3-319-51380-5
- Allegrini, A. (2015). Gender, STEM studies and educational choices. Insights from feminist perspectives. In E. Henriksen, J. Dillon, & J. Ryder (Eds), Understanding student participation and choice in science and technology education. Springer. https://doi.org/10.1007/978-94-007-7793-4_4
- Asrizal, A., Annisa, N., Festiyed, F., Ashel, H., & Amnah, R. (2023). STEM-integrated physics digital teaching material to develop conceptual understanding and new literacy of students. Eurasia Journal of Mathematics, Science and Technology Education, 19(7), Article em2289. https://doi.org/10.29333/ejmste/13275
- Ausubel, D. P., Novak, J. D., & Hanesian, H. (1976). Psicología educativa: Un punto de vista cognoscitivo [Educational psychology: A cognitive point of view] (Vol. 3). Trillas.
- Barbero-García, M. I., Holgado-Tello, F. P., Vila, E., & Chacón-Moscoso, S. (2007). Actitudes, hábitos de estudio y rendimiento en matemáticas: Diferencias por género [Attitudes, study habits and performance in mathematics: Gender differences]. Psicothema, 19(3), 413-421.
- Barone, C., & Assirelli, G. (2020). Gender segregation in higher education: An empirical test of seven explanations. Higher Education, 79(1), 55-78. https://doi.org/10.1007/s10734-019-00396-2
- Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762. https://doi.org/10.1119/1.17449
- Benavent, X., de Ves, E., Forte, A., Botella-Mascarell, C., López-Iñesta, E., Rueda, S., Roger, S., Perez, J., Portalés, C., Dura, E., Garcia-Costa, D., & Marzal, P. (2020). Girls4STEM: Gender diversity in STEM for a sustainable future. Sustainability, 12(15), Article 6051. https://doi.org/10.3390/su12156051
- Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389-391. https://doi.org/10.1126/science.aah6524
- Boateng, S., Mudadigwa, B., & Johnston-Wilder, S. (2025). Examining gendered patterns in mathematics and science anxiety levels among physical science pre-service teachers. Eurasia Journal of Mathematics, Science and Technology Education, 21(1), Article em2564. https://doi.org/10.29333/ejmste/15800
- Bokova, I. G. (2018). Cracking the code: Girls’ and women’s education in science, technology, engineering and mathematics (STEM). UNESCO.
- Botella, C., Rueda, S., López-Iñesta, E., & Marzal, P. (2019). Gender diversity in STEM disciplines: A multiple factor problem. Entropy, 21(1), Article 30. https://doi.org/10.3390/e21010030
- Bybee, R. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), Article 30.
- Calvo-Ballestero, M. M. (2008). Enseñanza eficaz de la resolución de problemas en matemáticas [Teaching effective problem solving in mathematics]. Revista Educación, 32(1), 123-138. https://doi.org/10.15517/revedu.v32i1.527
- Campbell, D., & Stanley, J. (1995). Diseños experimentales y cuasiexperimentales en la investigación social [Experimental and quasi-experimental designs in social research]. Amorrortu editores.
- Castro-Martínez, E. (2008). Resolución de problemas: Ideas, tendencias e influencias en España [Problem solving: Ideas, trends and influences in Spain]. In Investigación en Educación Matemática XII. Sociedad Española de Investigación en Educación Matemática, Badajoz. https://dialnet.unirioja.es/servlet/articulo?codigo=2748780
- Correll, S. J. (2001). Gender and the career choice process: The role of biased self-assessments. American Journal of Sociology, 106(6), 1691-1730. https://doi.org/10.1086/321299
- Díaz-Lozada, J. A., & Díaz-Fuentes, R. (2018). Los métodos de resolución de problemas y el desarrollo del pensamiento matemático [Problem-solving methods and the development of mathematical thinking]. Bolema, 32(60), 57-74. http://doi.org/10.1590/1980-4415v32n60a03
- Diez-Ojeda, M., Queiruga-Dios, M.A., Velasco-Pérez, N., López-Iñesta, E., & Vázquez-Dorrío, B. (2021). Inquiry through industrial chemistry in compulsory secondary education for the achievement of the development of the 21st century skills. Education Sciences, 11(9), Article 475. https://doi.org/10.3390/educsci11090475
- Ding, L., Chabay, R., & Sherwood, B. (2013). How do students in an innovative principle‐based mechanics course understand energy concepts? Journal of Research in Science Teaching, 50(6), 722-747. https://doi.org/10.1002/tea.21097
- Duflo, E. (2012). Women empowerment and economic development. Journal of Economic Literature, 50(4), 1051-1079. https://doi.org/10.1257/jel.50.4.1051
- Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives (pp. 74-146). W. H. Freeman.
- Eidlin-Levy, H., Avraham, E., Fares, L., & Rubinsten, O. (2023). Math anxiety affects career choices during development. International Journal of STEM Education, 10(1), Article 49. https://doi.org/10.1186/s40594-023-00441-8
- Espinoza, A. M., & Taut, S. (2016). El rol del género en las interacciones pedagógicas de aulas de matemática chilenas [The role of gender in the pedagogical interactions of Chilean mathematics classrooms]. Psykhe (Santiago), 25(2). https://doi.org/10.7764/psykhe.25.2.858
- European Council. (2018). Council Recommendation of 22 May 2018 on Key Competences for LifeLong Learning, 2018/C189/01. EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.C_.2018.189.01.0001.01.ENG
- Gamboa-Araya, R., & Moreira-Mora, T. E. (2016). Un modelo explicativo de las creencias y actitudes hacia las matemáticas: Un análisis basado en modelos de ecuaciones estructurales [An explanatory model of beliefs and attitudes towards mathematics: An analysis based on structural equation models]. Avances de Investigación en Educación Matemática, (10), 27-51. https://doi.org/10.35763/aiem.v0i10.155
- García-González, L. I. (2020). Laboratorio virtual de cinemática. FisQuiWeb. https://fisquiweb.es/Laboratorio/Cinematica/LabCinematica.htm
- Gravemeijer, K., Stephan, M., Julie, C., Lin, F. L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal of Science and Mathematics Education, 15(1), 105-123. https://doi.org/10.1007/s10763-017-9814-6
- Gunderson, A. G., & Gunderson, E. (1957). Fraction concepts held by young children. The Arithmetic Teacher, 4(4), 168-173. https://doi.org/10.5951/AT.4.4.0168
- Halloun, I., Hake, R., Mosca, E., & Hestenes, D. (1995). Force concept inventory. https://www.physport.org/assessments/assessment.cfm?A=FCI
- Hutchison, J. E., Lyons, I. M., & Ansari, D. (2019). More similar than different: Gender differences in children's basic numerical skills are the exception not the rule. Child Development, 90(1), e66-e79. https://doi.org/10.1111/cdev.13044
- Keller, C. (2001). Effect of teachers’ stereotyping on students’ stereotyping of mathematics as a male domain. The Journal of Social Psychology, 141(2), 165-173. https://doi.org/10.1080/00224540109600544
- Kelly, A. (1988). Gender differences in teacher–pupil interactions: A meta-analytic review. Research in Education, 39(1). https://doi.org/10.1177/003452378803900101
- Labudde, P., Herzog, W., Neuenschwander, M. P., Violi, E., & Gerber, C. (2000). Girls and physics: Teaching and learning strategies tested by classroom interventions in grade 11. International Journal of Science Education, 22(2), 143-157. https://doi.org/10.1080/095006900289921
- Larsen, M. R., Sommersel, H. B., & Larsen, M. S. (2013). Evidence on dropout phenomena at universities. Danish Clearinghouse for Educational Research.
- Leinhardt, G. (1988). Getting to know: Tracing students’ mathematical knowledge from intuition to competence. Educational Psychologist, 23(2), 119-144. https://doi.org/10.1207/s15326985ep2302_4
- López-Iñesta, E., Botella, C., Rueda, S., Forte, A., & Marzal, P. (2020a). Towards breaking the gender gap in science, technology, engineering and mathematics. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 15(3), 233-241. https://doi.org/10.1109/RITA.2020.3008114
- López-Iñesta, E., Garcia-Costa, D., Grimaldo Moreno, F., Sanz, M. T., Vila-Francés, J., Forte, A., Botella, C., & Rueda, S. (2020b). Efecto de la retroalimentación orientada al acierto: Un caso de estudio de analítica del aprendizaje [Effect of hit-oriented feedback: a learning analytics case study]. Actas de las Jenui, 5, 337-340. http://hdl.handle.net/10045/125225
- Lorenzo, M., Crouch, C. H., & Mazur, E. (2006). Reducing the gender gap in the physics classroom. American Journal of Physics, 74(2), 118-122. https://doi.org/10.1119/1.2162549
- Lunardon, M., Cerni, T., & Rumiati, R. I. (2022). Numeracy gender gap in STEM higher education: The role of neuroticism and math anxiety. Frontiers in Psychology, 13, Article 856405. https://doi.org/10.3389/fpsyg.2022.856405
- MacDonald, A., Wise, K., Tregloan, K., Fountain, W., Wallis, L., & Holmstrom, N. (2019). Designing STEAM education: Fostering relationality through design‐led disruption. International Journal of Art & Design Education, 39(1), 227-241. https://doi.org/10.1111/jade.12258
- Madsen, A., McKagan, S. B., & Sayre, E. C. (2013). Gender gap on concept inventories in physics: What is consistent, what is inconsistent, and what factors influence the gap? Physical Review Special Topics—Physics Education Research, 9(2), Article 020121. https://doi.org/10.1103/PhysRevSTPER.9.020121
- Martín‐Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
- Martin, M. O., Von Davier, M., & Mullis, I. V. (2020). Methods and procedures: TIMSS 2019 technical report [Paper presentation]. TIMSS & PIRLS International Association for the Evaluation of Educational Achievement.
- Meneses-Villagrá, J. A. (2018). Estrategias didácticas para la resolución de problemas en física [Didactic strategies for solving problems in physics]. In J. Á. Meneses Villagrá, & M. J. Fontana Gebara (Coords.), Estrategias didácticas para la enseñanza de la física. Universidad de Burgos.
- Ministerio de Educación y Formación Profesional (MEFP). (2020). Panorama de la educación. Indicadores de la OCDE. Informe español [Education overview. OECD indicators. Spanish report]. Secretaría General Técnica.
- National Council of Teachers of Mathematics [NCTM] (2000). Principles and Standards for School Mathematics. NCTM.
- Nufus, H., & Mursalin, M. (2020). Improving students’ problem solving ability and mathematical communication through the application of problem based learning. Electronic Journal of Education, Social Economics and Technology, 1(1), 43-48. https://doi.org/10.33122/ejeset.v1i1.8
- Nunnally, J. C. (1975). Psychometric theory—25 years ago and now. Educational Researcher, 4(10), 7-21. https://doi.org/10.3102/0013189X004010007
- OECD. (2009). PISA 2009 Assessment framework–Key competencies in reading, mathematics and science. OECD Publishing. https://doi.org/10.1787/9789264062658-en
- OECD. (2014). PISA 2012 Results: What students know and can do (Volume I, Revised edition, February 2014): Student performance in mathematics, reading and science. OECD Publishing, https://doi.org/10.1787/9789264208780-en
- OECD. (2015). The ABC of gender equality in education: Aptitude, behaviour, confidence, OECD Publishing. https://doi.org/10.1787/9789264229945-en
- Pólya, G. (1945). Cómo plantear y resolver problemas [How to solve it] (J. Zugazagoitia Trad.) México: Trillas.
- Queiruga-Dios, M. Á, Sáiz, M., & Montero, C. (2016). Análisis de protocolos en alumnos de educación secundaria obligatoria [Analysis of protocols in compulsory secondary education students] [Doctoral dissertation, University of Burgos, Burgos]. http://hdl.handle.net/10259/5050
- Queiruga-Dios, M. A. (2016). Indagación, trabajo cooperativo y método científico en la enseñanza-aprendizaje de la física en Secundaria Obligatorio. Propuesta y reflexión [Inquiry, cooperative work and scientific method in the teaching-learning of physics in Secondary Compulsory. Proposal and reflection]. In J. Gómez-Galán, E. López-Meneses & L. M. García. Instructional Strategies in Teacher Training (pp. 317-329). UMET Press.
- Queiruga-Dios, M. A., Diez-Ojeda, M., & Velasco-Pérez, N. (2019a). Utilización de las TIC en la construcción de la física: Análisis de una propuesta didáctica [Use of ICT in the construction of physics: Analysis of a didactic proposal] [Paper presentation]. Congreso Iberoamericano. La educación ante el nuevo entorno digital. http://formacionib.org/congreso-entorno-digital/0045.pdf
- Queiruga-Dios, M. A., Juez, S., Sáiz-Manzanares, M. C., & Collado, S. (2018). Mobile learning: Análisis y reflexión. Una propuesta de implementación en el aula [Mobile learning: Analysis and reflection. A proposal for implementation in the classroom]. In P. Membiela, M. I. Cebreiros & M. Vidal (Eds.), Nuevos retos en la enseñanza de las ciencias (pp. 517-521). Educación Editora.
- Queiruga-Dios, M. A., López-Iñesta, E., Diez-Ojeda, M., & Vázquez-Dorrío, J. B. (2021b). Technologies applied to the improvement of academic performance in the teaching-learning process in secondary students. In Advances in intelligent systems and computing (pp. 307-316). Springer, Cham. https://doi.org/10.1007/978-3-030-57799-5_32
- Queiruga-Dios, M. A., López-Iñesta, E., Diez-Ojeda, M., Sáiz-Manzanares, M. C., & Vázquez-Dorrío, J. B. (2021c). Implementation of a STEAM project in compulsory secondary education that creates connections with the environment. Journal for the Study of Education and Development, 44(4), 871-908. https://doi.org/10.1080/02103702.2021.1925475
- Queiruga-Dios, M. Á., López-Iñesta, E., Diez-Ojeda, M., Sáiz-Manzanares, M. C., & Vázquez-Dorrío, J. B. (2021a). Developing engineering skills in secondary students through STEM project based learning. In Advances in Intelligent Systems and Computing (vol 1266). Springer, Cham. https://doi.org/10.1007/978-3-030-57799-5_27
- Queiruga-Dios, M. A., Sáiz-Manzanares, M. C., & Montero-García, E. (2019b). Problemas-proyectos adaptativos y creativos en la enseñanza de las ciencias. Descripción de la metodología y apreciación de los estudiantes involucrados [Adaptive and creative problems-projects in science teaching. Description of the methodology and appreciation of the students involved]. Research in Education and Learning Innovation Archives, 23, 1-23. https://doi.org/10.7203/realia.23.15567
- Redmond, P., & Gutke, H. (2020). STEMming the flow: Supporting females in STEM. International Journal of Science and Mathematics Education, 18(2), 221-237. https://doi.org/10.1007/s10763-019-09963-6
- Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walwerg-Henriksson, H., & Hemmo, V. (2007). Science Education Now: A Renewed Pedagogy for the Future of Europe. Comisión Europea. https://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
- Rodríguez-Mantilla, J. M., Fernández-Díaz, M. J., & Olmeda, G. J. (2018). PISA 2015: Predictores del rendimiento en ciencias en España [PISA 2015: Predictors of science performance in Spain]. Revista de Educación, 380, 75-102
- Sáiz-Manzanares, M. C., & Bol, A. (2015). Cómo enseñar y cómo evaluar la resolución de problemas en física: Una reflexión sobre la propia práctica [How to teach and how to assess problem solving in physics: A reflection on one’s own practice]. In M. A. Queiruga Dios (Ed.), Innovación en la enseñanza de las ciencias: Reflexiones, experiencias y buenas prácticas (pp. 129-146). Editorial Q.
- Sáiz-Manzanares, M. C., Rodríguez-Arribas, S., Pardo-Aguilar, C., & Queiruga-Dios, M. Á. (2020). Effectiveness of self-regulation and serious games for learning stem knowledge in primary education. Psicothema, 32(4), 516-524. https://doi.org/10.7334/psicothema2020.30
- Schoenfeld, A. (1985). Mathematical problem solving. Academic Press.
- Shongwe, B. (2024). The effect of STEM problem-based learning on students’ mathematical problem-solving beliefs. EURASIA Journal of Mathematics, Science and Technology Education, 20(8), Article em2486. https://doi.org/10.29333/ejmste/14879
- Stearns, E., Bottia, M. C., Giersch, J., Mickelson, R. A., Moller, S., Jha, N., & Dancy, M. (2020). Do relative advantages in STEM grades explain the gender gap in selection of a STEM major in college? A multimethod answer. American Educational Research Journal, 57(1), 218-257. https://doi.org/10.3102/0002831219853533
- Suprapto, N. (2020). Do we experience misconceptions?: An ontological review of misconceptions in science. Studies in Philosophy of Science and Education, 1(2), 50-55. https://doi.org/10.46627/sipose.v1i2.24
- Thornton, R. K., & Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66(4), 338-352. https://doi.org/10.1119/1.18863
- Tveita, J. (1999). Can untraditional learning methods used in physics help girls to be more interested and achieve more in this Subject? In M. Bandiera, S. Caravita, E. Torracca, & M. Vicentini (Eds.), Research in science education in Europe (pp. 133-140). Springer. https://doi.org/10.1007/978-94-015-9307-6_17
- Ulriksen, L., Madsen, L. M., & Holmegaard, H. T. (2015). Why do students in STEM higher education programmes drop/opt out? – explanations offered from research. In E. Henriksen, J. Dillon, & J. Ryder (Eds.), Understanding student participation and choice in science and technology education. Springer. https://doi.org/10.1007/978-94-007-7793-4_13
- UNESCO. (2005). Guidelines for inclusion: Ensuring access to education for all. https://unesdoc.unesco.org/ark:/48223/pf0000140224
- United Nations Statistics Division (UNSD). (2017). The sustainable development goals report 2017. https://unstats.un.org/sdgs/files/report/2017/TheSustainableDevelopmentGoalsReport2017.pdf
- Varela-Nieto, M. P., & Martínez-Aznar, M. M. (1997). Una estrategia de cambio conceptual en la enseñanza de la física: La resolución de problemas como actividad de investigación [A conceptual change strategy in the teaching of physics: Problem solving as a research activity]. Enseñanza de las Ciencias, 15(2), 173-188. https://doi.org/10.5565/rev/ensciencias.4174
- Viloria, R., Tricio, V., & Collado, S. (2018). Los teléfonos móviles como herramientas TIC para la enseñanza de la física [Mobile phones as ICT tools for teaching physics] [Paper presentation]. Ibero-American Congress of Teachers.
- Vygotsky, L. (1979). El desarrollo de los procesos psicológicos superiores [The development of higher psychological processes]. Crítica.
- Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93(4), 297-314. https://doi.org/10.1177/0038040720928484
- Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68-81. https://doi.org/10.1006/ceps.1999.1015
How to cite this article
APA
Diez Ojeda, M., López-Iñesta, E., de Sousa, F. I., & Queiruga-Dios, M. A. (2026). Integrative STEM approach to enhance academic performance in physics among Spanish students. Eurasia Journal of Mathematics, Science and Technology Education, 22(1), em2766. https://doi.org/10.29333/ejmste/17758
Vancouver
Diez Ojeda M, López-Iñesta E, de Sousa FI, Queiruga-Dios MA. Integrative STEM approach to enhance academic performance in physics among Spanish students. EURASIA J Math Sci Tech Ed. 2026;22(1):em2766. https://doi.org/10.29333/ejmste/17758
AMA
Diez Ojeda M, López-Iñesta E, de Sousa FI, Queiruga-Dios MA. Integrative STEM approach to enhance academic performance in physics among Spanish students. EURASIA J Math Sci Tech Ed. 2026;22(1), em2766. https://doi.org/10.29333/ejmste/17758
Chicago
Diez Ojeda, María, Emilia López-Iñesta, Francisco Ivanildo de Sousa, and Miguel Angel Queiruga-Dios. "Integrative STEM approach to enhance academic performance in physics among Spanish students". Eurasia Journal of Mathematics, Science and Technology Education 2026 22 no. 1 (2026): em2766. https://doi.org/10.29333/ejmste/17758
Harvard
Diez Ojeda, M., López-Iñesta, E., de Sousa, F. I., and Queiruga-Dios, M. A. (2026). Integrative STEM approach to enhance academic performance in physics among Spanish students. Eurasia Journal of Mathematics, Science and Technology Education, 22(1), em2766. https://doi.org/10.29333/ejmste/17758
MLA
Diez Ojeda, María et al. "Integrative STEM approach to enhance academic performance in physics among Spanish students". Eurasia Journal of Mathematics, Science and Technology Education, vol. 22, no. 1, 2026, em2766. https://doi.org/10.29333/ejmste/17758
Full Text (PDF)